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Itinerant Spin Dynamics in Structures of Reduced Dimensionality

Abstract

In the present thesis results of the study of spin dynamics and quantum trans-

port in disordered semiconductor quantum wires with spin-orbit coupling are presented.

Starting from basic spin dynamics we derive the dependence of the weak localization cor-

rection to the conductance on the strength and the kind of spin-orbit interaction (linear

and cubic Dresselhaus, as well as Rashba coupling), the width of the quantum wires as

well as the mobility, temperature and Zeeman term. Furthermore, we exploit the connec-

tion found between the microscopic picture given by the Cooperon and the spin diffusion

equation to extract the spin relaxation rate which shows the same wire dependencies as

the weak localization correction. We also show how the result depends on the smoothness

and the direction of the transverse confinement of the quantum wires. In this context we

have addressed the question concerning long persisting or even persistent spin states in

spintronic devices, presenting the corresponding optimal adjustment of spin orbit couplings

of different kind and optimal alignment of the wire direction in semiconductor crystals.

Experiments[HSM+06, HSM+07, KKN09, LSK+07, WGZ+06, SGB+09] which report the

dimensional reduction of the spin relaxation rate in agreement with previous results were

raising new questions, in particular as regarding the crossover from diffusive to ballistic

wires, which we answer using modified Cooperon equation. In addition, we focus on the

intrinsic spin Hall effect, which is only due to spin-orbit coupling. Having shown the ba-

sic features with analytical calculations, we solve the spin Hall conductivity in presence of

binary and block-distributed impurities (Anderson model). At this we apply the Kernel

Polynomial Method, which allows for a finite size analysis of the metal-insulator transi-

tion and the calculation of spin Hall conductivity in large systems compared with those

addressable with exact diagonalization.
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Chapter 1

Introduction

Structure of this thesis

This thesis falls into four parts,

• Fundamentals of spin dynamics and spin relaxation mechanisms (Chapter 1 and 2),

• Spin Dynamics in Quantum Wires:

– Dimensional dependence of weak localization and weak antilocalization and the

relation to spin diffusion (Chapter 3)

– Direction dependence of spin relaxation and diffusive-ballistic crossover (Chap-

ter 4)

• Spin Hall Effect (Chapter 5)

• Critical Discussion and Future Perspective (Chapter 6)

The field of interest which we are going to present in this PhD thesis is called spintronics.

Nowadays it is not only a Gedankenexperiment, the emerging technology of it is already

partially in use, e.g. in Magnetoresistive RAMs[AF07] which use the giant magnetoresis-

tance discovered by Albert Fert and Peter Grünberg (Nobel Prize 2007 )[BBF+88, BGSZ89].

But what is actually spintronics? In a paper from 2004, D’yakonov states that “What most

people apparently mean by spintronics is the fabrication of some useful devices using a)

creation of a non-equilibrium spin density in a semiconductor, b) manipulation of the spins

by external fields, and c) detection of the resulting spin state.”[Dya04]. One part of this

1



2 Chapter 1: Introduction

work will mainly focus on the second point, manipulation of the spin and understanding

the limitations of spin propagation. The main objective is to shed light on some interesting

effects in the field of spin-dependent electronic transport.

Looking in the literature one realizes that many proposals for two-dimensional (2D) spin-

tronic devices are based on the presence of spin-orbit coupling (SOC) in a 2D electron

system (2DES) semiconductor heterostructure. This idea goes back to the spin field-effect

transistor proposed by Datta and Das[DD90] which is schematically plotted in Fig. 1.1. The

(a)

(b)

Figure 1.1: (a) a) Schematic of Datta-Das spin modulator device in a cross-section. The 2D
electron gas (2DEG) has a distance of L from the emitter (↑) to the collector (↓). Normal to
this cross-section there is an additional confinement. b) The conduction band which confines
the electrons to a 2D system and the electron distribution (dotted) are shown. Taken from
Ref. [NATE97]. (b) Manipulation of spin precession due to SOC by gate voltage.

electrons are injected from metallic leads into the 2DES with the spin parallel to the trans-

port direction. In the nonmagnetic region the spin is changed along the distance L due to
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the coupling of spin degree of freedom and orbital motion of the electron. In this model

the electrons are moving ballistically in a quasi one-dimensional channel, due to a second

confinement. The result for weak SOC in first order perturbation theory is a modulation

of the spin current with a phase-shift

∆θ =
2αme

~2
L, (1.1)

with α the strength of SOC and me the effective electron mass. This phase-shift ∆θ can be

manipulated by the confining field Ez via the gate which, in turn, changes the probability

to find the spin in the ”down” state at the drain. The gate-control makes the spin-FET so

promising for spintronic applications. In Sec. 2.3.3 we will review this transport in ballistic

wires.

Applying this model in an experiment one is, however, confronted with several

problems. Spintronic devices which rely on coherent spin precession of conduction electrons

[DD90, ZFD04] require a small spin relaxation rate 1/τs. But as the electron momentum

is randomized due to disorder, the coupling between spin and orbital degree of freedom,

the spin-orbit (SO) interaction, is expected to result not only in a spin precession but in

randomization of the electron spin. This coupling can lead to counter intuitive effects as

the following, described by D’yakonov and Perel’[DP72]: Analyzing the spin transport in

e.g. n-type semiconductors at low temperature (T . 5K), one finds that the more the

electron is scattered the longer is the lifetime of the initial spin state. Such experiments

are often performed in devices where the wire width W is several nanometers wide, so that

boundary effects can play an important role: Looking at the extreme situation where W

is of the order of Fermi wavelength λF , the D’yakonov-Perel’ spin relaxation is expected

to vanish,[KK00, MFA02] since the backscattering from impurities can in one-dimensional

wires only reverse the SO field and thereby the spin precession. Immediately the following

question arises: How many channels can be added without enlarging the spin relaxation

rate significantly? In Ref. [Ket07], which is the starting point for the analysis presented in

the first part of the present work, S. Kettemann could show, that 1/τs is already strongly

reduced in much wider wires: as soon as the wire width W is smaller than bulk spin

precession length L SO, which is the length on which the electron spin precesses a full cycle.

Since L SO can be several µm and is not changed significantly as the wire width W is

reduced, the reduction of spin relaxation can be very useful for applications.
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The study of the reduction of the spin relaxation rate in quantum wires for widths

exceeding both the elastic mean-free path le and λF is in addition motivated by the fact

that recently it could be observed with optical[HSM+06] as well as with measurements of

the change in magnetoconductivity.[DLS+05, LSK+07, SGP+06, WGZ+06, KKN09]

We have a tool to study such dephasing and symmetry-breaking mechanisms in

conductors[AAKL82, Ber84, CS86]: It is the quantum interference of electrons in low-

dimensional, disordered conductors. We will show in Chapter 3 how this effect results in

corrections to the electrical conductivity ∆σ, which is known as weak localization (WL)

effect. Obviously also here we focus on systems with entanglement of spin and charge by

SO interaction. The SO field, which has various forms in the semiconductor, makes the

effect richer because it can enhance the conductivity by reversing the effect of WL. This

is called weak antilocalization (WAL). We are going to calculate the correction with the

Cooperon equation. Due to the fact that the origin of the interference-suppression is the

randomization of the spin, more precise, the D’yakonov and Perel’ spin relaxation in this

work, it seems natural to establish a connection between the spin diffusion picture, e.g

derived from the Eilenberger equation by Schwab et al.[SDGR06], and the local correction

described by using the Cooperon equation, as we are going to show in Sec. 3.3. The link

to applications in the field of spintronics is a better insight in what possibilities we have to

create long living spin modes which will appear as special cases in our calculation.

As mentioned, the addition of boundaries can change the spin relaxation signifi-

cantly. The change depends on kind and direction of the wire boundaries. Chapter 4 will

focus especially on the latter. The connection between the WL and the spin diffusion will

help us to understand both at the same time: The magnetoconductivity and the existence

of persistent spin states for a given wire.

Having derived a consistent theory of spin relaxation in quantum wires, one could

wonder why there are measurements of the spin lifetime like done by Kunihashi et al.[KKN09]

in gate-fitted narrow wires from magnetotransport experiments, which show deviations

from theory. This happens although all dominant SO coupling (SOC) types, namely linear

Rashba and lin. and cubic Dresselhaus SOC, have been included in the theory. The crucial

point is: If a part of the SOCs is left out, i.e. the cubic Dresselhaus SOC, one has great

accordance between experiment and theory. In Chapter 4 we are going to show how this

puzzle is resolved by doing a crossover from the diffusive to the ballistic regime and reveal-

ing a suppression of the problematic terms.
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Throughout this work we set ~ ≡ 1.



Chapter 2

Spin Dynamics: Overview and

Analysis of 2D Systems

2.1 Short Reminder on the Origin of Spin Orbit Coupling

The interaction which makes spintronic devices so interesting is a relativistic effect,

the SOC. The intrinsic degree of freedom spin is a direct consequence of the Lorentz invariant

formulation of quantum mechanics. Expanding the relativistic Dirac equation in the ratio

of the electron velocity and the speed of light up to the order (v/c)2 (the derivation can be

found in standard textbooks like Ref. [Sak67]) one gets

(
p2

2me0
− eϕ− p4

8m3
e0c

2
− e

4m2
e0c

2
σ · (∇ϕ× p)− e

8m2
e0c

2
∆ϕ

)
ψ = (E −me0c

2)ψ,

with the electrostatic potential ϕ, and the free electron mass me0. Our interest concerns

the so-called Thomas term −e/(4m2
e0c

2)σ · (∇ϕ×p). In atomic physics we assume that the

electric field is a central field, E(r) = −(dϕ/dr)er which leads to

− e

4m2
e0c

2
σ · (∇ϕ× p) = − e

4m2
e0c

2

(
−1

r

dϕ

dr

)
σ · (r× p) (2.1)

= − e

2m2
e0c

2

1

r

dϕ

dr
ŝ · L (2.2)

≡ λŝ · L, (2.3)

with ŝ = σ/2.

