A. Bereczuk, C.-A. Moreno-Jaimes, G. Maier, J. Schramm

Übungen zur Vorlesung $Mathematische\ Methoden$ Blatt 6

$[Beachte:\ Abgabe\ bis\ Mo,\ 1.6,\ unter\ G.R.I.P.S.\ Mit\ (*)\ markierte\ Aufg.\ werden\ in\ der\ Zentral\"ubung\ besprochen.]$
Aufgabe 1 Fragen zur Vorlesung [4P]
(a) Wir haben gesehen, dass das Vektorfeld (VF) $\mathbf{F}(\mathbf{r}) = r^{-3}\mathbf{r}$ quellenfrei ist. Aber das Gravitationsfeld einer Punktmasse muss doch eine Quelle haben! Was muss hier beachtet werden?
(b) Kann ein Wirbelfeld Quellen haben?
(c) Wie kommt es, dass in Kugeloordinaten z. B. \mathbf{e}_r und \mathbf{e}_{φ} die Rollen tauschen können, d.h. \mathbf{e}_{φ} in die Richtung von \mathbf{e}_r zeigen kann?
(d) Warum sind die Elemente g_{ij} des metrischen Tensors in Kugelkoordinaten Null für $i \neq j$?
Aufgabe 2 Divergenz und Rotation[4P]
(a) Gegeben sei das VF $\mathbf{A} : \mathbb{R}^3 \to \mathbb{R}^3$, $\mathbf{A}(\mathbf{r}) = (x+3y)\mathbf{e}_x + (y-2z)\mathbf{e}_y + (x+\alpha z)\mathbf{e}_z$. Bestimmen Sie $\alpha \in \mathbb{R}$ so, dass $\nabla \cdot \mathbf{A} = 0$, $\forall \mathbf{r} \in \mathbb{R}^3$.
(b) Nun sei $\mathbf{A}(\mathbf{r}) = (x + 2y + \alpha z)\mathbf{e}_x + (\beta x - 3y - z)\mathbf{e}_y + (4x + \gamma y + 2z)\mathbf{e}_z$. Bestimmen Sie $\alpha, \beta, \gamma \in \mathbb{R}$ so, dass $\nabla \times \mathbf{A} = 0, \ \forall \mathbf{r}$.
Aufgabe 3 Identitäten der Vektoranalysis[10P]
Beweisen Sie die folgenden Identitäten mit Hilfe des Levi-Civita-Tensors. Dabei sind $\boldsymbol{A}(\boldsymbol{r})$ und $\boldsymbol{B}(\boldsymbol{r})$ beliebige, C^2 VFer und $\varphi(\boldsymbol{r})$ ein beliebiges C^2 skalares Feld.
(a) $\nabla \times (\varphi \mathbf{A}) = (\nabla \varphi) \times \mathbf{A} + \varphi \nabla \times \mathbf{A}$.
(b) $\nabla \times (\nabla \varphi) = 0$.
(c) $\nabla \cdot (\nabla \times \mathbf{A}) = 0$.
(d) $\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$.
(e) $\nabla (A \cdot B) = (A \cdot \nabla)B + (B \cdot \nabla)A + A \times (\nabla \times B) + B \times (\nabla \times A).$
Aufgabe 4 Zylinder Koordinaten* [1+1+1+2+3P]
Wir haben in der Vorlesung die Zylinderkoordinaten $\{\rho, \varphi, z\}$ definiert. Gehen Sie entsprechend der Rechnungen zu den sphärischen Koordinaten vor, die wir durchgeführt haben, und berechnen

(a) die Basisvektoren,

Sie

- (b) das Linienelement,
- (c) das Volumenelement (geometrisch),

- (d) und geben sie die Komponenten g_{ij} des metrischen Tensors an.
- (e) Stellen Sie das in kartesischen Koordinaten gegebene VF

$$\mathbf{a} = (-x_1 + x_1^2 x_2 + x_2^3)\mathbf{e}_1 + (-x_1^3 - x_1 x_2^2 - x_2)\mathbf{e}_2 + 7x_3\mathbf{e}_3 \tag{1}$$

vollständig (Koeffizienten und Basis) in Zylinderkoordinaten dar.

Aufgabe 5 Divergenz in allgemeinen Koordinatensystemen*.....[12P]

Gegeben sei ein VF

$$\mathbf{A} = \sum_{i=0}^{3} A_i \hat{\mathbf{u}}_i \tag{2}$$

in einem krummlinigen, lokal orthonormalen Koordinatensystem mit den Koordinaten y_1, y_2, y_3 und

$$\hat{\mathbf{u}}_i = \frac{1}{g_i} \frac{\partial \mathbf{r}}{\partial y_i}, \quad g_i = \left| \frac{\partial \mathbf{r}}{\partial y_i} \right|, \quad i = 1, 2, 3.$$
 (3)

Die Divergenz von A lässt sich durch die Formel

$$\nabla \cdot \mathbf{A} = \frac{1}{g_1 g_2 g_3} \left[\frac{\partial}{\partial y_1} (A_1 g_2 g_3) + \frac{\partial}{\partial y_2} (g_1 A_2 g_3) + \frac{\partial}{\partial y_3} (g_1 g_2 A_3) \right]$$
(4)

darstellen.

(a) Zeigen Sie:

$$\frac{\partial}{\partial y_i}(g_i\hat{\mathbf{u}}_i) = \frac{\partial}{\partial y_i}(g_j\hat{\mathbf{u}}_j) \ . \tag{5}$$

(b) Beweisen Sie mit Hilfe von (a)

$$g_{i}\hat{\mathbf{u}}_{j} \cdot \frac{\partial \hat{\mathbf{u}}_{i}}{\partial y_{j}} = \frac{\partial g_{j}}{\partial y_{i}} - \delta_{ij}\frac{\partial g_{i}}{\partial y_{j}} = \begin{cases} 0 & i = j\\ \frac{\partial g_{j}}{\partial y_{i}} & i \neq j \end{cases}$$
(6)

(c) Zeigen Sie nun mit Hilfe der Definition des Nabla-Operators in krummlinigen Koordinaten

$$\nabla = \sum_{j=1}^{3} \hat{\mathbf{u}}_j \frac{1}{g_j} \frac{\partial}{\partial y_j} \tag{7}$$

und dem Ergebnis der Aufgabe (b), dass Gleichung (4) stimmt.

(d) Leiten Sie einen konkreten Ausdruck für die Divergenz des Vektors **F** in Kugelkoordinaten $\{r, \theta, \phi\}$ her,

$$\mathbf{F}(r,\theta,\phi) = F_r \cdot \mathbf{e}_r + F_\theta \cdot \mathbf{e}_\theta + F_\phi \cdot \mathbf{e}_\phi . \tag{8}$$