## Quantum Theory of Condensed Matter I

Prof. John Schliemann
Dr. Paul Wenk
Mo. 08:00-10:00 c.t., PHY 5.0.21

## Sheet 0

## 1. Two Spins in a Time Dependent Potential

Consider a system made up of two $s=\hbar / 2$ spins. The spin interaction is switched on at $t=0$, the Hamiltonian describing it is given by

$$
\begin{equation*}
H=\frac{4 \Delta}{\hbar^{2}} \mathbf{S}_{1} \cdot \mathbf{S}_{2} \tag{1}
\end{equation*}
$$

For $t<0$ the system is in the state $|+-\rangle$ (the Hamiltonian is only a constant which can be set to zero), where
 the following states: $|++\rangle,|+-\rangle,|-+\rangle,|--\rangle$. Hint: Rewrite $H$ using the ladder operators. What is the ground state depending on $\Delta$ ?

## 2. Conservation of Particle Number

Show that the system described by the Hamiltonian $H$

$$
\begin{equation*}
H=\int d^{3} \mathrm{k} \frac{\hbar^{2} k^{2}}{2 m} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}+\frac{1}{2} \iiint d^{3} \mathrm{k} d^{3} p d^{3} q V(\mathbf{q}) a_{\mathbf{k}+\mathbf{q}}^{\dagger} a_{\mathbf{p}-\mathbf{q}}^{\dagger} a_{\mathbf{p}} a_{\mathbf{k}} \tag{2}
\end{equation*}
$$

conserves the particle number $N$ of eigenstates of this system. Does it depend on whether the operators are fermionic or bosonic?

## 3. Two Level System

We assume a two-level system of $N=0, \ldots, 4$ electrons with spin $\sigma=\uparrow, \downarrow$ (in the eigenbasis of $\sigma_{z}$ ) described by the following Hamiltonian

$$
\begin{equation*}
H=\sum_{\sigma}\left(E_{1} c_{1 \sigma}^{\dagger} c_{1 \sigma}+E_{2} c_{2 \sigma}^{\dagger} c_{2 \sigma}+V\left(c_{1 \sigma}^{\dagger} c_{2 \sigma}+c_{2 \sigma}^{\dagger} c_{1 \sigma}\right)\right) \tag{3}
\end{equation*}
$$

a) Derive the eigenvalue equation for arbitrary $N$ using the Fock-states $|N, l\rangle \equiv\left|N, n_{1 \uparrow} n_{1 \downarrow} n_{2 \uparrow} n_{2 \downarrow}\right\rangle$, where $l$ numbers the possible Fock-states for a fixed $N$. Hint: Explain and use $\langle N, l| H\left|N^{\prime}, l^{\prime}\right\rangle \sim \delta_{N N^{\prime}}$.
b) Calculate the eigenvalues for $N=0, \ldots, 4$. Hint: In the case of $N=2$ we have 6 Fock-states. However: Two of them are already eigenstates which reduces the problem again to a $4 \times 4$ secular determinant!