Due to the lattice-periodic potential in a crystalline solid this effect can have strong influence

6
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Figure 2.1: Schematic representation of the band structure of GaAs around the Γ point
(extracted from Ref. [Bur08]).

on the energy band structure. Using the Kane Model it can be shown that the SOC due

to lattice-periodic potential leads to a lifting of degeneracy with a gap ∆ SO = 3/(4λ) (with

λ form Eq. (2.3)) between the Γ8v states describing heavy and light holes and Γ7v states,

as sketched in Fig. 2.1 where Γ7v is represented as the split-off band.[DR93, Win04a] It is

important to notice that in the following we do not focus on the SOC which is due to strong

Coulomb potential of the atomic core regions, but on the appearance of SO effect in the

conduction band due to an additional external electric field and spatial symmetry breaking

as explained in more detail in the next sections. Notice that the effects we present in this

work are therefore on a different energy scale: The Pauli splitting ∆ SO can be large, 0.34

eV in GaAs, compared to splitting at the conduction band which is on the order of meV in

GaAs.

Before we review the spin dynamics of conduction electrons and holes in semicon-

ductors and metals, let us first reconsider the spin dynamics of a localized spin, as governed

by the Bloch equations.
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2.2 Dynamics of a Localized Spin

A localized spin ŝ, like a nuclear spin, or the spin of a magnetic impurity in a solid,

precesses in an external magnetic field B due to the Zeeman interaction with Hamiltonian

HZ = −γg ŝB, where γg is the corresponding gyromagnetic ratio of the nuclear spin or

magnetic impurity spin, respectively, which we will set equal to one unless needed explicitly.

This spin dynamics is governed by the Bloch equation of a localized spin,

∂tŝ = γg ŝ×B. (2.4)

This equation is identical to the Heisenberg equation ∂tŝ = −i[̂s, HZ ] for the quantum

mechanical spin operator ŝ of an S = 1/2-spin, interacting with the external magnetic

field B due to the Zeeman interaction with Hamiltonian HZ . The solution of the Bloch

equation for a magnetic field pointing in the z-direction is ŝz(t) = ŝz(0), while the x- and

y- components of the spin are precessing with frequency ω0 = γgB around the z-axis,

ŝx(t) = ŝx(0) cosω0t+ ŝy(0) sinω0t, ŝy(t) = −ŝx(0) sinω0t+ ŝy(0) cosω0t. Since a localized

spin interacts with its environment by exchange interaction and magnetic dipole interaction,

the precession will dephase after a time τ2, and the z-component of the spin relaxes to its

equilibrium value sz0 within a relaxation time τ1. This modifies the Bloch equations to the

phenomenological equations,

∂tŝx = γg(ŝyBz − ŝzBy)−
1

τ2
ŝx

∂tŝy = γg(ŝzBx − ŝxBz)−
1

τ2
ŝy

∂tŝz = γg(ŝxBy − ŝyBx)− 1

τ1
(ŝz − sz0). (2.5)

2.3 Spin Dynamics of Itinerant Electrons

2.3.1 Ballistic Spin Dynamics

Starting from Dirac equation we have seen that one obtains in addition to the

Zeeman term a term which couples the spin s with the momentum p of the electrons, the

spin-orbit coupling

H SO = − µB
2me0c2

ŝ p×E = −ŝB SO(p), (2.6)
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where we set the gyromagnetic ratio γg = 1. E = −∇ϕ, is an electrical field, and B SO(p) =

µB/(2me0c
2)p×E. Substitution into the Heisenberg equation yields the Bloch equation in

the presence of spin-orbit interaction:

∂tŝ = ŝ×B SO(p), (2.7)

so that the spin performs a precession around the momentum dependent spin-orbit field

B SO(p). It is important to note, that the spin-orbit field does not break the invariance

under time reversal ( ŝ → −ŝ,p → −p ), in contrast to an external magnetic field B.

Therefore, averaging over all directions of momentum, there is no spin polarization of the

conduction electrons. However, injecting a spin-polarized electron with given momentum p

into a translationally invariant wire, its spin precesses in the spin-orbit field as the electron

moves through the wire. The spin will be oriented again in the initial direction after it

moved a length L SO, the spin precession length. The precise magnitude of L SO does not

only depend on the strength of the spin-orbit interaction but may also depend on the

direction of its movement in the crystal, as we will discuss below.

2.3.2 Spin Diffusion Equation

Translational invariance is broken by the presence of disorder due to impurities and

lattice imperfections in the conductor. As the electrons scatter from the disorder potential

elastically, their momentum changes in a stochastic way, resulting in diffusive motion. That

results in a change of the the local electron density ρ(r, t) =
∑

α=± | ψα(r, t) |2, where

α = ± denotes the orientation of the electron spin, and ψα(r, t) is the position and time

dependent electron wave function amplitude. On length scales exceeding the elastic mean

free path le, that density is governed by the diffusion equation

∂ρ

∂t
= De∇2ρ, (2.8)

where the diffusion constant De is related to the elastic scattering time τ by De = v2
Fτ/dD,

where vF is the Fermi velocity, and dD the diffusion dimension1 of the electron system. That

diffusion constant is related to the mobility of the electrons, µe = eτ/me by the Einstein

relation µeρ = e2νDe, where ν is the density of states (DOS) per spin at the Fermi energy

EF and me the effective electron mass.

1dD can have a fractal value e.g. on quasi-periodic lattices
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Injecting an electron at position r0 into a conductor with previously constant elec-

tron density ρ0, the solution of the diffusion equation yields that the electron density spreads

in space according to ρ(r, t) = ρ0 + exp(−(r− r0)2/4Det)/(4πDet)
dD/2. The dimension dD

is equal to the kinetic dimension d, dD = d, if the elastic mean free path le is smaller than

the size of the sample in all directions. If the elastic mean free path is larger than the

sample size in one direction the diffusion dimension reduces by one, accordingly. Thus, on

average the variance of the distance the electron moves after time t is 〈(r− r0)2〉 = 2dDDet.

This introduces a new length scale, the diffusion length LD(t) =
√
Det. We can rewrite the

density as ρ = 〈ψ†(r, t)ψ(r, t)〉, where ψ† = (ψ†+, ψ
†
−) is the two-component vector of the

up (+), and down (-) spin fermionic creation operators, and ψ the 2-component vector of

annihilation operators, respectively, 〈. . .〉 denotes the expectation value. Accordingly, the

spin density s(r, t) is expected to satisfy a diffusion equation, as well. The spin density is

defined by

s(r, t) =
1

2
〈ψ†(r, t)σψ(r, t)〉, (2.9)

where σ is the vector of Pauli matrices,

σx =


 0 1

1 0


 , σy =


 0 −i

i 0


 , and σz =


 1 0

0 −1


 .

Thus the z-component of the spin density is half the difference between the density of

spin up and down electrons, sz = (ρ+ − ρ−)/2, which is the local spin polarization of the

electron system. Thus, we can directly infer the diffusion equation for sz, and, similarly, for

the other components of the spin density, yielding, without magnetic field and spin-orbit

interaction,[Tor56]
∂s

∂t
= De∇2s− s

τ̂s
. (2.10)

Here, in the spin relaxation term we introduced the tensor τ̂s, which can have non-diagonal

matrix elements. In the case of a diagonal matrix, τsxx = τsyy = τ2, is the spin dephasing

time, and τszz = τ1 the spin relaxation time. The spin diffusion equation can be written as

a continuity equation for the spin density vector, by defining the spin diffusion current of

the spin components si,

Jsi = −De∇si. (2.11)

Thus, we get the continuity equation for the spin density components si,

∂si
∂t

+∇Jsi = −
∑

j

sj
(τ̂s)ij

. (2.12)
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2.3.3 Spin Orbit Interaction in Semiconductors

SOI in semiconductors is closely related to breaking of symmetries which lift spin

degeneracy: In the case without magnetic field B we start with a twofold degeneracy: Time

inversion symmetry, E↑(k) = E↓(−k) and space inversion symmetry, E↑(k) = E↑(−k). As

a consequence we have E↑(k) = E↓(k). In the following, we show how the degeneracy is

lifted in semiconductor devices in case of B = 0.

While silicon and germanium have in their diamond structure an inversion symmetry around

every midpoint on each line connecting nearest neighbor atoms, this is not the case for III-V-

semiconductors like GaAs, InAs, InSb, or ZnS. These have a zinc-blende structure which can

be obtained from a diamond structure with neighbored sites occupied by the two different

elements. Therefore, the inversion symmetry is broken, which results in spin-orbit coupling.

This can be understood by noticing that pairs like Ga-As are local dipoles whose electric

field is responsible for SOC if inversion symmetry is broken2. Similarly, that symmetry is

broken in II-VI-semiconductors. This bulk inversion asymmetry (BIA) coupling, or often

so-called Dresselhaus-coupling, is anisotropic, as given by [Dre55]

HD = γD
[
σxkx(k2

y − k2
z) + σyky(k

2
z − k2

x) + σzkz(k
2
x − k2

y)
]
, (2.13)

where γD is the Dresselhaus-spin-orbit coefficient. Band structure calculations yield the

following values: γD = 27.6 eVÅ(GaAs), = 27.2 eVÅ(InAs), = 760.1 eVÅ(InSb) [Win03].

Some values extracted in experiments are listed in Tab. A. Confinement in quantum wells

with width az on the order of the Fermi wave length λF yields accordingly a spin-orbit

interaction where the momentum in growth direction is of the order of 1/az. Because

of the anisotropy of the Dresselhaus term, the spin-orbit interaction depends strongly on

the growth direction of the quantum well. Grown in [001] direction, one gets, taking the

expectation value of Eq. (2.13) in the direction normal to the plane, noting that 〈kz〉 =

〈k3
z〉 = 0, [Dre55]

HD[001] = α1(−σxkx + σyky) + γD(σxkxk
2
y − σykyk2

x). (2.14)

where α1 = γD〈k2
z〉 is the linear Dresselhaus parameter. Thus, inserting an electron with

momentum along the x-direction, with its spin initially polarized in z-direction, it will

2Starting from an extended Kane model where p-like higher energy bands are included one gets a Hamil-
tonian with matrix elements which are only nonzero if the crystal has no center of inversion.[FMAE+07]
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precess around the x-axis as it moves along. For narrow quantum wells, where 〈k2
z〉 ∼

1/a2
z ≥ k2

F the linear term exceeds the cubic Dresselhaus terms. For a typical value of

〈k2
z〉 = 0.036/nm2, one gets accordingly[Win04b], α1 =0.99 meVnm (GaAs), 0.98 meVnm

(InAs), 27.4 meVnm (InSb). A special situation arises for quantum wells grown in the [110]-

direction, where it turns out that the spin-orbit field is pointing normal to the quantum

well, as shown in Fig. 2.2, so that an electron whose spin is initially polarized along the

normal of the plane, remains polarized as it moves in the quantum well.

