General Relativity and Cosmology

Prof. John Schliemann
Dr. Paul Wenk

Mo. H34 12pm c.t. \& Wed. PHY 9.2.01, 1pm c.t.
Thu. 1pm c.t., PHY 9.1.10

Sheet 7

1) Harmonic Gauge

The harmonic gauge is defined by $\Gamma^{\lambda}=g^{\mu \nu} \Gamma_{\mu \nu}^{\lambda}=0$.
(a) A function ψ is harmonic if it satisfies $\square \psi \equiv g^{\mu \nu} \nabla_{\mu} \nabla_{\nu} \psi=0$. Show that in case of harmonic gauge the coordinates x^{η} itself are harmonic functions.
(b) Recall Einstein's equations for a small perturbation $h_{\mu \nu}$. Show that if harmonic gauge condition is satisfied one finds up to first oder in $h_{\mu \nu}$

$$
\begin{equation*}
h_{\nu, \mu}^{\mu}=\frac{1}{2} h_{\mu, \nu}^{\mu} . \tag{1}
\end{equation*}
$$

2) Gravitational Waves: Quadrupole Radiation

[12P]
Assume a finite mass distribution located in a sphere of radius r_{0} which is oscillating in time with the frequency ω. The stress-energy tensor is given by

$$
T_{\mu \nu}(\mathbf{r}, t)=T_{\mu \nu}(\mathbf{r}) \exp (-i \omega t)+\text { c.c. }\left\{\begin{array}{l}
\neq 0: r \leq r_{0} \tag{2}\\
=0: r>r_{0}
\end{array}\right.
$$

In the following, use the retarded potentials for weak fields $h_{\mu \nu}(\mathbf{r}, t)$,

$$
\begin{equation*}
h_{\mu \nu}(\mathbf{r}, t)=-\frac{4 G}{c^{4}} \int d^{3} r^{\prime} \frac{S_{\mu \nu}\left(\mathbf{r}^{\prime}, t-\left|\mathbf{r}-\mathbf{r}^{\prime}\right| / c\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \tag{3}
\end{equation*}
$$

with $S_{\mu \nu}=T_{\mu \nu}-\eta_{\mu \nu} T / 2$. We know further that for $r \gg r_{0}$ the retarded potentials can be approximated by

$$
\begin{equation*}
h_{\mu \nu}(\mathbf{r}, t) \approx e_{\mu \nu}(\mathbf{r}, \omega) e^{-i k_{\lambda} x^{\lambda}}+\text { c.c } \tag{4}
\end{equation*}
$$

with the gravitational wave amplitude

$$
\begin{equation*}
e_{\mu \nu}(\mathbf{r}, \omega)=-\frac{4 G}{c^{4} r}\left(T_{\mu \nu}(\mathbf{k})-\frac{T(\mathbf{k})}{2} \eta_{\mu \nu}\right) \tag{5}
\end{equation*}
$$

and $\left(k^{\lambda}\right)=\left(\frac{\omega}{c}, \mathbf{k}\right)$.
(a) Assuming further $r \gg\left(1 / k_{\mu}\right)$, show that the energy flow P through the area element $r^{2} d \Omega$ is given by

$$
\begin{equation*}
d P=\frac{G \omega^{2}}{\pi c^{5}}\left(T^{\mu \nu}(\mathbf{k})^{*} T_{\mu \nu}(\mathbf{k})-\frac{1}{2}|T(\mathbf{k})|^{2}\right) d \Omega \tag{6}
\end{equation*}
$$

and thus $k_{\nu} T^{\mu \nu}(\mathbf{k})=0$.
(b) Show that the result in (a) can be rewritten in the following form

$$
\begin{equation*}
d P=\frac{G \omega^{2}}{\pi c^{5}} \Lambda_{i j l m} T^{i j}(\mathbf{k})^{*} T^{l m}(\mathbf{k}) \tag{7}
\end{equation*}
$$

Here, the temporal components of the stress-energy tensor have been replaced by spatial components. The function $\Lambda_{i j l m}$ depends only on \mathbf{k} / k.
Hint: Since we assume weak fields: $T^{\mu \nu}{ }_{, \nu}=0$. To rewrite $d P$ into the form Eq. (7) use $T^{i 0}=-\hat{k}_{j} T^{i j}$ and $T^{00}=\hat{k}_{i} \hat{k}_{j} T^{i j}$ with $\hat{k}_{i}=k_{i} / k_{0}$.
(c) Using the long wavelength approximation we simplify

$$
\begin{equation*}
T^{i j}(\mathbf{k}) \approx \int d^{3} r T^{i j}(\mathbf{r})=:-\frac{\omega^{2}}{2} Q^{i j} \tag{8}
\end{equation*}
$$

Show that the total power P radiated by this mass system is give by

$$
\begin{equation*}
P=\frac{2 G \omega^{6}}{5 c^{5}}\left(\sum_{i, j=1}^{3}\left|Q^{i j}\right|^{2}-\frac{1}{3}\left|\sum_{i=1}^{3} Q^{i i}\right|^{2}\right) \tag{9}
\end{equation*}
$$

Hint: Show that $Q^{i j}=\int d^{3} r x^{i} x^{j} \rho(\mathbf{r})$ and use $T^{00} \approx \rho c^{2}$. Further, for the integration over the solid angle Ω use the fact that in spherical coordinates $\Lambda_{i j l m}$ only depends on θ and ϕ.
${ }^{[1]}$ B. P. Abbott et al.(LIGO Scientific Collaboration and Virgo Collaboration) - full list at the end of the article - http://physics.aps.org/featured-article-pdf/10.1103/PhysRevLett.116.061102

CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=46987868

