General Relativity and Cosmology

Prof. John Schliemann Dr. Paul Wenk Mo. H34 12pm c.t. & Wed. PHY 9.2.01, 1pm c.t. Thu. 1pm c.t., PHY 9.1.10

Sheet 2

- (a) Show that a contraction of two indices of the same type, i.e. covariant or contravariant, does in general not yield a tensor.
- (b) $X^{\mu\nu}$ fulfills the following equations in the Euclidean two-dimensional space: $X^{\mu\nu} = X^{\nu\mu}$, $X^{\mu}_{\mu} = 0$, $X^{\nu\mu}A_{\mu} = B^{\nu}$ with the parameters A^{μ} , B^{μ} fulfilling $A^{\mu}B_{\mu} = 0$. Find X.
- (c) Proof the relation $\frac{\partial}{\partial A^{ij}} \det(A) = \det(A) A_{ji}^{-1}$ with $A^{ij} A_{jk}^{-1} = \delta_k^i$.
- (d) Show that in general $A^{\mu}{}_{\nu} \neq A^{\mu}{}_{\nu}$ (*Hint: antisymmetric tensor*)
- (e) Assume a transformation $\Omega = \mathbb{1} + \omega + \mathcal{O}(\omega^2), \ \omega \in \mathbb{R}$ and $x^{\mu} \xrightarrow{} \tilde{x}^{\mu} = x^{\mu} + \alpha^{\mu} \cdot \omega + \mathcal{O}(\omega^2)$. Show that

$$\det\left(\frac{\partial \tilde{x}^{\mu}}{\partial x^{\nu}}\right) = 1 + (\partial_{\mu}\alpha^{\mu}) \cdot \omega + \mathcal{O}(\omega^2).$$

- (a) Calculate $u^{\mu}(\tau)$, $a^{\mu}(\tau)$ as a function of proper time τ .
- (b) What is the velocity $v(\tau) = dx/dt$ of the observer measured in the inertial frame?
- (c) Calculate $u'^{\mu} = \Lambda(-v(\tau))^{\mu}{}_{\nu}u^{\nu}, a'^{\mu}$.

- (a) in the inertial system S' where it is initially at rest, for this moment,
- (b) in the inertial system S: S' moves relatively to S with speed v in the z-direction.