SIA

0

0 BIA@111D

0

0

BIA@001D

0

0

@100D

@0
1
0
D

BIA@110D

0

@1
��

10D

0 @001D

0
@110D

Figure 2.2: The spin-orbit vector fields for linear structure inversion asymmetry (Rashba)
coupling, and for linear bulk inversion asymmetry (BIA) spin-orbit coupling for quantum
wells grown in [111], [001] and [110] direction, respectively.

In quantum wells with asymmetric electrical confinement the inversion symmetry is broken

as well. The resulting spin-orbit coupling, the structural inversion asymmetry coupling
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(SIA), also-called Rashba-spin-orbit interaction[Ras60] is given by

HR = α2(σxky − σykx), (2.15)

where α2 depends on the asymmetry of the confinement potential V (z) in the direction z, the

growth direction of the quantum well, and can thus be deliberately changed by application

of a gate potential. This dependence allows one, in principle, to control the electron spin

with a gate potential, which can, therefore, be used as the basis of a spin transistor.[DD90]

One should stress that the expectation value of the electrical field Ec = −∂zV (z) in the

conduction band state vanishes if the effective mass me is not position dependent. However

it can be shown that the parameter α2 is modulated by the electric field in the valence band

and the z-dependent Pauli splitting ∆0.[FMAE+07] Several measured values of α2 are listed

in Tab. A and ratios of α2 and α1 in Tab. A.

We can combine all spin-orbit couplings by introducing the spin-orbit field such

that the Hamiltonian has the form of a Zeeman term:

H SO = −sB SO(k), (2.16)

where the spin vector is s = σ/2. But we stress again that since B SO(k) → B SO(−k) =

−B SO(k) under the time reversal operation, spin-orbit coupling does not break time reversal

symmetry, since the time reversal operation also changes the sign of the spin, s→ −s. Only

an external magnetic field B breaks the time reversal symmetry. Thus, the electron spin

operator ŝ is for fixed electron momentum k governed by the Bloch equations with the

spin-orbit field,
∂ŝ

∂t
= ŝ× (B + B SO(k))− 1

τ̂s
ŝ. (2.17)

The spin relaxation tensor is no longer necessarily diagonal in the presence of spin-orbit

interaction as will be shown in Sec. 2.4.1.

In narrow quantum wells where the cubic Dresselhaus coupling is weak compared to the

linear Dresselhaus and Rashba couplings, the spin-orbit field is given by

B SO(k) = −2




−α1kx + α2ky

α1ky − α2kx

0


 , (2.18)

which changes both its direction and its amplitude | B SO(k) |= 2
√

(α2
1 + α2

2)k2 − 4α1α2kxky,

as the direction of the momentum k is changed. Accordingly, the electron energy dispersion
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close to the Fermi energy is in general anisotropic as given by

E±(k) =
1

2me
k2 ± αk

√
1− 4

α1α2

α2
cos θ sin θ, (2.19)

where k =| k |, α =
√
α2

1 + α2
2, and kx = k cos θ. Thus, when an electron is injected with

energy E, with momentum k along the [100]-direction, kx = k, ky = 0, its wave function is a

superposition of plain waves with the positive momenta k± = ∓αme +me(α
2 + 2E/me)

1/2.

The momentum difference k− − k+ = 2meα causes a rotation of the electron eigenstate

in the spin subspace. When at x = 0 the electron spin was polarized up spin, with the

eigenvector

ψ(x = 0) =


 1

0


 ,

then, when its momentum points in x-direction, at a distance x, it will have rotated the

spin as described by the eigenvector

ψ(x) =
1

2


 1

α1+iα2
α


 eik+x +

1

2


 1

−α1+iα2
α


 eik−x. (2.20)

In Fig. 2.3 we plot the corresponding spin density as defined in Eq. (2.9) for pure Rashba

coupling, α1 = 0. The spin will point again in the initial direction, when the phase difference

0 LSO�2 LSO

-1

0

1

x

s
z

Figure 2.3: Precession of a spin injected at x = 0, polarized in z-direction, as it moves by
one spin precession length L SO = π/meα through the wire with linear Rashba spin-orbit
coupling α2.

between the two plain waves is 2π, which gives the condition for spin precession length as
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2π = (k− − k+)L SO, yielding for linear Rashba and Dresselhaus coupling, and the electron

moving in [100]- direction,

L SO = π/meα. (2.21)

We note that the period of spin precession changes with the direction of the electron mo-

mentum since the spin-orbit field, Eq. (2.18), is anisotropic.

2.3.4 Spin Diffusion in the Presence of Spin-Orbit Interaction

As the electrons are scattered by imperfections like impurities and dislocations,

their momentum is changed randomly. Accordingly, the direction of the spin-orbit field

B SO(k) changes randomly as the electron moves through the sample. This has two con-

sequences: the electron spin direction becomes randomized, dephasing the spin precession

and relaxing the spin polarization. In addition, the spin precession term is modified, as the

momentum k changes randomly, and has no longer the form given in the ballistic Bloch-like

equation, Eq. (2.17). One can derive the diffusion equation for the expectation value of

the spin, the spin density Eq. (2.9) semiclassically, [MC00, SDGR06] or by diagrammatic

expansion, as will be presented in Chapter 3. In order to get a better understanding on

the meaning of this equation, we will give a simplified classical derivation, in the following.

The spin density at time t + ∆t can be related to the one at the earlier time t. Note that

for ballistic times ∆t ≤ τ , the distance the electron has moved with a probability p∆x, ∆x,

is related to that time by the ballistic equation, ∆x = k(t)∆t/m when the electron moves

with the momentum k(t). On this time scale the spin evolution is still governed by the

ballistic Bloch equation Eq. (2.17). Thus, we can relate the spin density at the position x

at the time t+ ∆t, to the one at the earlier time t at position x−∆x:

s(x, t+ ∆t) =
∑

∆x

p∆x

((
1− 1

τ̂s
∆t

)
s(x−∆x, t)−∆t [B + B SO (k(t))]× s(x−∆x, t)

)
.

(2.22)

Now, we can expand in ∆t to first order and in ∆x to second order. Next, we average over

the disorder potential, assuming that the electrons are scattered isotropically, and substitute
∑

∆x p∆x . . . =
∫

(dΩ/Ω) . . . where Ω is the total angle, and
∫
dΩ denotes the integral over

all angles with
∫

(dΩ/Ω) = 1. Also, we get (s(x, t+ ∆t)− s(x, t)) /∆t → ∂ts(x, t) for

∆t → 0, and 〈∆x2
i 〉 = 2De∆t, where De is the diffusion constant. While the disorder

average yields 〈∆x〉 = 0, and 〈B SO(k(t))〉 = 0, separately, for isotropic impurity scattering,
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averaging their product yields a finite value, since ∆x depends on the momentum at time t,

k(t), yielding 〈∆xBSOi (k(t))〉 = 2∆t〈vFBSOi(k(t))〉, where 〈. . .〉 denotes the average over

the Fermi surface. This way, we can also evaluate the average of the spin-orbit term in

Eq. (2.22), expanded to first order in ∆x, and get, substituting ∆t → τ the spin diffusion

equation,
∂s

∂t
= −B× s +De∇2s + 2τ〈(∇vF)B SO(p)〉 × s− 1

τ̂s
s, (2.23)

Spin polarized electrons injected into the sample spread diffusively, and their spin polariza-

tion, while spreading diffusively as well, decays in amplitude exponentially in time. Since,

between scattering events the spins precess around the spin-orbit fields, one expects also an

oscillation of the polarization amplitude in space. One can find the spatial distribution of

the spin density which is the solution of Eq. (2.23) with the smallest decay rate Γs. As an

example, the solution for linear Rashba coupling is, [SDGR06]

s(x, t) = (êq cos(qx) +Aêz sin(qx)) e−t/τs , (2.24)

with 1/τs = 7/16τs0 where 1/τs0 = 2τk2
Fα

2
2 and where the amplitude of the momentum q is

determined by Deq
2 = 15/16τs0, and A = 3/

√
15, and êq = q/q. This solution is plotted in

Fig. 2.4 for êq = (1, 1, 0)/
√

2. We will derive this solution in the context of local corrections

to the static conductivity, Chapter 3. Thereby we show that by adding Dresselhaus SOC it

will be even possible to create persistent solutions.

In Fig. 2.5 we plot the linearly independent solution obtained by interchanging cos and sin in

Eq. (2.24), with the spin pointing in z-direction, initially. We choose êq = êx. Comparison

with the ballistic precession of the spin, Fig 2.5 shows that the period of precession is

enhanced by the factor 4/
√

15 in the diffusive wire, and that the amplitude of the spin

density is modulated, changing from 1 to A = 3/
√

15.

Injecting a spin-polarized electron at one point, say x = 0, its density spreads

the same way it does without spin-orbit interaction, ρ(r, t) = exp(−r2/4Det)/(4πDet)
dD/2,

where r is the distance to the injection point. However, the decay of the spin density is

periodically modulated as a function of 2π
√

15/16r/L SO.[Fro01] The spin-orbit interaction

together with the scattering from impurities is also a source of spin relaxation, as we discuss

in the next Section together with other mechanisms of spin relaxation. We can find the

classical spin diffusion current in the presence of spin-orbit interaction, in a similar way

as one can derive the classical diffusion current: The current at the position r is a sum
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Figure 2.4: The spin density for linear Rashba coupling which is a solution of the spin
diffusion equation with the relaxation rate 7/16τs. The spin points initially in the x−y-plane
in the direction (1, 1, 0).

over all currents in its vicinity which are directed towards that position. Thus, j(r, t) =

〈vρ(r−∆x)〉 where an angular average over all possible directions of the velocity v is taken.

