Dr. P. Wenk

B. Geiger, Q. Hummel, M. Kelly, T. Kristlbauer, L. Milz

Übungen zur Vorlesung "Mathematische Methoden" Blatt 13

[Beachte: Aufgaben mit (*) sind jeden Mo vor 10:00 schriftlich abzugeben. Ort: entsprechende Briefkästen.]

Aufgabe 1 *Linearität der Inversen[2P]

Seien X, Y zwei Vektorräume über \mathbb{R} und $A: X \to Y$ ein linearer Operator. Es existiere das Inverse des Operators A, welchen wir als A^{-1} bezeichnen. Zeigen Sie, dass der Operator A^{-1} ebenso ein linearer Operator ist.

Aufgabe 2 *Spur einer Matrix[6P]

Seien $A, B \in \mathbb{R}^{m \times m}$ und $x, y \in \mathbb{R}$.

a) Zeigen Sie, dass die Spur eine lineare Abbildung ist, also

$$Sp(xA + yB) = x Sp(A) + y Sp(B).$$

- b) Der $\mathbb{R}^{m \times m}$ bildet zusammen mit der komponentenweisen Addition $A + B = (a_{ij} + b_{ij})$ und der komponentenweisen Multiplikation $xA = (xa_{ij})$ einen Vektorraum. Zeigen Sie nun, dass die Operation $\langle A|B\rangle := \operatorname{Sp}(A^TB)$ auf $\mathbb{R}^{m \times m}$ ein Skalarprodukt definiert.
- c) Seien $E^{(kl)}$ mit $E^{(kl)}_{ij} = \delta_{ik}\delta_{jl}$ definierte Matrizen. Zeigen Sie mit Hilfe des oben definierten Skalarprodukts, dass die Matrizen E^{kl} eine Orthonormalbasis bilden.

Die drei sogenannten Pauli-Matrizen σ_i sind gegeben durch

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Zeigen Sie:

- a) Die Paulimatrizen sind hermitesch und jede hermitesche 2×2 Matrix lässt sich als Linear-kombination der Paulimatrizen zusammen mit $\sigma_0 = \mathbb{I}_{2\times 2}$ schreiben.
- b) $[\sigma_i, \sigma_j] := \sigma_i \sigma_j \sigma_j \sigma_i = 2i \sum_{k=1}^3 \epsilon_{ijk} \sigma_k$ für i, j = 1, 2, 3. Man nennt [A, B] den Kommutator von A und B.
- c) $\sigma_i \sigma_j = \delta_{ij} \sigma_0 + i \sum_{k=1}^3 \epsilon_{ijk} \sigma_k$ für i, j = 1, 2, 3.
- d) $(\boldsymbol{\sigma} \cdot \mathbf{a})(\boldsymbol{\sigma} \cdot \mathbf{b}) = \mathbf{a} \cdot \mathbf{b} \, \sigma_0 + i \boldsymbol{\sigma} \cdot (\mathbf{a} \times \mathbf{b})$, mit \mathbf{a}, \mathbf{b} beliebigen Vektoren des \mathbb{R}^3 und der abkürzenden Notation $\boldsymbol{\sigma} \cdot \mathbf{a} \equiv a_1 \sigma_1 + a_2 \sigma_2 + a_3 \sigma_3$, wobei die a_i die Koeffzienten der Basisdarstellung $\mathbf{a} = \sum_{i=1}^3 a_i \mathbf{e}_i$ bzgl. einer Orthonormalbasis $\{\mathbf{e}_j\}_{j=1,2,3}$ des \mathbb{R}^3 sind.
- e) $\exp(i\boldsymbol{\sigma}\cdot\boldsymbol{n}\phi) = \sigma_0\cos(\phi) + i\boldsymbol{\sigma}\cdot\boldsymbol{n}\sin(\phi)$, wobei \boldsymbol{n} ein beliebiger Einheitsvektor ist. Hierzu definieren wir die Exponentialfunktion einer Matrix A (genannt Matrixexponential) mit $A \in \mathbb{R}^{n \times n}$ oder $\mathbb{C}^{n \times n}$ als:

$$\exp(A) = \sum_{k=0}^{\infty} \frac{A^k}{k!}$$

Aufgabe 4 Ableitungsoperator [5P]

Betrachten Sie den Ableitungsoperator $D = \frac{d}{dx}$ auf dem Vektorraum der reellen Polynome von Grad $k \leq 3$.

- a) Zeigen Sie, dass D ein linearer Operator ist.
- b) Bestimmen Sie die Matrixdarstellung von D bezüglich der Basis $B_1 = \{p_0, p_1, p_2, p_3\}$ der Potenzen $p_k(x) = x^k$.
- c) Bestimmen Sie auch die Matrixdarstellung von D bezüglich der Basis $B_2 = \{P_0, P_1, P_2, P_3\}$ der Legendre-Polynome

$$P_0(x) = 1$$
, $P_1(x) = x$, $P_2(x) = \frac{1}{2}(3x^2 - 1)$, $P_3(x) = \frac{1}{2}(5x^3 - 3x)$.

- d) Bestimmen Sie die Matrix für $D^2 = \frac{d^2}{dx^2}$ in der Basis B_1
 - i) direkt über die zweite Ableitung,
 - ii) durch Quadrieren der Matrix für D.

Die Darstellung einer Matrix hängt von der Wahl der Basen im Definitions- und im Bildraum ab. Im \mathbb{R}^2 in kartesischer Basis ist die Rotationsmatrix, welche die Rotation eines Vektors um den Winkel ϕ beschreibt, gegeben durch:

$$R_{\phi} = \begin{pmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{pmatrix}.$$

Gegeben seien die (nicht-orthogonalen) Basisvektoren $\{a_i\}$ im Definitionsraum

$$\mathbf{a}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ und } \mathbf{a}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

sowie im Bildraum $\{\mathbf{b}_i\}$ mit

$$\mathbf{b}_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
 und $\mathbf{b}_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

Bestimmen Sie die Darstellung der Rotationsmatrix bezüglich dieser Basen.

Hinweis: Wir benötigen eine Transformationsmatrix von $\{\mathbf{a}_i\}$ in $\{\mathbf{e}_i\}$ und am Ende von $\{\mathbf{e}_i\}$ in $\{\mathbf{b}_i\}$. Setze diese Transformationen mit der obigen Darstellung der Rotationsmatrix zusammen.