General Relativity and Cosmology

Prof. John Schliemann
Mo. H34 12pm c.t. \& Wed. PHY 9.2.01, 1pm c.t.
Dr. Paul Wenk
Thu. 1pm c.t., PHY 9.1.10

Sheet 3

1) Infinitesimal Lorentz Transformation

The infinitesimal Lorentz transformation is given by $\Lambda^{\mu}{ }_{\nu}=\delta^{\mu}{ }_{\nu}+\omega^{\mu}{ }_{\nu}$. Show that $\omega_{\mu \nu}=-\omega_{\nu \mu}$ (up to $\left.\mathcal{O}\left(\omega^{2}\right)\right)$.
2) Energy Flux from a Star
[7P]
A spherical star has total luminosity L. An observer is located at a distance r from its center and is at rest relative to the star. Assume flat space-time and that the radius R of the star can be neglected $(r \gg R)$. Thus, the observer measures the energy flux $\phi=L /\left(4 \pi r^{2}\right)$ from the star.
(a)(3P) Write down the energy-momentum tensor $T^{\mu \nu}$ in spherical coordinates (centered at the star, $\mu, \nu \in$ $\{r, \theta, \varphi\})$. Hint: Since $r \gg R$, assume the electromagnetic waves to be plane, thus, $E=E_{\theta}$, $H=H_{\varphi}$, with $\sqrt{\epsilon_{0}} E=\sqrt{\mu_{0}} H$.
$(\mathrm{b})(4 \mathrm{P})$ The observer is moving now with velocity \mathbf{v}. Define the component of \mathbf{v} along the radial direction as $v_{\|}$and the one perpendicular to this as v_{\perp}. Show that the energy flux ϕ^{\prime} the observer measures is given by

$$
\begin{equation*}
\phi^{\prime}=\frac{L}{4 \pi r^{2}}\left(1-\frac{v_{\|}}{c}\right)^{2}\left(1-\frac{v_{\|}^{2}+v_{\perp}^{2}}{c^{2}}\right)^{-1} \tag{1}
\end{equation*}
$$

Hint: Notice that $\mathbf{E} \cdot \mathbf{B}$ is invariant under Lorentz transformation. Use the Poynting vector.

3) Lienard-Wiechert Potential

The potentials of a particle with charge q moving along the path $\mathbf{r}_{0}(t)$ are given by

$$
\begin{equation*}
\phi(\mathbf{r}, t)=\frac{q}{4 \pi \epsilon_{0}} \frac{1}{R \mp \mathbf{R} \cdot \mathbf{u}\left(t^{\prime}\right) / c}, \quad \mathbf{A}(\mathbf{r}, t)=\frac{\mu_{0} q}{4 \pi} \frac{\mathbf{u}\left(t^{\prime}\right)}{R \mp \mathbf{R} \cdot \mathbf{u}\left(t^{\prime}\right) / c} \tag{2}
\end{equation*}
$$

The sign is according to the advanced $(+)$ and retarded $(-)$ potential with $\mathbf{R}=\mathbf{r}-\mathbf{r}_{0}\left(t^{\prime}\right), \mathbf{u}\left(t^{\prime}\right)=d \mathbf{r}_{0}\left(t^{\prime}\right) / d t^{\prime}$, and the time t^{\prime} of the field-emission at particle-coordinates, $t^{\prime}=t \mp\left|\mathbf{r}-\mathbf{r}_{0}\left(t^{\prime}\right)\right| / c$. The trajectory of the particle can be parametrized by the proper time, $\left\{X_{0}^{\alpha}(\tau)\right\}=\left\{c t_{0}(\tau), \mathbf{r}_{0}(\tau)\right\}$.
(a)(4P) Show that the vector field can be represented in a covariant form given by

$$
\begin{equation*}
A_{\mathrm{ret} / \mathrm{adv}}^{\alpha}(X)=\frac{\mu_{0} q}{4 \pi} \frac{U^{\alpha}}{\rho_{\mathrm{ret} / \mathrm{adv}}} \tag{3}
\end{equation*}
$$

with $U^{\alpha}(\tau)=\dot{X}_{0}^{\alpha}(\tau)$ and a Lorentz-invariant scalar $\rho_{\text {ret/adv }}$.
(b)(4P) Calculate the associated electromagnetic field tensor $F^{\mu \nu}$.

Hint: Keep in mind $\tau=\tau(X)$ and use the fact that for both $R_{r e t}^{\alpha}$ and $R_{a v}^{\alpha}$ we have $R_{\lambda} R^{\lambda}=$ $R^{0^{2}}-\mathbf{R}^{2}=0$. Calculate the differential of this scalar.