Expanding in ∆x = lev/v, and noting that 〈vρ(r)〉 = 0, one gets j(r, t) = 〈v(−∆x)∇ρ(r)〉 =

−(vF le/2)∇ρ(r) = −De∇ρ(r). For the classical spin diffusion current of spin component Si,

as defined by jSi(r, t) = vSi(r, t), there is the complication that the spin keeps precessing

as it moves from r − ∆x to r, and that the spin-orbit field changes its direction with the

direction of the electron velocity v. Therefore, the 0-th order term in the expansion in ∆x

does not vanish, rather, we get

jSi(r, t) = 〈vSk
i (r, t)〉 −De∇Si(r, t), (2.25)

where Sk
i is the part of the spin density which evolved from the spin density at r − ∆x

moving with velocity v and momentum k. Noting that the spin precession on ballistic scales

t ≤ τ is governed by the Bloch equation, Eq. (2.17), we find by integration of Eq. (2.17),

that Sk
i = −τ [B SO(k)× S]i so that we can rewrite the first term yielding the total spin

diffusion current as

jSi = −τ〈vF [B SO(k)× S]i〉 −De∇Si. (2.26)

Thus, we can rewrite the spin diffusion equation in terms of this spin diffusion current and
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Figure 2.5: The spin density for linear Rashba coupling which is a solution of the spin
diffusion equation with the relaxation rate 1/τs = 7/16τs0. Note that, compared to the
ballistic spin density, Fig. 2.3, the period is slightly enhanced by a factor 4/

√
15. Also, the

amplitude of the spin density changes with the position x, in contrast to the ballistic case.
The color is changing in proportion to the spin density amplitude.

get the continuity equation

∂si
∂t

= −∇jSi + τ〈∇vF (B SO(k)× S)i〉 −
1

(τ̂s)ij
sj . (2.27)

It is important to note that in contrast to the continuity equation for the density, there are

two additional terms, due to the spin-orbit interaction. The last one is the spin relaxation

tensor which will be considered in detail in the next section. The other term arises due

to the fact that Eq. (2.23) contains a factor 2 in front of the spin-orbit precession term,

while the spin diffusion current Eq. (2.26) does not contain that factor. This has important

physical consequences, resulting in the suppression of the spin relaxation rate in quantum

wires and quantum dots as soon as their lateral extension is smaller than the spin precession

length L SO, as we will see in Chapter 3.

2.4 Spin Relaxation Mechanisms

The intrinsic spin-orbit interaction itself causes the spin of the electrons to precess

coherently, as the electrons move through a conductor, defining the spin precession length
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L SO, Eq. (2.21). Since impurities and dislocations in the conductor randomize the electron

momentum, the impurity scattering is transfered into a randomization of the electron spin

by the spin-orbit interaction, which thereby results in spin dephasing and spin relaxation.

This results in a new length scale, the spin relaxation length, Ls, which is related to the

spin relaxation rate 1/τs by

Ls =
√
Deτs. (2.28)

2.4.1 D’yakonov-Perel’ Spin Relaxation

D’yakonov-Perel’ (DP) spin relaxation can be understood qualitatively in the fol-

lowing way: The spin-orbit field B SO(k) changes its direction randomly after each elastic

scattering event from an impurity, that is, after a time of the order of the elastic scattering

time τ , when the momentum is changed randomly as sketched in Fig. 2.6. Thus, the spin

Figure 2.6: Elastic scattering from impurities changes the direction of the spin-orbit field
around which the electron spin is precessing.

has the time τ to perform a precession around the present direction of the spin-orbit field,

and can thus change its direction only by an angle of the order of B SOτ by precession.

After a time t with Nt = t/τ scattering events, the direction of the spin will, therefore,

have changed by an angle of the order of | B SO |τ
√
Nt = | B SO |

√
τt. Defining the spin

relaxation time τs as the time by which the spin direction has changed by an angle of order

one, we thus find that 1/τs ∼ τ〈B SO(k)2〉, where the angular brackets denote integration

over all angles. Remarkably, this spin relaxation rate becomes smaller, the more scattering

events take place, because the smaller the elastic scattering time τ is, the less time the spin

has to change its direction by precession. Such a behavior is also well known as motional,

or dynamic narrowing of magnetic resonance lines[BPP48].

A more rigorous derivation for the kinetic equation of the spin density matrix

yields additional interference terms, not taken into account in the above argument. It can

be obtained by iterating the expansion of the spin density Eq. (2.22) once in the spin
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precession term, which yields the term

〈
s(x, t)×

∫ ∆t

0
dt′B SO(k(t′))×

∫ ∆t

0
dt′′B SO(k(t′′))

〉
, (2.29)

where 〈. . .〉 denotes the average over all angles due to the scattering from impurities. Since

the electrons move ballistically at times smaller than the elastic scattering time, the mo-

menta are correlated only on time scales smaller than τ , yielding

〈ki(t′)kj(t′′)〉 = (1/2)k2δijτδ(t
′ − t′′). (2.30)

Noting that (A×B×C)m = εijkεklmAiBjCl and
∑
εijkεklm = δilδjm − δimδjl we find that

Eq. (2.29) simplifies to −∑i(1/τsij)Sj , where the matrix elements of the spin relaxation

terms are given by [DP71c],

1

(τ̂s)ij
= τ

(
〈B SO(k)2〉δij − 〈B SO(k)iB SO(k)j〉

)
, (2.31)

where 〈. . .〉 denotes the average over the direction of the momentum k. In Chapter 3 we will

focus on this kind of spin relaxation and show that these nondiagonal terms can diminish

the spin relaxation and even result in vanishing spin relaxation. In the context of weak

localization, which is presented in the next Chapter, we will show that the relaxation tensor

Eq. (2.31) can be also derived from Cooperon equation (see Appendix C.3).

2.4.2 DP Spin Relaxation with Electron-Electron and Electron-Phonon

Scattering

It has been noted, that the momentum scattering which limits the D’yakonov-

Perel’ mechanism of spin relaxation is not restricted to impurity scattering, but can also be

due to electron-phonon or electron-electron interactions[GI02, GI04, PF06, DR04]. Thus

the scattering time τ is the total scattering time as defined by, [GI02, GI04], 1/τ = 1/τ0 +

1/τee + 1/τep, where 1/τ0 is the elastic scattering rate due to scattering from impurities

with potential V , given by 1/τ0 = 2πνni
∫

(dθ/2π) (1 − cos θ) | V (k,k′) |2, where ν is the

DOS per spin at the Fermi energy, ni is the concentration of impurities with potential V ,

and kk′ = kk′ cos(θ). Concerning the temperature dependence of the spin relaxation, for

degenerate electrons in semiconductors (Ek = EF , with the Fermi energy EF ) it is given

by the temperature dependence of τ(T ). However, for a non-degenerate statistics one finds

1/τs ∼ T 3τm(T ), where τm = 〈τ(Ek)Ek〉 / 〈Ek〉.
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2.4.3 Elliott-Yafet Spin Relaxation

Because of the spin-orbit interaction the conduction electron wave functions are

not eigenstates of the electron spin, but have an admixture of both spin up and spin down

wave functions. Thus, a nonmagnetic impurity potential V can change the electron spin,

by changing their momentum due to the spin-orbit coupling. This results in another source

of spin relaxation which is stronger, the more often the electrons are scattered, and is

thus proportional to the momentum scattering rate 1/τ [Ell54, Yaf63]. For degenerate III-V

semiconductors one finds[Cha75, PT84]

1

τs
∼ ∆2

SO

(EG + ∆ SO)2

E2
k

E2
G

1

τ(k)
, (2.32)

where EG is the gap between the valence and the conduction band of the semiconductor,

Ek the energy of the conduction electron, and ∆ SO is the spin-orbit splitting of the valence

band. Thus, the Elliott-Yafet spin relaxation (EYS) can be distinguished, being propor-

tional to 1/τ , and thereby to the resistivity, in contrast to the DP spin scattering rate, Eq.

(2.31), which is proportional to the conductivity. Since the EYS decays in proportion to

the inverse of the band gap, it is negligible in large band gap semiconductors like Si and

GaAs. The scattering rate 1/τ is again the sum of the impurity scattering rate [Ell54], the

electron-phonon scattering rate [Yaf63, GF97], and electron-electron interaction [Bog80], so

that all these scattering processes result in EY spin relaxation. In degenerate semiconduc-

tors and in metals, the electron-electron scattering rate is given by the Fermi liquid inelastic

electron scattering rate 1/τee ∼ T 2/EF . The electron-phonon scattering time 1/τep ∼ T 5

decays faster with temperature. Thus, at low temperatures the Elliott-Yafet spin relaxation,

Eq. (2.32), is dominated by elastic impurity scattering τ0. In non-degenerate semiconduc-

tors, where the Fermi energy is below the conduction band edge, one finds 1/τs ∼ T 2/τ(T ).

2.4.4 Spin Relaxation due to Spin-Orbit Interaction with Impurities

The spin-orbit interaction, as defined in Eq. (2.6), arises whenever there is a gra-

dient in an electrostatic potential. Thus, the impurity potential gives rise to the spin-orbit

interaction

V SO =
1

2m2c2
∇V × k s. (2.33)
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Perturbation theory yields then directly the corresponding spin relaxation rate

1

τs
= πνni

∑

α,β

∫
dθ

2π
(1− cos θ) | V SO(k,k′)αβ |2, (2.34)

proportional to the concentration of impurities ni. Here α, β = ± denotes the spin indices.

Since the spin-orbit interaction increases with the atomic number Z of the impurity element,

this spin relaxation increases as Z2, being stronger for heavier element impurities.

2.4.5 Bir-Aronov-Pikus Spin Relaxation

The exchange interaction J between electrons and holes in p-doped semiconductors

results in spin relaxation, as well.[BAP76] Its strength is proportional to the density of

holes p and depends on their itinerancy. If the holes are localized they act like magnetic

impurities. If they are itinerant, the spin of the conduction electrons is transfered by the

exchange interaction to the holes, where the spin-orbit splitting of the valence bands results

in fast spin relaxation of the hole spin due to the Elliott-Yafet, or the D’yakonov-Perel’

mechanism.

