B. Geiger, Q. Hummel, M. Kelly, T. Kristlbauer, L. Milz

Übungen zur Vorlesung "Mathematische Methoden" Blatt 8

[Beachte: Aufgaben mit (*) sind jeden Mo vor 10:00 schriftlich abzugeben. Ort: entsprechende Briefkästen.]

Aufgabe 1 Divergenz und Rotation*[4P]

- a) Berechnen Sie $\nabla \cdot \mathbf{r}$ und $\nabla \times \mathbf{r}$, wobei $\mathbf{r} = (x, y, z)^T$.
- b) Sei $\mathbf{A}(\mathbf{r}) = (x + 3y, y 2z, x + \alpha z)^T$ in Kartesischer Basis. Bestimmen Sie $\alpha \in \mathbb{R}$ so, dass $\nabla \cdot \mathbf{A} = 0, \ \forall \mathbf{r} \in \mathbb{R}^3$.
- c) Sei $\mathbf{A}(\mathbf{r}) = (xz^3, -2x^2yz, 2yz^4)^T$ in Kartesischer Basis. Bestimmen Sie $\nabla \times \mathbf{A}$ im Punkt $(1, -1, 1)^T$.
- d) Sei $\mathbf{A}(\mathbf{r}) = (x + 2y + \alpha z)\mathbf{e}_x + (\beta x 3y z)\mathbf{e}_y + (4x + \gamma y + 2z)\mathbf{e}_z$. Bestimmen Sie $\alpha, \beta, \gamma \in \mathbb{R}$ so, dass $\nabla \times \mathbf{A} = \mathbf{0}, \ \forall \mathbf{r}, \in \mathbb{R}^3$.

Aufgabe 2 Identitäten der Vektoranalysis*[6P]

Beweisen Sie die folgenden Identitäten mit Hilfe des Levi-Civita-Tensors. Dabei sind $\boldsymbol{A}(\boldsymbol{r})$ und $\boldsymbol{B}(\boldsymbol{r})$ beliebige differenzierbare Vektorfelder und $\varphi(\boldsymbol{r})$ ein beliebiges differenzierbares skalares Feld.

- a) $\nabla \times (\varphi \mathbf{A}) = (\nabla \varphi) \times \mathbf{A} + \varphi \nabla \times \mathbf{A}$.
- b) $\nabla \cdot (\mathbf{A} \times \mathbf{B}) = (\nabla \times \mathbf{A}) \cdot \mathbf{B} \mathbf{A} \cdot (\nabla \times \mathbf{B}).$
- c) $\nabla \times (\nabla \varphi) = \mathbf{0}$.
- d) $\nabla \cdot (\nabla \times \mathbf{A}) = 0$.
- e) $\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) \nabla^2 \mathbf{A}$.
- f) $\nabla (A \cdot B) = (A \cdot \nabla)B + (B \cdot \nabla)A + A \times (\nabla \times B) + B \times (\nabla \times A)$.

Aufgabe 3 Ein Vektorfeld[4P]

Gegeben sei ein Vektorfeld

$$m{F}(m{r}) = rac{1}{r}(m{\omega} imes m{r})$$

mit einem konstanten Vektor ω .

- a) Wählen Sie die z-Achse eines kartesischen Koordinatensystems in Richtung von ω und geben Sie das Feld F(r) in kartesischen Koordinaten x, y, z an. Skizzieren Sie das Feld in der Ebene z = 0.
- b) Berechnen Sie $\nabla \cdot \mathbf{F}$ und $\nabla \times \mathbf{F}$.

f Aufgabe~4 Äquipotentialflächen[5P]

Gegeben sei nun das Vektorfeld $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$, $\mathbf{F}(\mathbf{r}) = \mathbf{r}e^{r^2}$.

Beantworten Sie die folgenden Fragen, ohne das Potential auszurechnen.

- a) Besitzt das Feld Quellen oder Wirbel?
- b) Was ist die Richtung des stärksten Anstiegs des Potentials im Punkt $(1,1,0)^T$?
- c) Wie sehen die Äquipotentialflächen aus? Machen Sie sich bewusst wie das Vektorfeld F(r) dazu steht.

 Aufgabe 5
 Laplace-Operator*
 [4P]

a) Berechnen Sie div(grad U) für das skalare Feld $U: \mathbb{R}^3 \setminus \{\mathbf{0}\} \to \mathbb{R}$,

$$U(\boldsymbol{r}) = \frac{\boldsymbol{p} \cdot \boldsymbol{r}}{\|\boldsymbol{r}\|^3}.$$

Die Zuordnung $U \mapsto \operatorname{div}(\operatorname{grad} U)$ heißt Laplace-Operator. Statt $\operatorname{div}(\operatorname{grad} U)$ schreibt man auch ΔU .

b) Der Laplace-Operator im Zweidimensionalen in kartesischen Koordinaten ist gegeben durch

$$\Delta = \boldsymbol{\nabla} \cdot \boldsymbol{\nabla} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.$$

Zeigen Sie, dass die Funktion $\phi: \mathbb{R}_+ \setminus \{0\} \to \mathbb{R}$, $\phi(r) = \ln(r)$ im Zweidimensionalen eine harmonische Funktion ist, d.h eine spezielle Lösung der Laplace-Gleichung $\Delta \phi = 0$ darstellt. Dabei ist $r = |\mathbf{r}|$ der Betrag des Ortsvektors im \mathbb{R}^2 .

Aufgabe 6 Ebene Bahnkurve.....[3P]

In ebenen Polarkoordinaten r, φ sei die Bahnkurve eines Teilchens durch

$$\mathbf{r}(\varphi) = r(\varphi)\hat{\mathbf{r}}, \quad r(\varphi) = \frac{k}{1 + \epsilon \cos(\varphi)}$$

mit $0 \le \epsilon < 1$ beschrieben.

- a) Berechnen Sie die Minimal- und Maximalwerte von r, und skizzieren Sie die Bahnkurve.
- b) Berechnen Sie einen Einheitsvektor $\hat{\mathbf{t}}$ tangential zur Bahnkurve.