General Relativity and Cosmology

Prof. John Schliemann
Mo. H34 12pm c.t. \& Wed. PHY 9.2.01, 1pm c.t.
Dr. Paul Wenk
Thu. 1pm c.t., PHY 9.1.10

Sheet 4

1) Klein-Gordon Field . [9P]

The simplest classical field theory is one with a scalar real-valued field ϕ of a point particle with the Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(\partial^{\mu} \phi\right)\left(\partial_{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{2} \tag{1}
\end{equation*}
$$

(a)(2P) Show that the Euler-Lagrange equation is the Klein-Gordon equation for the field ϕ.
(b) (2P) Calculate the conjugate momentum $\Pi(x)$ and with this the Hamiltonian density \mathcal{H}.
(c)(2P) Based on Noether's theorem, calculate the energy-momentum tensor $\theta^{\mu \nu}$ and write down the conserved quantities associated with time and spatial translations. Relate \mathcal{H} to a component of the Noether current.
(d)(3P) Show explicitly that $\partial_{\mu} \theta^{\mu \nu}=0$ when the Euler-Lagrange equation is fulfilled for this field (as expected from Noether's theorem).
2) Rotating Reference Frame

Assume a reference frame which is constantly rotating about the z-axis with angular velocity ω.
(a)(1P) Write down the metric tensor $g_{\mu \nu}$ and $d s^{2}$ for the rotating reference frame S^{\prime} in cylindrical coordinates $\left\{c t^{\prime}, r^{\prime}, \varphi^{\prime}, z^{\prime}\right\}$.
(b)(3P) Transform into a system \tilde{S} with time-orthogonal coordinates $\left\{c \tilde{t}, r^{\prime}, \varphi^{\prime}, z^{\prime}\right\}$, i.e., $g_{00}>0, g_{0 i}=0$ and $g^{00}>0 g^{0 i}=0$ respectively. This allows us to define a length

$$
d \tilde{l}=\left.\sqrt{-d s^{2}}\right|_{d \tilde{t}=0}
$$

of a scale at rest in the rotating system. Hint: Define a d $d \tilde{t}$ in such a way that you get rid of the $t e r m \propto d \varphi^{\prime} d t^{\prime}$. Why are here time-orthogonal coordinates necessary?
(c) $(2 \mathrm{P})$ Calculate the ratio of the circumference \tilde{U} of a circle and its radius r^{\prime} in \tilde{S}.

3) Locally Flat Coordinate System

Consider a coordinate system \mathcal{S}^{\prime} with coordinates $x^{\prime \mu}$ and metric $\tilde{g}_{\mu \nu}\left(x^{\prime}\right)$. We require

$$
\begin{equation*}
\left.\frac{\partial \tilde{g}_{\mu \nu}}{\partial x^{\prime \lambda}}\right|_{x^{\prime}=0}=0 \tag{2}
\end{equation*}
$$

Assume further an expansion

$$
\begin{equation*}
x^{\prime \mu}=x^{\mu}+\frac{1}{2} \Gamma_{\rho \sigma}^{\mu} x^{\rho} x^{\sigma}+\ldots \tag{3}
\end{equation*}
$$

in coordinates x of a local Minkowski system, i.e. $g_{\mu \nu}(x=0)=\eta_{\mu \nu}$ with coefficients (Christoffel symbols) which obey the symmetry condition $\Gamma_{\rho \sigma}^{\mu}=\Gamma_{\sigma \rho}^{\mu}$.
(a)(3P) By using the transformation between $\tilde{g}_{\mu \nu}$ and $g_{\mu \nu}$ and keeping only terms of zero and first order in x, show that for $x^{\prime \mu}=0$ one gets $\tilde{g}_{\mu \nu}(0)=\eta_{\mu \nu}$, i.e., also in \mathcal{S}^{\prime} we find locally a Minkowski metric for $x^{\prime \mu}=0$.
(b) (3P) Show that $\partial / \partial x^{\lambda}=\partial / \partial x^{\prime \lambda}+\mathcal{O}(x)$ and use, by requiring Eq.2, this relation to prove

$$
\begin{equation*}
\eta_{\mu \beta} \Gamma_{\lambda \alpha}^{\mu}+\eta_{\alpha \nu} \Gamma_{\lambda \beta}^{\nu}=\left.\frac{\partial}{\partial x^{\lambda}} g_{\alpha \beta}\right|_{x=0} \tag{4}
\end{equation*}
$$

(c)(3P) Using the equations derived in (b), show that the Christoffel symbols $\Gamma_{\alpha \beta}^{\mu}$ have to fulfill the relation

$$
\begin{equation*}
\Gamma_{\alpha \beta}^{\mu}=\frac{1}{2} \eta^{\mu \lambda}\left(\frac{\partial}{\partial x^{\beta}} g_{\lambda \alpha}+\frac{\partial}{\partial x^{\alpha}} g_{\beta \lambda}-\frac{\partial}{\partial x^{\lambda}} g_{\alpha \beta}\right), \tag{5}
\end{equation*}
$$

in order to fulfill Eq.2.
Hint: Use cyclic permutation of indices α, β, λ and make use of the symmetry property of the Christoffel symbols to combine the Eqs.4.
(d)(2P) Why isn't it possible to define coordinates x^{\prime} where not only the first derivative, Eq.2, but also the second one vanishes?
Hint: In general, 20 derivatives of second order do not vanish.