2.4.6 Magnetic Impurities

Magnetic impurities have a spin S which interacts with the spin of the conduction

electrons by the exchange interaction J , resulting in a spatially and temporarily fluctuating

local magnetic field

B MI(r) = −
∑

i

Jδ(r−Ri)S, (2.35)

where the sum is over the position of the magnetic impurities Ri. This gives rise to spin

relaxation of the conduction electrons, with a rate given by

1

τ Ms

= 2πnMνJ
2S(S + 1), (2.36)

where nM is the density of magnetic impurities, and ν is the DOS at the Fermi energy.

Here, S is the spin quantum number of the magnetic impurity, which can take the values

S = 1/2, 1, 3/2, 2 . . .. Antiferromagnetic exchange interaction between the magnetic im-

purity spin and the conduction electrons results in a competition between the conduction

electrons to form a singlet with the impurity spin, which results in enhanced nonmagnetic

and magnetic scattering. At low temperatures the magnetic impurity spin is screened by
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the conduction electrons resulting in a vanishing of the magnetic scattering rate. Thus,

the spin scattering from magnetic impurities has a maximum at a temperature of the or-

der of the Kondo temperature TK ∼ EF exp(−1/νJ)[MACR06, MHEZ71, ZBvDA04]. In

semiconductors TK is exponentially small due to the small effective mass me (see Appendix

A) and the resulting small DOS ν. Therefore, the magnetic moments remain free at the

experimentally achievable temperatures. At large concentration of magnetic impurities, the

RKKY-exchange interaction between the magnetic impurities quenches however the spin

quantum dynamics, so that S(S + 1) is replaced by its classical value S2. In Mn-p-doped

GaAs, the exchange interaction between the Mn dopants and the holes can result in com-

pensation of the hole spins and, therefore, a suppression of the Bir-Aronov-Pikus (BAP)

spin relaxation[ADK+08].

2.4.7 Nuclear Spins

Nuclear spins interact by the hyperfine interaction with conduction electrons. The

hyperfine interaction between nuclear spins Î and the conduction electron spin, ŝ, results in

a local Zeeman field given by [OW53]

B̂N (r) = −8π

3

g0µB
γg

∑

n

γnÎδ(r−Rn), (2.37)

where γn is the gyromagnetic ratio of the nuclear spin. The spatial and temporal fluctuations

of this hyperfine interaction field result in spin relaxation proportional to its variance, similar

to the spin relaxation by magnetic impurities.

2.4.8 Magnetic Field Dependence of Spin Relaxation

The magnetic field changes the electron momentum due to the Lorentz force,

resulting in a continuous change of the spin-orbit field, which similar to the momentum

scattering results in motional narrowing and thereby a reduction of DP spin relaxation:

[Ivc73, PT84, BB04],
1

τs
∼ τ

1 + ω2
c τ

2
. (2.38)

Another source of a magnetic field dependence is the precession around the external mag-

netic field. In bulk semiconductors and for magnetic fields perpendicular to a quantum well,

the orbital mechanism is dominating, however. This magnetic field dependence can be used

to identify the spin relaxation mechanism, since the EYS does have only a weak magnetic
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field dependence due to the weak Pauli-paramagnetism.

In the next chapter, we will also analyze the effect of a Zeeman term on the crossover from

weak localization to weak antilocalization. As we will see, this crossover can be controlled

by spin relaxation rate.



Chapter 3

WL/WAL Crossover and Spin

Relaxation in Confined Systems

3.1 Introduction

To build spin based devices which rely on coherent spin precession of conduction

electrons[DD90, ZFD04], as presented in the introduction of this work, it has to be analyzed

under which conditions, such as wire geometry, type and intensity of SOC, impurity density

etc., spin relaxation rate can be minimized. We have shown in Sec. 2.4 that if electron

momentum is randomized due to disorder, SO interaction is expected to result not only in

a spin precession but in randomization of the electron spin with rate 1/τs.[DP72] In the

following, we focus on the D’yakonov-Perel’ spin relaxation mechanism.

3.1.1 One-Dimensional Wires

In one-dimensional wires, whose width W is of the order of the Fermi wave length

λF , impurities can only reverse the momentum p → −p. Therefore, the spin-orbit field

can only change its sign, when a scattering from impurities occurs. B SO(p)→ B SO(−p) =

−B SO(p). Therefore, the precession axis and the amplitude of the spin-orbit field does not

change, reversing only the spin precession, so that the D’yakonov-Perel’-spin relaxation is

absent in one-dimensional wires[KK00, MFA02]. In an external magnetic field, the preces-

sion around the magnetic field axis, due to the Zeeman-interaction is competing with the

spin-orbit field, however. Then, as the electrons are scattered from impurities, both the

25
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precession axis and the amplitude of the total precession field is changing, since

| B + B SO(−p) |=| B−B SO(p) |6=| B + B SO(p) |,

resulting in spin dephasing and relaxation, as the sign of the momentum changes randomly.

3.1.2 Wires with W > λF

In this Chapter, we show, however, that the condition for a coherent spin pre-

cession is not only the 1d wire, 1/τs is already strongly reduced in much wider wires:

as soon as the wire width W is smaller than bulk spin precession length L SO, which is

the length on which the electron spin precesses a full cycle. This explains the reduc-

tion of the spin relaxation rate in quantum wires for widths exceeding both the elas-

tic mean-free path le and λF , as observed with optical[HSM+06] as well as with WL

measurements[DLS+05, LSK+07, SGP+06, WGZ+06, KKN09]. As an example we show

two experiments in Fig. 3.1, where the significant dimensional reduction has been observed.

Since L SO can be several µm and is not changed significantly as the wire width W is re-

duced, such a reduction of spin relaxation can be very useful for applications: the spin

of conduction electrons precesses coherently as it moves along the wire on length scale

L SO. It becomes randomized and relaxes on the longer length scale Ls(W ) =
√
Deτs only

[De = vF le/2 (vF , Fermi velocity) is the 2D diffusion constant].

To understand the connection between the conductivity measurements and spin relaxation

we recall that quantum interference of electrons in low-dimensional, disordered conductors

is known to result in corrections to the electrical conductivity ∆σ. This quantum correc-

tion, the WL effect, is a very sensitive tool to study dephasing and symmetry-breaking

mechanisms in conductors.[AAKL82, Ber84, CS86] The entanglement of spin and charge by

SO interaction reverses the effect of WL and thereby enhances the conductivity. This WAL

effect was predicted by Hikami et al.[HLN80] for conductors with impurities of heavy ele-

ments. As conduction electrons scatter from such impurities, the SO interaction randomizes

their spin. The resulting spin relaxation suppresses interference in spin triplet configura-

tions. Since the time-reversal operation changes not only the sign of momentum but also the

sign of the spin, the interference in singlet configuration remains unaffected. Since singlet

interference reduces the electron’s return probability, it enhances the conductivity, which is

named the WAL effect. In weak magnetic fields, the singlet contributions are suppressed.

Thereby, the conductivity is reduced and the magnetoconductivity becomes negative. The
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magnetoconductivity of wires is thus related to the magnitude of the spin relaxation rate.

In Sec. 3.2, we first derive the quantum corrections to the conductivity for wires with general

bulk SO interaction and relate it to the Cooperon propagator. In Sec. 3.3, we diagonalize

the Cooperon for two-dimensional (2D) electron systems with Rashba SO interaction. We

compare the spectrum of the triplet Cooperon with the one of the spin-diffusion equation.

In Sec. 3.4, we present the solution of the Cooperon equation for a wire geometry. We review

the solutions of the spin-diffusion equation in the wire geometry and compare the resulting

spin relaxation rate with the one extracted from the Cooperon equation. Then we proceed

to calculate the quantum corrections to the conductivity using the exact diagonalization of

the Cooperon propagator. In the last part of this section, we consider two other kinds of

boundary conditions. We calculate the spin relaxation rate in narrow wires with adiabatic

boundaries, which arise in wires with smooth lateral confinement and regard also tubular

wires. In Sec. 3.5, we study the influence of the Zeeman coupling to a magnetic field per-

pendicular to the quantum well in a system with sharp boundaries and analyze how the

magnetoconductivity is modified. In Sec. 3.6, we draw the conclusions and compare with

experimental results. In Appendix C.2, we give the derivation of the non-Abelian Neumann

boundary conditions for the Cooperon propagator. In Appendix C.3, we show the connec-

tion between the effective vector potential AS due to SO coupling and the spin relaxation

tensor. In Appendix C.4, we give the exact quantum correction to the electrical conductivity

in 2D. In Appendix C.5, we detail the diagonalization of the Cooperon propagator.

3.2 Quantum Transport Corrections

3.2.1 Diagrammatic Approach

As the temperature is lowered, we expect quantum mechanical coherence to be

more important: The phase coherence length lϕ increases with decreasing temperature.

If lϕ is much larger then the elastic scattering length but smaller then the sample size

one would expect that all interference effects disappear due to self-averaging. However,

it was found that one process seems to survive, as measurements show in logarithmically

increasing resistance as temperature decreases, Fig. 3.2. In order to introduce the problem

of dephasing and WL, we begin with a semiclassical picture of how an electron propagates

from a point r to r′: The corresponding probability amplitude P is given as the sum over
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(a) (b)

Figure 3.1: Two different experimental approaches to extract the wire width dependence
of spin relaxation rate. (a) Measurement by Kerr rotation (extracted from [HSM+06]) and
(b) using magnetoconductivity experiments (extracted from [LSK+07]).

all classical paths α with their corresponding actions Sα

P (r, r′) ≈
∑

α

Aαe
iSα . (3.1)

It is intuitively clear that only this interference processes will survive self-averaging which

are independent of the impurity position. Disadvantageous for conductivity is clearly, if an

electron returns to the point he started from. This are paths where the relative phase is

independent of the position of the impurities:

|P (r, r)|2 ≈
∑

α,β

AαAβe
i(Sα−Sβ). (3.2)

There are two possibilities, which cancel the phase factor: The first one is pure classic,

namely representing a scattering that causes the electron to traverse the way α backwards.

