B. Geiger, Q. Hummel, M. Kelly, T. Kristlbauer, L. Milz

## Übungen zur Vorlesung "Mathematische Methoden" Blatt 7

[Beachte: Aufgaben mit (\*) sind jeden Mo vor 10:00 schriftlich abzugeben. Ort: entsprechende Briefkästen.]

Aufgabe 1 Totales Differential\*......[6P]

a) Zeigen Sie, dass es sich bei

$$\omega(x,y) = -(y^2 + xy)dx + (x^2 + xy^3)dy$$

nicht um ein vollständiges (=totales) Differential handelt.

b) Bilden Sie nun das Differential

$$dg = \frac{1}{xy^2}\omega(x, y) = a(x, y)dx + b(x, y)dy.$$

Bestimmen Sie a(x, y), b(x, y) und zeigen Sie, dass es vollständig ist.

- c) Es soll nun die Funktion g(x,y) bestimmt werden.
  - i) Integrieren Sie dazu a(x, y), was gerade  $\partial_x g(x, y)$  entspricht, in x. Erfüllt die so gefundene Funktion  $g_1(x, y)$  auch die Integrabilitätsbedingung  $\partial_y g_1(x, y) = b(x, y)$ ?
  - ii) Integrieren Sie nun die Beziehung  $\partial_y g(x,y) = b(x,y)$  in y. Erfüllt die so gefundene Funktion  $g_2(x,y)$  auch die Integrabilitätsbedingung  $\partial_x g_2(x,y) = a(x,y)$ ?
  - iii) Wie lassen sich die beiden Resultate  $g_1$  und  $g_2$  in Einklang miteinander bringen? Bestimmen Sie g(x,y).

Aufgabe 2 Taylorreihe in mehreren Dimensionen\*.....[4P]

Betrachten Sie die Funktion  $f: \mathbb{R}^2 \to \mathbb{R}$  mit

$$f(x,y) = e^{2y}\cos(x) + e^{2y}\sin(x)$$
.

Gesucht ist die Entwicklung von f(x,y) um den Punkt (x,y) = (0,0) bis zur zweiten Ordnung. Berechnen Sie diese

- a) direkt als zweidimensionale Taylorreihe.
- b) als Produkt zweier eindimensionaler Taylorreihen für a(x) und b(y), indem Sie die Funktion als Produkt f(x,y) = a(x)b(y) auffassen.

Aufgabe 3 Charakterisierung von Raumkurven.....[6P]

Gegeben sei die Schraubenlinie

$$\mathbf{r}(t) = (R\cos(\omega t), R\sin(\omega t), vt), \quad R, v > 0 \text{ und konstant.}$$

- a) Finden Sie die Bogenlänge s(t) (mit beliebigem Bezugspunkt  $t_0$ ), das begleitende Dreibein, d. h.  $\hat{\mathbf{t}}, \hat{\mathbf{n}}, \hat{\mathbf{b}}$  (siehe Vorlesung), die Krümmung  $\kappa$  und die Torsion  $\tau$ .
- b) Beweisen Sie die dritte Frenetsche Formel

$$\frac{\mathrm{d}\hat{\mathbf{n}}}{\mathrm{d}s} = \tau \hat{\mathbf{b}} - \kappa \hat{\mathbf{t}}.$$

Aufgabe 4 Teilchen auf Spiralbahn, rotierende Basis......[6P]

Ein Teilchen bewege sich in der x-y-Ebene. Sein Ortsvektor sei als Funktion der Zeit t gegeben durch

$$\mathbf{r}(t) = e^{-\lambda t} \hat{\mathbf{e}}_r(t)$$

mit dem rotierenden Einheitsvektor

$$\hat{\mathbf{e}}_r(t) = \cos(\omega t)\hat{\mathbf{e}}_x + \sin(\omega t)\hat{\mathbf{e}}_y$$

und konstantem  $\lambda > 0, \omega > 0$ .



Teilchenspuren; Quelle: University of Pennsylvania

a) Zeigen Sie, dass mit

$$\hat{\mathbf{e}}_{\varphi}(t) = -\sin(\omega t)\hat{\mathbf{e}}_x + \cos(\omega t)\hat{\mathbf{e}}_y$$

ein zu  $\hat{\mathbf{e}}_r(t)$  stets senkrechter Einheitsvektor gegeben ist und bestimmen Sie die Zeitableitungen  $\frac{\mathrm{d}}{\mathrm{d}t}\hat{\mathbf{e}}_r(t)$  und  $\frac{\mathrm{d}}{\mathrm{d}t}\hat{\mathbf{e}}_{\varphi}(t)$  in der rotierenden Basis, das heißt, ausgedrückt durch  $\hat{\mathbf{e}}_r(t)$  und  $\hat{\mathbf{e}}_{\varphi}(t)$ .

- b) Berechnen Sie den Geschwindigkeitsvektor  $\mathbf{v}(t)$  und den Beschleunigungsvektor  $\mathbf{a}(t)$  in der rotierenden Basis und geben Sie deren Beträge  $v(t) = ||\mathbf{v}(t)||$  und  $a(t) = ||\mathbf{a}(t)||$  an.
- c) Nun soll untersucht werden, wie die Beschleunigung zur Bewegungsrichtung steht. Bestimmen Sie dazu das Skalarprodukt  $\mathbf{a}(t) \cdot \mathbf{v}(t)$  und bringen Sie es in Beziehung zur Geschwindigkeit v(t). Wird das Teilchen beschleunigt oder abgebremst?
- d) Zerlegen Sie  $\mathbf{a}(t)$  in eine Komponente  $\mathbf{a}_{\parallel}(t)$  in Bewegungsrichtung (also parallel zu  $\mathbf{v}(t)$ ) und eine dazu senkrechte Komponente  $\mathbf{a}_{\perp}(t)$ . Drücken Sie diese beiden Komponenten durch  $\mathbf{v}(t)$  aus, indem Sie zuerst zeigen, dass gilt

$$\hat{\mathbf{e}}_r \times \hat{\mathbf{e}}_z = -\hat{\mathbf{e}}_{\varphi}$$
 und  $\hat{\mathbf{e}}_{\varphi} \times \hat{\mathbf{e}}_z = \hat{\mathbf{e}}_r$ .

Wie lässt sich die Bewegung damit als die eines geladenen Teilchens im Magnetfeld unter Reibung deuten?

e) Welchen Gesamtweg legt das Teilchen von t=0 bis  $t=\infty$  zurück?