## General Relativity and Cosmology

Prof. John Schliemann Dr. Paul Wenk

Mo. H34 12pm c.t. & Wed. PHY 9.2.01, 1pm c.t. Thu. 1pm c.t., PHY 9.1.10

- (a) A function  $\psi$  is harmonic if it satisfies  $\Box \psi \equiv g^{\mu\nu} \nabla_{\mu} \nabla_{\nu} \psi = 0$ . Show that in case of harmonic gauge the coordinates  $x^{\eta}$  itself are harmonic functions.
- (b) Recall Einstein's equations for a small perturbation  $h_{\mu\nu}$ . Show that if harmonic gauge condition is satisfied one finds up to first oder in  $h_{\mu\nu}$

$$h^{\mu}{}_{\nu,\mu} = \frac{1}{2}h^{\mu}{}_{\mu,\nu}.$$
 (1)

## 

Assume a finite mass distribution located in a sphere of radius  $r_0$  which is oscillating in time with the frequency  $\omega$ . The stress-energy tensor is given by

$$T_{\mu\nu}(\mathbf{r},t) = T_{\mu\nu}(\mathbf{r}) \exp(-i\omega t) + \text{c.c.} \begin{cases} \neq 0 : r \le r_0 \\ = 0 : r > r_0 \end{cases}$$
(2)

In the following, use the retarded potentials for weak fields  $h_{\mu\nu}(\mathbf{r}, t)$ ,

$$h_{\mu\nu}(\mathbf{r},t) = -\frac{4G}{c^4} \int d^3r' \frac{S_{\mu\nu}(\mathbf{r'},t-|\mathbf{r}-\mathbf{r'}|/c)}{|\mathbf{r}-\mathbf{r'}|},$$
(3)

with  $S_{\mu\nu} = T_{\mu\nu} - \eta_{\mu\nu}T/2$ . We know further that for  $r \gg r_0$  the retarded potentials can be approximated by

$$h_{\mu\nu}(\mathbf{r},t) \approx e_{\mu\nu}(\mathbf{r},\omega)e^{-ik_{\lambda}x^{\lambda}} + \mathrm{c.c}$$

with the gravitational wave amplitude

$$e_{\mu\nu}(\mathbf{r},\omega) = -\frac{4G}{c^4r} \left( T_{\mu\nu}(\mathbf{k}) - \frac{T(\mathbf{k})}{2} \eta_{\mu\nu} \right)$$
(5)

and  $(k^{\lambda}) = \left(\frac{\omega}{c}, \mathbf{k}\right).$ 

(a) Assuming further  $r \gg (1/k_{\mu})$ , show that the energy flow P through the area element  $r^2 d\Omega$  is given by

$$dP = \frac{G\omega^2}{\pi c^5} \left( T^{\mu\nu}(\mathbf{k})^* T_{\mu\nu}(\mathbf{k}) - \frac{1}{2} |T(\mathbf{k})|^2 \right) d\Omega$$
(6)

(4)

and thus  $k_{\nu}T^{\mu\nu}(\mathbf{k}) = 0.$ 



Figure 1: LIGO measurement of the gravitational waves at the Hanford (left) and Livingston (right) detectors, compared to the theoretical predicted values.[1]

(b) Show that the result in (a) can be rewritten in the following form

$$dP = \frac{G\omega^2}{\pi c^5} \Lambda_{ijlm} T^{ij}(\mathbf{k})^* T^{lm}(\mathbf{k}).$$
(7)

Here, the temporal components of the stress-energy tensor have been replaced by spatial components. The function  $\Lambda_{ijlm}$  depends only on  $\mathbf{k}/k$ .

Hint: Since we assume weak fields:  $T^{\mu\nu}_{,\nu} = 0$ . To rewrite dP into the form Eq.(7) use  $T^{i0} = -\hat{k}_j T^{ij}$  and  $T^{00} = \hat{k}_i \hat{k}_j T^{ij}$  with  $\hat{k}_i = k_i/k_0$ .

(c) Using the long wavelength approximation we simplify

$$T^{ij}(\mathbf{k}) \approx \int d^3 r \, T^{ij}(\mathbf{r}) =: -\frac{\omega^2}{2} Q^{ij}.$$
(8)

Show that the total power P radiated by this mass system is give by

$$P = \frac{2G\omega^6}{5c^5} \left( \sum_{i,j=1}^3 |Q^{ij}|^2 - \frac{1}{3} |\sum_{i=1}^3 Q^{ii}|^2 \right).$$
(9)

Hint: Show that  $Q^{ij} = \int d^3r \, x^i x^j \rho(\mathbf{r})$  and use  $T^{00} \approx \rho c^2$ . Further, for the integration over the solid angle  $\Omega$  use the fact that in spherical coordinates  $\Lambda_{ijlm}$  only depends on  $\theta$  and  $\phi$ .

<sup>[1]</sup>B. P. Abbott et al.(LIGO Scientific Collaboration and Virgo Collaboration) - full list at the end of the article - http://physics.aps.org/featured-article-pdf/10.1103/PhysRevLett.116.061102 CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=46987868