The reason for the second one is with the time-reversal-symmetry of the system, which

allows to be β the time-reversed path of α, more specific

|P (r, r)|2 ≈
∑

α

〈|A�α |2 + |A	α |2〉+ 2<
∑

α

〈A�αA	∗α 〉 (3.3)

= |P class(r, r)|2 + |P WL(r, r)|2. (3.4)
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Figure 3.2: Measured WL corrections on a thin PdAu film, Ref. [DO79]. The resistivity
increases logarithmically as the temperature decreases.

Summing over all possible paths will generally yield only the classical and the

pure quantum-mechanical term. Other path have in general a large phase difference and

will average out. Thus, the quantum-mechanical return-probability is twice the classical

one. This effect is called WL. This effect can be destroyed if we think about the Aharonov-

Bohm-Effect[AB59]: Switching on a magnetic field, Fig. (3.3), we can add an additional

phase to the propagating electron which destroys the constructive interference, leading to

an enhanced conductivity,

|P (r, r)|2 ≈
∑

α

〈(A�αei2πϕ +A	αe
−i2πϕ)(A�∗α e−i2πϕ +A	∗α ei2πϕ)〉 (3.5)

=
∑

α

〈2|A�α |2(1 + cos(4πϕ))〉 (3.6)

with ϕ = φ/φ0, φ0 =
h

e
.

Because of 〈(1 + cos(4πϕ))〉 = 1 we have no quantum corrections on average in this case.

The quantum correction to the conductivity appears therefore in the difference between the

classical diffusion with the corresponding propagator (Diffuson) and the propagation which

includes quantum interference between two possibilities for a particle to traverse a closed

loop in opposite -time reversed- directions described by the Cooperon. To calculate this

quantum correction at zero frequency ω, one applies Kubo formula (Appendix B.1) which

yields

σxx(ω = 0) ≡ σ =
e2

m2
e

2π

Vol

∫ ∞

0
dE

(
−∂f(E)

∂E

)
〈Tr[δ(E −H0)pxδ(E −H0)px]〉

imp
. (3.7)
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(a)

(b)

Figure 3.3: Exemplification of the second term in Eq. (3.4): Interference of electrons trav-
eling in the opposite direction along the same path causes an enhanced backscattering, the
WL effect. (a) Closed electron paths enclose a magnetic flux from an external magnetic
field, indicated as the red arrow, breaking time reversal symmetry, breaking constructive
interference. (b) The entanglement of spin and charge by SO interaction causes the spin to
precess inbetween two scatterers around an axis which changes with the momentum vector
of the itinerant electron. This effective field can cause WAL.

With the definition

G
R/A
E (p′,p) =

〈
p′
∣∣∣∣

1

E − (H0 + V )∓ iη

∣∣∣∣p
〉
, (3.8)

the conductivity can be rewritten to the following form

σ =
e2

πm2
eVol

∑

p,p′

pxp
′
x × 〈GR(p,p′)GA(p′,p)〉 imp, (3.9)

with the propagator of density

Γ(p,p′) = 〈GR(p,p′)GA(p′,p)〉 imp, (3.10)

where impurity averaging products of Green’s functions of the type 〈GRGR〉 and 〈GAGA〉
yield small corrections of order 1/EF τ and will be neglected (Appendix B.1).

The first approximation one can apply is to assume

〈GR(p,p′)GA(p′,p)〉 imp ≈ 〈GR(p)〉 imp〈GA(p)〉 imp, (3.11)
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where we used the definition GR/A(p) ≡ GR/A(p,p′)δp,p′ . The average over impurities can

be depicted diagrammatically,

〈G〉 imp = + +

(

+

)
+

(

+ +

+ +

)

+ · · · , (3.12)

where the fermion line denotes the unperturbed Green’s function. For uncorrelated

disorder potential, 〈V (x)V (x′)〉 = δ(x− x′)/2πντ , as we will use in the following, we per-

form the disorder average in first-order Born approximation and get

GR
E (p) = =

1

E −H0(p) + i 1
2τ

, (3.13)

where GA
E (p) is its complex conjugate, respectively. H0 is the Hamiltonian without disorder

potential V . The impurity vertex (the cross) is given by 1/2πντ . Until now we have

the same information in the scattering time τ as we would gain from the Drude formula.

Assuming low temperature, we can simplify Eq. (3.9) to

σ =
e2

πm2
eVol

∑

p

p2
x × 〈GR(p)〉 imp〈GA(p)〉 imp (3.14)

=
e2

πm2
eVol

∑

p

p2
x × GR(p)GA(p) (3.15)

=
e2

πm2
eVol

∑

p

p2
x

(EF − Ep)2 +
(

1
2τ

)2 (3.16)

which can be simplified in the metallic regime, EF � 1/τ , where the dominant contribution

is given by energies close to EF , to

≈ e2

πm2
eVol

∫ ∞

0
dE (Vol ρ(E))

(
E2me

d

)
1

(EF − E)2 +
(

1
2τ

)2 (3.17)

≈ 2
e2

me
ρ(EF )EF

1

d

∫ ∞

∞
dE

1

(EF − E)2 +
(

1
2τ

)2 (3.18)

=
e2nτ

me
, (3.19)
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where d is the dimension. To get the quantum corrections to the Drude conductivity, we

have to include the additional contribution by considering the connection of GR and GA

due to the impurity potential V :

〈Γ〉 imp = +

+

(
+

)

+ · · · (3.20)

This sum can be separated into uncrossed and crossed diagrams. As known from standard

literature both can be calculated in an analog way. Summing up only ladder diagrams will

lead to the Diffuson D̂

ΓDE,E′(p,p
′) =

(
δp,p′ + + + · · ·

)

=
1

1−∑q

A

B

(3.21)

= GR
E (p)GA

E′(p
′)

1

τ
D̂E,E′(p,p

′), (3.22)

It is important to notice that each ladder diagram is of the same order as the Drude

diagram1. In contrast to this classical contribution, the diagrams where the impurity lines,

which connect the advanced and retarded lines, cross are smaller by the factor 1/(pF l)

(see e.g. Ref. [Ram82]). Eq. (3.22) can be solved easily for D̂ if we expand the Diffuson in

(E′ − E) and (p′ − p) (the pole stems from particle conservation):

D̂E,E′(p,p
′) =

1

i(E − E′) +De(p′ − p)2
, (3.23)

with the diffusion constant De = v2
F τ/d. If <σxx is now calculated not only by using

the bubble diagram, we end up with a correction of the momentum relaxation time τ in

Eq. (3.19) being replaced by the transport time

τ0 ∼
∫

dpF |V (pF − p′F)|2(1− pF · p′F). (3.24)

However, we are interested in the calculation which goes beyond this class of diagrams.

Time-reversal symmetry helps to sum up the group of crossed diagrams via unknotting

1bubble diagram
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them:

p1 p2

p3p4

G =

p1 p2

p4p3

G

(3.25)

=
G

p1 p2

p4p3

=

p1 p2

p5p6

G (3.26)

Exploiting Eq. (3.25) makes the calculation of the maximally crossed diagrams easier:

ΓCE,E′(p,p
′) = + +

+ · · · (3.27)

=
1

1−∑q

A

B

(3.28)

= GR
E (p)GA

E′(p
′)

1

τ
ĈE,E′(p,p

′), (3.29)

with the Cooperon2 propagator Ĉ for EF τ � 1 (EF , Fermi energy) given by

Ĉω=E−E′(Q = p + p′) = τ


1−

∑

q

E,p+ q

E′,p′−q




−1

. (3.30)

In contrast to the Diffuson, the infrared divergence is now at p = −p′, i.e. the correction

to the conductivity for ω = 0,

∆σ = 2
e2

π

1

m2

∑

p,Q

(−p2
x)GR(p)GA(p)GR(Q− p)GA(Q− p)

1

τ
Ĉω=0(Q) (3.31)

is due to the factor (−p2
x), in the case without magnetic field and SOC, negative. The

divergent nature explains post hoc the choice of the maximally crossed diagrams.

Notice that one obtains the Cooperon using time-reversal symmetry from the Diffuson. We

will use this later to map the Cooperon equation onto the spin diffusion equation.

2The name stems from the singularity at total momentum being zero, as in the case of a Cooper pair
where the consequence is superconductivity.
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3.2.2 Weak Localization in Quantum Wires

If the host lattice of the electrons provides SO interaction, quantum corrections to

the conductivity have to be calculated in the basis of eigenstates of the Hamiltonian with

SO interaction

H =
1

2me
(p + eA)2 + V (x)− 1

2
γgσ (B + B SO(p)) , (3.32)

where me is the effective electron mass (see Appendix A for examples in semiconductors).

