Quantum Theory of Condensed Matter I

Prof. John Schliemann
Dr. Paul Wenk, M.Sc. Martin Wackerl
Mo. 08:00-10:00 c.t., PHY 5.0.21

Sheet 11

Lifetime of Quasiparticles

[20P]
Consider a system describing tunneling from a lead to a localized fermionic state,

$$
\begin{align*}
H & =H_{0}+H_{t} \tag{1}\\
\text { where } \quad H_{0} & =\sum_{k} \epsilon(k) c_{k}^{\dagger} c_{k}+\Delta d^{\dagger} d \tag{2}
\end{align*}
$$

with the operators d, d^{\dagger} describing the localized fermionic level. The tunneling term,

$$
\begin{equation*}
H_{t}=\gamma\left(d^{\dagger} \psi(0)+\psi^{\dagger}(0) d\right) \tag{3}
\end{equation*}
$$

describes the coupling between the fermionic, non-interacting lead given by fields $\psi(x)=\sum_{k} e^{i k x} c_{k}, \psi^{\dagger}(x)$ and the fermionic level.
(a)(5P) First, we consider only the lead and assume the temperature to be $T=0$ and set the chemical potential to $\mu=0$. At the special position $x=0$ we assume the local density ρ_{0} to be energy independent. At this position the non-interacting Green's function $G_{0}(x, t)=-i\left\langle\mathcal{T} \psi(0, t) \psi^{\dagger}(x, 0)\right\rangle$ can be rewritten in the known form

$$
\begin{equation*}
G_{0}(x=0, t)=-i \sum_{k} e^{-i t \epsilon(k)}\left(\theta(t)\left(1-n_{k}\right)-\theta(-t) n_{k}\right) \tag{4}
\end{equation*}
$$

with the particle occupation number n_{k} and the time-ordering operator \mathcal{T}. From this, show that

$$
\begin{equation*}
G_{0}(x=0, \omega)=-\frac{i}{2} \rho_{0} \operatorname{sign}(\omega) \tag{5}
\end{equation*}
$$

(b)(5P) We define in the next step the Green's function of the localized fermionic level

$$
\begin{equation*}
G_{d}(t)=-i\left\langle\mathcal{T} d(t) d^{\dagger}(0)\right\rangle \tag{6}
\end{equation*}
$$

and the mixed Green's function,

$$
\begin{equation*}
G_{\psi, d}(x, t)=-i\left\langle\mathcal{T} \psi(x, t) d^{\dagger}(0)\right\rangle \tag{7}
\end{equation*}
$$

Considering now the whole Hamiltonian, show that the following equations of motion hold:

$$
\begin{align*}
\left(\partial_{t}+i \Delta\right) G_{d}(t) & =-i \delta(t)-i \gamma G_{\psi, d}(0, t) \tag{8}\\
\left(\left(\partial_{t}+i K\right) G_{\psi, d}\right)(x, t) & =-i \gamma \delta(x) G_{d}(t) \tag{9}
\end{align*}
$$

with the operator

$$
\begin{align*}
\left(K G_{\psi, d}\right)(x, t) & =\int d x^{\prime} E\left(x-x^{\prime}\right) G_{\psi, d}\left(x^{\prime}, t\right) \tag{10}\\
\text { and } \quad E\left(x-x^{\prime}\right) & =\sum_{k} \epsilon(k) e^{-i k\left(x-x^{\prime}\right)} \tag{11}
\end{align*}
$$

(c)(5P) Fourier transform the equations of motion derived in (b) and combine them to derive the Dyson equation for $G_{d}(\omega)$,

$$
\begin{equation*}
G_{d}(\omega)=G_{d}^{(0)}(\omega)+\gamma^{2} G_{d}^{(0)}(\omega) G_{0}(0, \omega) G_{d}(\omega) \tag{12}
\end{equation*}
$$

with $G_{d}^{(0)}(t)$ and $G_{0}(x, t)$ being the propagators of the non-interacting system, i.e. $\gamma=0$. For $G_{0}(x, t)$ the relation $\left(\partial_{t}+i K\right) G_{0}(x, t)=-i \delta(t) \delta(x)$ holds. Using the result of (a), solve the Dyson equation for $G_{d}(\omega)$.
Remember: The Fourier transformation of a convolution is given by $\mathcal{F}(f * g)=(2 \pi)^{n / 2} \mathcal{F}(f) \mathcal{F}(g)$, with $f, g \in L^{1}\left(\mathbb{R}^{n}\right)$.
(d) $(5 \mathrm{P})$ Calculate the retarded form of $G_{d}(\omega)$ and show that the corresponding spectral function is given by

$$
\begin{equation*}
S(\omega)=\frac{1}{\pi} \frac{\Gamma}{(\omega-\Delta)^{2}+\Gamma^{2}}, \quad \Gamma:=2 \pi^{2} \gamma^{2} \rho_{0} \tag{13}
\end{equation*}
$$

Give an interpretation in terms of particle lifetimes.

