General Relativity and Cosmology

Prof. John Schliemann
Dr. Paul Wenk

Mo. H34 12pm c.t. \& Wed. PHY 9.2.01, 1pm c.t.
Thu. 1pm c.t., PHY 9.1.10

Sheet 2

1) Tensors

(a) Show that a contraction of two indices of the same type, i.e. covariant or contravariant, does in general not yield a tensor.
(b) $X^{\mu \nu}$ fulfills the following equations in the Euclidean two-dimensional space: $X^{\mu \nu}=X^{\nu \mu}, X_{\mu}^{\mu}=0$, $X^{\nu \mu} A_{\mu}=B^{\nu}$ with the parameters A^{μ}, B^{μ} fulfilling $A^{\mu} B_{\mu}=0$. Find X.
(c) Proof the relation $\frac{\partial}{\partial A^{i j}} \operatorname{det}(A)=\operatorname{det}(A) A_{j i}^{-1}$ with $A^{i j} A_{j k}^{-1}=\delta_{k}^{i}$.
(d) Show that in general $A^{\mu}{ }_{\nu} \neq A_{\nu}{ }^{\mu}$ (Hint: antisymmetric tensor)
(e) Assume a trasformation $\Omega=\mathbb{1}+\omega+\mathcal{O}\left(\omega^{2}\right), \omega \in \mathbb{R}$ and $x^{\mu} \rightarrow \tilde{x}^{\mu}=x^{\mu}+\alpha^{\mu} \cdot \omega+\mathcal{O}\left(\omega^{2}\right)$. Show that

$$
\operatorname{det}\left(\frac{\partial \tilde{x}^{\mu}}{\partial x^{\nu}}\right)=1+\left(\partial_{\mu} \alpha^{\mu}\right) \cdot \omega+\mathcal{O}\left(\omega^{2}\right) .
$$

2) Accelerated Motion

An observer moves with constant acceleration with respect to the x-direction of some inertial frame, i.e. its 4 -vector of acceleration $a^{\mu}:=d u^{\mu} / d s$, with $u^{\mu}=d x^{\mu} / d s$, fulfills $a^{\mu} a_{\mu}=-a^{2} / c^{4}$. The initial condition is $u(0)=(1,0,0,0)$.
(a) Calculate $u^{\mu}(\tau), a^{\mu}(\tau)$ as a function of proper time τ.
(b) What is the velocity $v(\tau)=d x / d t$ of the observer measured in the inertial frame?
(c) Calculate $u^{\mu \mu}=\Lambda(-v(\tau))^{\mu}{ }_{\nu} u^{\nu}, a^{\prime \mu}$.

3) Rocket Journey

A rocket of total mass M at rest in an inertial system IS starts accelerating by emitting fumes (assume a constant leakage of fume). In the rest frame of the rocket the fume particles are emitted at a constant speed u^{\prime}. After a fraction ΔM of the rocket has been ejected, the rocket has reached its maximal velocity $u_{\max }$ as measured in IS. Calculate $u_{\max }$ as a function of u^{\prime} and ΔM.
4) Charged Particle in the Electromagnetic Field

A charged particle with mass m and charge q is subjected to an arbitrary electromagnetic field. Calculate the four-acceleration of the particle
(a) in the inertial system S^{\prime} where it is initially at rest, for this moment,
(b) in the inertial system $S: S^{\prime}$ moves relatively to S with speed v in the z-direction.