A is the vector potential due to the external magnetic field B. BT
SO = (B SOx, B SOy) is

the momentum dependent SO field. σ is a vector, with components σi, i = x, y, z, the

Pauli matrices, γg is the gyromagnetic ratio with γg = gµ B with the effective g factor of

the material, and µ B = e/2me is the Bohr magneton constant. In Sec. 2.3.3 we presented

the dominant SO interactions in semiconductors: For example, the breaking of inversion

symmetry in III-V semiconductors causes a SO coupling, which for quantum wells grown

in the [001] direction is given by [Dre55]

− 1

2
γgB SO,D = α1(−êxpx + êypy) + γD(êxpxp

2
y − êypyp2

x). (3.33)

Here, α1 = γD〈p2
z〉 is the linear Dresselhaus parameter, which measures the strength of the

term linear in momenta px, py in the plane of the 2DES. When 〈p2
z〉 ∼ 1/a2

z ≥ k2
F (az is

the thickness of the 2DES and kF is the Fermi wavenumber), that term exceeds the cubic

Dresselhaus terms which have coupling strength γD. Asymmetric confinement of the 2DES

yields the Rashba term which does not depend on the growth direction

− 1

2
γgB SO,R = α2(êxpy − êypx), (3.34)

with α2 the Rashba parameter.[BR84, Ras60] We consider the standard white-noise model

for the impurity potential, V (x), which vanishes on average 〈V (x)〉 = 0, is uncorrelated,

〈V (x)V (x′)〉 = δ(x− x′)/2πντ , and weak, EF τ � 1. Going to momentum (Q) and fre-

quency (ω) representation, and proceeding as presented Sec. 3.2.1 but now taking into ac-

count the spin degree of freedom for a two electron interference, we yield the quantum

correction to the static conductivity as [HLN80]

∆σ = −2
e2

2π

De

Vol

∑

Q

∑

α,β=±
Cαββα,ω=0(Q), (3.35)

where α, β = ± are the spin indices, and the Cooperon propagator Ĉ is for EF τ � 1 (EF ,

Fermi energy), given by Eq. (3.30). The summation over the spins is described in more
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detail in Appendix C.1. Thus, the problem reduces to the calculation in presence of SOC

of the correlation function

∑

q

E,p+ q

E′,p′−q

=
1

2πντ

∑

q

GR
E,σ(p + q)GA

E′,σ′(p
′ − q), (3.36)

which simplifies for weak disorder εF τ � 1 to

≈
∫

dΩ

2π

1

1− iτ Σ̂
, (3.37)

where

Σ̂ = εp′+q,σ′ − εp−q,σ. (3.38)

For diffusive wires, for which the elastic mean-free path le is smaller than the wire width

W , the integral is over all angles of velocity v on the Fermi surface. Using

εp =
(p + eA)2

2me
− 1

2
γgσ(B + B SO(p)),

v =
p− q + eA

me
,

S =
1

2
(σ + σ′),

Q = p + p′,

we obtain to lowest order in Q,

Σ̂ = −v(Q + 2eA + 2meâS) + (Q + 2eA)âσ′ +
1

2
γg(σ

′ − σ)B. (3.39)

Here, the SO couplings are combined in the matrix

â =


 −α1 + γDk

2
y −α2

α2 α1 − γDk2
x


 . (3.40)

Thus, the Cooperon becomes

Ĉ(Q)−1 =
1

τ

(
1−

∫
dΩ

2π

1

1 + iτ(v(Q + 2eA + 2meâS) +Hσ′ +HZ)

)
, (3.41)

where Hσ′ = −(Q+2eA)âσ′ and the Zeeman coupling to the external magnetic field yields

HZ = −1

2
γg(σ

′ − σ)B. (3.42)
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It follows that for weak disorder and without Zeeman coupling, the Cooperon depends only

on the total momentum Q and the total spin S. Expanding the Cooperon to second order

in (Q+2eA+2meâS) and performing the angular integral which is for 2D diffusion (elastic

mean-free path le smaller than wire width W ) continuous from 0 to 2π and yields

Ĉ(Q) =
1

De(Q + 2eA + 2eAS)2 +HγD

. (3.43)

The effective vector potential due to SO interaction, AS = meα̂S/e (where α̂ = 〈â〉 denotes

the matrix Eq. (3.40), as averaged over angle), couples to total spin vector S whose com-

ponents are four by four matrices. The cubic Dresselhaus coupling is found to reduce the

effect of the linear one to

α̃1 := α1 −meγDEF /2. (3.44)

Furthermore, it gives rise to the spin relaxation term in Eq. (3.43),

HγD = De(m
2
eEFγD)2(S2

x + S2
y). (3.45)

In the representation of the singlet, |�〉 and triplet states |⇒〉 , |�〉 , |�〉 (Tab. 3.1), Ĉ de-

state (index: electron-number) ms S

|�〉 := 1√
2
(|↑〉1 |↓〉2 − |↑〉2 |↓〉1) 0 0

|�〉 := |↑〉1 |↑〉2 1 1

|⇒〉 := 1√
2
(|↑〉1 |↓〉2 + |↑〉2 |↓〉1) 0 1

|�〉 := |↓〉1 |↓〉2 −1 1

Table 3.1: Singlet and triplet states

couples into a singlet and a triplet sector. Thus, the quantum conductivity is a sum of

singlet and triplet terms

∆σ = −2
e2

2π

De

Vol

∑

Q



− 1

De(Q + 2eA)2

︸ ︷︷ ︸
singlet contribution

+
∑

m=0,±1

〈
S = 1,m

∣∣∣Ĉ(Q)
∣∣∣S = 1,m

〉

︸ ︷︷ ︸
triplet contribution



. (3.46)
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With the cutoffs due to dephasing 1/τϕ and elastic scattering 1/τ , we can integrate over all

possible wave vectors Q in the 2D case analytically (Appendix C.4).

In 2D, one can treat the magnetic field nonperturbatively using the basis of Landau bands.-

[HLN80, KSZ+96, MZM+03, AF01, LG98, Gol05] In wires with widths smaller than cy-

clotron length kF l
2
B (lB, the magnetic length, defined by Bl2B = 1/e), the Landau basis is

not suitable. There is another way to treat magnetic fields: quantum corrections are due

to the interference between closed time-reversed paths. In magnetic fields, the electrons

acquire a magnetic phase, which breaks time-reversal invariance. Averaging over all closed

paths, one obtains a rate with which the magnetic field breaks the time-reversal invariance,

1/τB. Like the dephasing rate 1/τϕ, it cuts off the divergence arising from quantum cor-

rections with small wave vectors Q2 < 1/DeτB. In 2D systems, τB is the time an electron

diffuses along a closed path enclosing one magnetic flux quantum, DeτB = l2B. In wires of

finite width W the area which the electron path encloses in a time τB is W
√
DeτB. Requir-

ing that this encloses one flux quantum gives 1/τB = Dee
2W 2B2/3. For arbitrary magnetic

field, the relation

1

τB
= De(2e)

2B2〈y2〉, (3.47)

with the expectation value of the square of the transverse position 〈y2〉, yields 1/τB =
(
1− 1/(1 +W 2/3l2B)

)
De/l

2
B. Thus, it is sufficient to diagonalize the Cooperon propagator

as given by Eq. (3.43) without magnetic field, as we will do in the next chapters, and to

add the magnetic rate 1/τB together with dephasing rate 1/τϕ to the denominator of Ĉ(Q)

when calculating the conductivity correction, Eq. (3.46).

3.3 The Cooperon and Spin Diffusion in 2D

The Cooperon can be diagonalized analytically in 2D for pure Rashba coupling,

α1 = 0, γD = 0. For this case, we define the Cooperon Hamilton operator as

Hc :=
Ĉ−1

De
= Q2 + 2Q SO(QySx −QxSy) +Q2

SO(S2
y + S2

x), (3.48)
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with Q SO = 2meα2 = 2π/L SO, where L SO is the spin precession length. In the represen-

tation of the singlet |�〉 and triplet modes, {|�〉 , |⇒〉 , |�〉} it becomes

Hc =




Q2 0 0 0

0 Q2
SO + Q2

√
2Q SOQ+ 0

0
√

2Q SOQ− 2Q2
SO + Q2

√
2Q SOQ+

0 0
√

2Q SOQ− Q2
SO + Q2



, (3.49)

with Q± = Qy ± iQx. Diagonalization yields the gapless singlet eigenvalues and the three

triplet Cooperon eigenvalues with a gap due to the SO coupling (see Fig. 3.4),

(a) (b)

Figure 3.4: 2D spectrum of Hc, Ki = Qi/Q SO. The physical meaning of the gaps in the
triplet modes is more comprehensible if Hc is related to spin diffusion, where the gaps
appear as spin relaxation rates.

ES(Q)/De = Q2, (3.50)

ET0(Q)/De = Q2 +Q2
SO, (3.51)

ET±(Q)/De = Q2 +
3

2
Q2

SO ±
Q2

SO

2

√
1 + 16

Q2

Q2
SO

, (3.52)

where ES denotes the singlet eigenvalue and ET0 , ET± the three triplet eigenvalues. Notice

that the two minima of the lowest triplet eigenmode are shifted to Q = ±(
√

15/4)Q SO with

a minimal eigenvalue of E/De = (7/16)Q2
SO. As we show in the following, this gap in the

triplet modes is directly related to the D’yakonov-Perel’ spin relaxation rate 1/τs.
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Spin Diffusion

We can get a better understanding of the spin relaxation induced by the SO

coupling and impurity scattering by considering directly the spin-diffusion equation for the

expectation value of the electron-spin vector [MC00]

s(r, t) =
1

2
〈ψ†(r, t)σψ(r, t)〉, (3.53)

where ψ† = (ψ†+, ψ
†
−) is the two-component vector of the up (+), and down (-) spin fermionic

creation operators and ψ the two-component vector of annihilation operators, respectively.

In the presence of SO coupling, the spin-diffusion equation becomes for vF | ∇rs |� 1/τ ,

0 = ∂ts +
1

τ̂s
s−De∇2s + γg(B− 2τ〈(∇vF )B SO(p)〉)× s (3.54)

and we define accordingly the spin-diffusion Hamiltonian H SD

0 = ∂ts +DeH SDs, (3.55)

where the matrix elements of the spin relaxation terms are given by [DP71b, DP71c]

(Appendix C.3)

1

(τ̂s)ij
= τγ2

g

(
〈B SO(k)2〉δij − 〈B SO(k)iB SO(k)j〉

)
. (3.56)

For pure Rashba SO interaction, the spin-diffusion operator H SD is in momentum repre-

sentation[SDGR06]

H SD =




1
Deτs

+ k2 0 −i2Q SOkx

0 1
Deτs

+ k2 −i2Q SOky

i2Q SOkx i2Q SOky
2

Deτs
+ k2


 , (3.57)

with 1/Deτs = Q2
SO. In the 2D case, diagonalization yields the eigenvalues

E0(k) = k2 +
1

Deτs
, (3.58)

E±(k) = k2 +
3

2

1

Deτs
± 1

2Deτs

√
1 + 16

k2

Q2
SO

. (3.59)

Thus, we find that the spectrum of the spin-diffusion operator and the one of the triplet

Cooperon Hamiltonian are identical in 2D (Ref. [MCW97]) as long as time-reversal sym-

metry is not broken. This confirms that antilocalization in the presence of SO interaction,
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which has its cause in the suppression of the triplet modes in Eq. (3.46), is indeed a direct

measure of the spin relaxation. Mathematically, there exists a unitary transformation

Hc = U CDH SDU
†
CD, (3.60)

U CD =




− 1√
2

i√
2

0

0 0 1

1√
2

i√
2

0


 , (3.61)

with the according transformation between spin-density components si and the triplet com-

ponents of the Cooperon density s̃,

1√
2

(−sx + isy) = s̃�, (3.62)

sz = s̃⇒, (3.63)

1√
2

(sx + isy) = s̃�. (3.64)

This is a consequence of the fact that the four-component vector of charge density ρ =

(ρ+ + ρ−)/2 and spin-density vector S are related to the density vector ρ̂ with the four

components 〈ψ†αψβ〉/
√

2, where α, β = ±, by a unitary transformation.

