Dr. P. Wenk

B. Geiger, Q. Hummel, M. Kelly, T. Kristlbauer, L. Milz

Übungen zur Vorlesung "Mathematische Methoden" Blatt 2

[Beachte: Aufg. mit (*) sind schriftlich jeden Mo vor 10:00 in die entsprechenden Briefkästen abzugeben.]

Aufgabe 1 * Tangens Hyperbolicus

[2P]

Der Tangens Hyperbolicus auf \mathbb{R} ist definiert durch $\tanh(x) := (e^x - e^{-x})/(e^x + e^{-x}), x \in \mathbb{R}$. Bestimmen Sie die Umkehrfunktion des Tangens Hyperbolicus. Finden Sie dabei die richtige Einschränkung der Definitions- und Zielmenge, so dass die Funktion bijektiv ist. Bestimmen Sie außerdem die Ableitung der Umkehrfunktion.

Aufgabe 2 * Ableitungsregeln

[4P]

(a) Leiten Sie die Quotientenregel

$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$

aus der Produkt- und Kettenregel her. Geben Sie dabei explizit an, wo die entsprechenden Regeln benutzt wurden!

(b) Berechnen Sie die folgenden Ableitungen

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n}\sqrt{x^2+a^2}, \qquad \frac{\mathrm{d}}{\mathrm{d}x}\left[\ln\left(\sin^2(3x)\right)\right]^{\frac{1}{3}}, \qquad \frac{\mathrm{d}}{\mathrm{d}x}x^x$$

mit $a \in \mathbb{R}$ und n = 1, 2. Hinweis: $a^b = e^{b \ln(a)}$.

Aufgabe 3 * Integrale

[4P]

Berechnen Sie die folgenden Integrale:

$$\int x^2 \cos(x^3) dx, \qquad \int e^{ax} \cos(2x) dx, \qquad \int x^n \ln(x) dx,$$
$$\int \sin(x) e^{\cos(x)} dx, \qquad \int \frac{1}{x^2 + 4x + 8} dx, \qquad \int_0^1 \frac{e^{a\sqrt{x}}}{\sqrt{x}} dx$$

mit $a \in \mathbb{R}$ und $n \in \mathbb{N}$.

Aufgabe 4 *Partialbruchzerlegung

[6P]

Gegeben sei eine rationale Funktion der Form

$$R_{NM} = \frac{P_N(x)}{Q_M(x)},$$

mit den Polynomen $P_N(x), Q_M(x)$ vom Grad M > N. Es ist

$$Q_M(x) = (x - x_1)^{k_1} (x - x_2)^{k_2} \dots (x - x_n)^{k_n} (x^2 + p_1 x + q_1)^{l_1} (x^2 + p_2 x + q_2)^{l_2} \dots (x^2 + p_m x + q_m)^{l_m},$$

wobei $x_i, p_i, q_i \in \mathbb{R}$ und die folgende Gleichung für die Vielfachheiten $k_i, l_i \in \mathbb{N}$ gilt:

$$\sum_{i=1}^{n} k_i + 2\sum_{i=1}^{m} l_i = M.$$

Für die Partialbruchzerlegung Z(x), bei der $R_{NM}(x)$ in eine Summe von Brüchen zerlegt werden soll, wählt man für jeden Faktor $(x-x_i)^{k_i}$ als Ansatz k_i Terme:

$$\frac{a_{i1}}{(x-x_i)} + \frac{a_{i2}}{(x-x_i)^2} + \dots + \frac{a_{ik_i}}{(x-x_i)^{k_i}}, \quad a_{ij} \in \mathbb{R}.$$

Die entsprechenden l_i Terme als Ansatz für jeden Faktor $(x^2 + p_i x + q_i)^{l_i}$ lauten

$$\frac{b_{i1}x + c_{i1}}{(x^2 + p_i x + q_i)} + \frac{b_{i2}x + c_{i2}}{(x^2 + p_i x + q_i)^2} + \dots + \frac{b_{il_i}x + c_{il_i}}{(x^2 + p_i x + q_i)^{l_i}}, \quad b_{ij}, c_{ij} \in \mathbb{R}.$$

Für die Partialbruchzerlegung Z(x) von $R_{NM}(x)$ soll gelten

$$R_{NM}(x) = Z(x).$$

- (a) Wie bestimmt man die unbekannten Parameter $\{a_{i1},\ldots,b_{i1},\ldots,c_{i1},\ldots\}$ der Zerlegung?
- (b) Im Fall $M \leq N$ spricht man von unecht gebrochenrationalen Funktionen. Wie kann man diese auf den Fall M > N zurückführen?
- (c) Benutzen Sie jetzt die Partialbruchzerlegung, um die unbestimmten Integrale

i)
$$\int \frac{x^3 + x^2 - 3x + 3}{x^2 + x - 2} \, \mathrm{d}x$$
,

ii)
$$\int \frac{x^2 + 1}{(x^3 - 1)(x + 2)} \, \mathrm{d}x$$
,

zu berechnen.

Aufgabe 5 *Die Eulersche Gammafunktion

[4P]

Die Eulersche Gammafuntktion ist für x > 0 definiert durch das Integral

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \, \mathrm{d}t.$$

(a) Zeigen Sie durch partielle Integration die folgende Eigenschaft der Gammafuntion:

$$\Gamma(x+1) = x \cdot \Gamma(x)$$
.

- (b) Benutzen Sie dieses Ergebnis um für alle $n \in \mathbb{N}$ die Gleichung $\Gamma(n+1) = n!$ zu beweisen.
- (c) Welcher Wert ergibt sich für $\Gamma(1/2)$? Hinweis: Gaußsches Integral.