Quantum Theory of Condensed Matter I

Prof. John Schliemann

Dr. Paul Wenk

Sheet 2

1. Diatomic Chain

We are going to analyze vibrations of compound lattices. Let us consider the chain shown in Fig. 1. One can see that the elementary cell contains two atoms of mass M_{1} and M_{2}. We make the approximation that the interaction between the atoms is only between nearest neighbors and that the force is quasi elastic with two different spring constants C_{1}, C_{2} as depicted in Fig. 1.

Figure 1: Diatomic Chain
(a) $(2 \mathrm{P})$ Determine the primitive translations and the vectors of the lattice and the reciprocal lattice. What is here the first Brillouin-Zone?
(b) (2P) Write down the equations of motion for the longitudinal lattice vibrations and solve them by using the ansatz $u_{n}=A_{u} e^{i(q a n-\omega t)}$, $v_{n}=A_{v} e^{i(q a n-\omega t)}$, where q is the wave vector, n the site index and ω the frequency. Why is this ansatz reasonable?
(c) $(2 \mathrm{P})$ Sketch the possible vibration branches and analyze the following cases:

1. $q=0$,
2. $q= \pm \pi / a$,
3. $0<q \ll \pi / a$.
$(\mathrm{d})(2 \mathrm{P})$ What happens to the modes in the degenerate case, i.e. when $C_{1}=C_{2}, M_{1}=M_{2}$?

2. Dynamical Matrix

Assume a simple cubic lattice with a lattice constant a. To describe the lattice vibrations we apply, as in Ex.1, the harmonic approximation including, however, both nearest neighbors (nn), which are coupled through the spring constant C_{1}, and next nearest neighbors (nnn), which are coupled through the spring constant C_{2}. Thus, the according potential V is given by

$$
\begin{equation*}
V=\frac{1}{2} \sum_{\mathbf{R}}\left(\frac{C_{1}}{2 a^{2}} \sum_{\boldsymbol{D n n}}\left(\mathbf{D} \cdot\left(\mathbf{u}_{\mathbf{R}+\mathbf{D}}-\mathbf{u}_{\mathbf{R}}\right)\right)^{2}+\frac{C_{2}}{4 a^{2}} \sum_{\mathbf{D}^{\prime} \mathrm{nnn}}\left(\mathbf{D}^{\prime} \cdot\left(\mathbf{u}_{\mathbf{R}+\mathbf{D}^{\prime}}-\mathbf{u}_{\mathbf{R}}\right)\right)^{2}\right), \tag{1}
\end{equation*}
$$

with the vectors \mathbf{D} connecting the nn (these are $(\pm a, 0,0),(0, \pm a, 0),(0,0, \pm a))$ and \mathbf{D}^{\prime} connecting the nnn and the small elongations \mathbf{u} at the position \mathbf{R}. The lattice vector \mathbf{R} can be represented via triplets of integers (n, m, l). In case of a phonon with a wave vector $\mathbf{k}=k(1,0,0)$ in the reciprocal space the dynamical matrix $\boldsymbol{\Lambda}$ is diagonal. Calculate the phonon dispersion for this special direction.

Hint: Use proper indexing as $\mathbf{D} \cdot\left(\mathbf{u}_{\mathbf{R}+\mathbf{D}}-\mathbf{u}_{\mathbf{R}}\right)=a\left(u_{n \pm 1, m, l}^{x}-u_{n, m, l}^{x}\right)$ for $\mathbf{D}= \pm a \mathbf{e}_{x}$. Apply the eigenfunctions of the translation operator, $u_{n m l}^{x}=A_{\mathbf{k}}^{x} \exp \left[i\left(n k_{x}+m k_{y}+l k_{z}\right) a\right]$, (for y, z respectively), to get an algebraic equation. Use the symmetry of the lattice.

