Dr. P. Wenk

B. Geiger, N. Leumer, M. Nitsch, A. Rabenstein, A. Rib

Übungen zur Vorlesung "Mathematische Methoden" Blatt 9

[Beachte: Aufg. mit (*) sind jeden Mi vor 8:00 schriftlich abzugeben. Ort: entsprechenden Briefkästen.]

Aufgabe 1 Kraftfeld und Schraubenlinie

(7 Punkte)

Gegeben sei das Kraftfeld $\vec{F}: \mathbb{R}^3 \to \mathbb{R}^3$, $\vec{F}(x,y,z) = (3y, -\lambda 3x + y, 2z)^{\mathrm{T}}$. In diesem Kraftfeld, ausgehend vom Punkt $(R,0,0)^{\mathrm{T}}$, führe nun ein Massenpunkt zwei volle Umdrehungen im Gegenuhrzeigersinn entlang einer Schraubenlinie aus, um schließlich zum Punkt $(R,0,2h)^{\mathrm{T}}$ zu gelangen. Der Radius der Schraubenlinie sei R und die Ganghöhe h, d.h. der Abstand übereinander liegender Punkte. Die Rotationsachse ist die z-Achse.

- a) Berechnen Sie für $\lambda=1$ die am Massenpunkt m durch das Kraftfeld \vec{F} verrichtete Arbeit. (5P)
- b) Für welches λ ist \vec{F} konservativ? Wie lautet die Potentialfunktion ϕ , s.d. $\vec{F} = -\vec{\nabla}\phi$? (2P)

Aufgabe 2 Volumenintegration

(6 Punkte)

- a) Berechnen Sie das Volumen $V_{\rm K}=\int\limits_{z_{\rm min}}^{z_{\rm max}}A_{\rm K}(z)\,{\rm d}z$, des Körpers K durch Integration, wobei A(z) die Querschnittsfläche des Körpers zur z-Achse ist. Der Körper K ist in der x-z-Ebene begrenzt auf das innere der Parabel $z=x^2$ für $x\in[-2,\,2]$. Die Begrenzung in der x-y- Ebene ist durch Halbkreise im Halbraum y>0 derart gegeben, dass sowohl der Anfang als auch das Ende des Halbkreises auf genau einem der Parabeläste liegt. (3P)
- b) Ersetzen Sie den Halbkreis in der x-y-Ebene aus a) durch ein Rechteck, wobei y beschränkt sei auf [-3, 3] für alle x, z um den Körper P zu erhalten. Berechnen Sie dessen Volumen, indem Sie entweder in der Volumenformel aus a) eine geeignete Querschnittsfläche einsetzen oder indem Sie das Volumen direkt durch $V_p = \int_P dx dy dz$ berechnen. (3P)

Aufgabe 3 * Ladungsdichte

(6 Punkte)

Die Ladungsdichte $\rho(\vec{r})$ beschreibt die Verteilung von Ladung pro Volumen. Die Größe $Q = \int_V \rho(\vec{r}') dV'$, ist die im Volumen V' eingeschlossene Ladung.

a) Betrachten Sie konkret

$$\rho_1(\vec{r}) = q \left[(xyz + 1)^2 + x^4 y^2 + z^2 \right] \theta(3 - |x|) \theta(4 - |y|) \theta(5 - |z|), \tag{1}$$

wobei θ die Heaviside Funktion und $q \neq 0$ die Elementarladung darstellt. Wo fällt die Ladungsdichte auf Null ab, d.h. welche Geometrie liegt $\rho_1(\vec{r})$ insgesamt zugrunde? Welche Ladung ist in diesem Volumen eingeschlossen? (3P)

b) Betrachten Sie jetzt

$$\rho_2(\vec{r}) = q x e^{-\frac{x^2}{2}} y^2 \sinh(z) \theta(3 - |x|) \theta(4 - |y|) \theta(5 - |z|). \tag{2}$$

Welche Ladung ist jetzt enthalten? (3P)

Aufgabe 4 * Linienintegrale

[8P]

a) Bestimmen Sie die notwendige Arbeit $W_{\rm C}=\int_{\rm C} \vec{F_1}\cdot {\rm d}\vec{s}$, um im Kraftfeld

$$\vec{F}_1 = \vec{e}_x \left(x^2 + y^2 + z^2 \right) + \vec{e}_y \left(2yx + 42 \right) + \vec{e}_z y^2$$
 (3)

entlang eines Pfades C zu laufen. Bei C handele es sich um einen Kreis mit Radius R in der x-y-Ebene um den Ursprung. Welche Aussage können sie aus Ihrem Ergebnis für \vec{F}_1 ableiten? Ist dieses Kraftfeld konservativ? (4P)

b) Berechnen Sie die aufzuwendende Arbeit W_{AB} , die benötigt wird, um vom Punkt $\vec{A} = (0, 0, 0)^T$ zum Punkt $\vec{B} = (1, -1, 1)^T$ entlang des Pfades D im Kraftfeldes \vec{F}_2 zu gelangen. W_{AB} ist durch das folgende Integral gegeben: (4P)

$$W_{AB} = \int_{D} \left[2x + 3(x+y) + 1 + 3x^2 \right] dx + \left[3x + 2y + y(2 + 6z^2y^4) \right] dy + 2z(y^6 + 1) dz.$$
(4)

Der Pfad D ist über die kartesische Koordinate $x \in [0, 1]$ parametrisiert und die Koordinaten für y, z entlang dieses Pfades ergeben sich aus:

$$x^{2}y^{2} + (x+1)(y+1)(z+1) = 1,$$

$$z^{3/2} + xy + 2e^{xz(x-1)} = 2.$$