General Relativity and Cosmology

Prof. John Schliemann
Dr. Paul Wenk
Mo. H34 12pm c.t. \& Wed. PHY 9.2.01, 1pm c.t.
Thu. 1pm c.t., PHY 9.1.10

Sheet 9

1) Thomas Precession

Assume a particle with classical spin $\mathbf{s}=s^{i} \mathbf{e}_{i}$ subjected to a force F^{α} in an inertial system IS. We find an IS^{\prime} where the particle is at rest, $\left\{u^{\prime \alpha}\right\}=\{c, 0\}$, for a certain moment and no torque is acting on the spin, i.e.

$$
\begin{equation*}
\left\{\frac{d s^{\prime \alpha}}{d \tau}\right\}=\left\{\frac{d s^{\prime 0}}{d \tau}, 0\right\} \tag{1}
\end{equation*}
$$

with $\left\{{s^{\prime \alpha}}^{\alpha}\right\}=\left\{0,{s^{\prime}}^{i}\right\}$.
(a) Show that the spin precesses (Thomas precession) if it is accelerated by proving

$$
\begin{equation*}
\frac{d s^{\alpha}}{d \tau}=-\frac{1}{c^{2}} \frac{u_{\beta}}{d \tau} s^{\beta} u^{\alpha} \tag{2}
\end{equation*}
$$

Figure
$1:$ Thomas,Llewellyn, 1926 at Kopenhagen.
(b) The particle is accelerated in a form which keeps it on a circular orbit with an angular frequency ω and radius r_{0}. Show that the solution of the equation of motion found in (a) is given by

$$
\begin{equation*}
s^{1}=\tilde{S}_{0} \cos \left(\omega_{\mathrm{Th}} t\right), \quad s^{2}=-\tilde{S}_{0} \sin \left(\omega_{\mathrm{Th}} t\right) \tag{3}
\end{equation*}
$$

with $\omega_{\mathrm{Th}}=\omega(\gamma-1)$, and the initial conditions $s^{0}(t=0)=0$ and $\mathbf{s}(t=0)=\tilde{S}_{0} \mathbf{e}_{x}$.
Hint: Show that $\frac{d^{3} s^{0}}{d t^{3}}=-\omega^{2} \gamma^{2} \frac{d s^{0}}{d t}$. Expand the amplitude by dropping second order corrections in v / c.
(c) Which geometrical conclusions can we draw when analyzing the spin after $T=$ $2 \pi / \omega$?
2) Spin Orbit Coupling

In the following we make use of a classical description of an electron surrounding a nucleus. To see the coupling between the orbital motion of the electron and its spin, we transform into the current rest frame P^{\prime} of the electron.
(a) The expansion of the Dirac equation at low velocities, $v \ll c$, (Pauli theory) yields, besides other terms, the Stern-Gerlach term $H_{\mathrm{SB}}=e \hbar /\left(2 m_{e}\right) \boldsymbol{\sigma} \cdot \mathbf{B}$. Assuming $\varphi(\mathbf{r})=\varphi(r)$, show that H_{SB} can be expressed as

$$
\begin{equation*}
H_{\mathrm{SB}}=-\frac{e}{m_{e}^{2} c^{2}}\left(\frac{1}{r} \frac{d \varphi}{d r}\right)(\mathbf{L} \cdot \mathbf{S}) \tag{4}
\end{equation*}
$$

which describes the coupling between the electron's spin \mathbf{S} and its orbital motion, with the orbital angular momentum \mathbf{L}.
Hint: Explore the situation in the current rest frame of the electron.
(b) From quantum mechanics lecture we know that in Eq. 4 we should expect a factor $1 / 2$. Show that this can be cured if we include the Thomas precession derived in Ex.1, and remember that the time derivative of an arbitrary vector in a rotated frame is given by

$$
\begin{equation*}
\frac{d \mathbf{A}}{d t}=\left(\frac{d \mathbf{A}}{d t}\right)_{\text {non-rot }}-\boldsymbol{\omega} \times \mathbf{A} \tag{5}
\end{equation*}
$$

3) Physically Meaningful Metric .

Near a spherical star of mass m the metric to first order in $1 / r$ is given by

$$
\begin{equation*}
d s^{2}=\left(1+\sigma_{1} \frac{2 m}{r}\right) c^{2} d t^{2}-\left(1+\sigma_{2} \frac{2 m}{r}\right) d l^{2} \quad \text { with } \sigma_{i}= \pm 1 \tag{6}
\end{equation*}
$$

(a) Which sign in the coefficient of $d t^{2}$ is meaningful? Hint: Consider the Newtonian limit.
(b) In the given coordinate system t, l, define a coordinate velocity of light \tilde{c} and sketch it as a function of r for both signs σ_{2}. Over what range of r is this graph meaningful? To choose the correct sign σ_{2}, consider an electromagnetic plane wave passing a massive body.