Relation to the Diffuson

The classical evolution of the four-component density vector ρ̂ is by definition

governed by the diffusion operator, the Diffuson. The Diffuson is related to the Cooperon

in momentum space by substituting Q→ p− p′ and the sum of the spins of the retarded

and advanced parts, σ and σ′, by their difference. Using this substitution, Eq. (3.48) leads

thus to the inverse of the Diffuson propagator

Hd :=
D̂−1

De
= Q2 + 2Q SO(QyS̃x −QxS̃y) +Q2

SO(S̃2
y + S̃2

x), (3.65)

with S̃ = (σ′ − σ)/2, which has the same spectrum as the Cooperon, as long as the time-

reversal symmetry is not broken. In the representation of singlet and triplet modes, the

diffusion Hamiltonian becomes

Hd =




2Q2
SO + Q2

√
2Q SOQ− 0 −

√
2Q SOQ+√

2Q SOQ+ Q2
SO + Q2 0 0

0 0 Q2 0

−
√

2Q SOQ− 0 0 Q2
SO + Q2



. (3.66)
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Comparing Eqs. (3.49) and Eq. (3.66), we see that diagonalization leads to Eqs. (3.50)-

(3.52).

Influence of Dresselhaus SOC

It can be seen from Eqs. (3.58) and (3.59) that in the case of a homogeneous

Rashba field, the spin-density has a finite decay rate as we pointed out in Sec. 2.3.4. How-

ever, if we go beyond the pure Rashba system and include a linear Dresselhaus coupling, the

first term in Eq. (3.33), we can find spin states which do not relax and are thus persistent.

The spin relaxation tensor, Eq. (3.56), acquires nondiagonal elements and changes to

1

τ̂s
(kF ) = 4τk2

F




1
2α

2 −α1α2 0

−α1α2
1
2α

2 0

0 0 α2


 , (3.67)

with α =
√
α2

1 + α2
2. For Q = 0 and α1 = α2 = α0, we find indeed a vanishing eigenvalue

with a spin-density vector parallel to the spin-orbit field, s = s0(1, 1, 0)T . Moreover there

are two additional modes which do not decay in time but are inhomogeneous in space: the

persistent spin helices,[BOZ06, LCCC06, OTA+99, WOB+07, KWO+09]

S = S0




1

−1

0


 sin

(
2π

L SO

(x− y)

)

+ S0

√
2




0

0

1


 cos

(
2π

L SO

(x− y)

)
, (3.68)

(Fig. 3.5) and the linearly independent solution, obtained by interchanging cos and sin.

Here, L SO = π/me

√
2α0. One has to keep in mind that this solution is not an eigenstate

anymore in a quantum wire. However, we will show that there exist also long persisting

solutions in a quasi-1D case.

It is worth to mention that in the case where cubic Dresselhaus coupling in Eq. (3.33)

cannot be neglected, the strength of linear Dresselhaus coupling α1 is shifted[Ket07] to

α̃1 = α1 −meγDEF /2, as we noted before, Eq. (3.44), and, e.g., in the Q = 0 case, the spin

relaxation rate becomes

1

τs
= 2p2

F

(
α2

2 − α̃2
1

)2

α2
2 + α̃2

1

τ +De(m
2
eEFγD)2. (3.69)
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0 LSO�2 LSO

x

0

0 〈S〉z

〈S〉y
√
2S0

−
√
2S0

−S0

S0

Figure 3.5: Persistent spin helix solution of the spin-diffusion equation for equal magnitude
of linear Rashba and linear Dresselhaus coupling, Eq. (3.68).

The condition for persistence is thus rather α̃1 = α2. This has been confirmed in a recent

measurement (Ref. [KWO+09]). The existence of such long-living modes has an effect on

the quantum corrections to the conductivity. In this case, α̃1 = α2 = α0, there is only

WL in 2D.[PP95, SKK+08] In the next sections, we will make use of the equivalence of

the triplet sector of the Cooperon propagator and the spin-diffusion propagator in quantum

wires with appropriate boundary conditions and show how long-living modes may change

the quantum corrections to the conductivity.

3.4 Solution of the Cooperon Equation in Quantum Wires

3.4.1 Quantum Wires with Spin-Conserving Boundaries

The conductivity of quantum wires with width W < Lϕ =
√
Deτϕ is without SO

interaction dominated by the transverse zero-mode Qy = 0. This yields the quasi-1D WL

correction.[KCCC92] However, in the presence of SO interaction, setting simply Qy = 0 is

not correct. If we consider spin-conserving boundaries, rather one has to solve the Cooperon

equation with the following modified boundary conditions as derived in Appendix C.2 (Refs.

[AF01, MFA02]):

(
− τ

De
n · 〈vF [γgB SO(k) · S]〉 − i∂n

)
C|∂S = 0, (3.70)
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where 〈...〉 denotes the average over the direction of vF and k which we rewrite using

Eq. (C.28) for the given geometry as

(−i∂y + 2e(AS)y)C

(
x, y = ±W

2

)
= 0, ∀x, (3.71)

where n is the unit vector normal to the boundary ∂S and x is the coordinate along the

wire. The transverse zero-mode Qy = 0 does not satisfy this condition. Therefore, it

is convenient to perform a non-Abelian gauge transformation,[AF01, MC00] so that the

transformed problem has Neumann boundary conditions, and the transformed Cooperon

Hamiltonian can, therefore, be diagonalized in zero-mode approximation for quantum wires.

Since in quantum wires these boundary conditions apply only in the transverse direction,

a transformation acting in the transverse direction is needed: Ĉ → ˜̂
C = UAĈU

†
A, with

UA = exp(i2e(AS)yy). Then, the boundary condition simplifies to −i∂yC̃(x, y = ±W/2) =

0, ∀x, and the Hamiltonian changes to

H̃c = Q2 − 2Q SOQx[cos(Q SOy)Sy − sin(Q SOy)Sz]

+Q2
SO[cos2(Q SOy)S2

y + sin2(Q SOy)S2
z

− sin(Q SOy) cos(Q SOy)(SySz + SzSy)] (3.72)

= (Q + 2eÃs)
2. (3.73)

where the effective vector potential AS, as introduced in Eq. (3.43),

AS =
me

e
α̂S =

me

e


 0 −α2 0

α2 0 0







Sx

Sy

Sz


 , (3.74)

is transformed to the effective vector potential Ãs after the transformation UA has been

applied to the Hamiltonian

Ãs ≡
me

e
˜̂α(y)S

=
me

e


 0 −α2 cos(Q SOy) −α2 sin(Q SOy)

0 0 0







Sx

Sy

Sz


 , (3.75)

which varies with the transverse coordinate y on the length scale of L SO. Now, we can

see already that for narrow wires W < L SO, this vector potential varies linearly with y,
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Ãs ∼ −meα2Q SOy/e, like the vector potential of the external magnetic field B. Thus,

it follows, that for W < L SO, the spin relaxation rate is 1/τs ∼ Q2
SO〈y2〉 ∼ Q2

SOW
2/12,

vanishing for small wire widths. As announced at the beginning, we thus see that the

presence of boundaries diminishes the spin relaxation already at wire widths of the order of

L SO. If we include only pure Neumann boundaries to the Hamiltonian Hc, i.e., using the

wrong covariant derivative, this would not affect the absolute spin relaxation minimum and

it would be equal to the nonzero one in the 2D case. We give a more precise answer in the

following.

3.4.2 Zero-Mode Approximation

For W < Lϕ, we can use the fact that the nth transverse nonzero-modes contribute

terms to the conductivity which are by a factor W/nLϕ smaller than the 0-mode term, with

n a nonzero integer number. Therefore, it should be a good approximation to diagonalize

the effective quasi-one-dimensional Cooperon propagator, which is the transverse 0-mode

expectation value of the transformed inverse Cooperon propagator, Eq. (3.73), H̃1D = 〈0 |
H̃c | 0〉. It is crucial to note that H̃1D contains additional terms, created by the non-Abelian

transformation, which shows that taking just the transverse zero-mode approximation of the

untransformed Eq. (3.48) would yield a different, incorrect result. We can now diagonalize

H̃1D and finally find the dispersion of quasi-1D triplet modes

Et0
De

= Q2
x +

1

2
Q2

SOt SO, (3.76)

Et±
De

= Q2
x +

1

4
Q2

SO

(
4− t SO ±

√
t2SO + 64

Q2
x

Q2
SO

(1 + c SO(c SO − 2))

)
, (3.77)

where c SO and t SO are functions of the wire width W as given by

c SO = 1− 2 sin(Q SOW/2)

Q SOW
, t SO = 1− sin(Q SOW )

Q SOW
. (3.78)

One notices that in the limit of Q SOW → ∞ we do not recover the previous 2D solution.

This boundary effect will be clarified later on.

Inserting Eq. (3.76) and Eq. (3.77) into the expression for the quantum correction to the

conductivity Eq. (3.46), taking into account the magnetic field by inserting the magnetic rate

1/τB(W ) and the finite temperature by inserting the dephasing rate 1/τϕ(T ), it remains to

perform the integral over momentum Qx, as has been done in Ref. [Ket07]. For Q SOW < 1,
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the WL correction can then be written as

∆σ =

√
HW√

Hϕ +B∗(W )/4
−

√
HW√

Hϕ +B∗(W )/4 +Hs(W )

− 2

√
HW√

Hϕ +B∗(W )/4 +Hs(W )/2
(3.79)

in units of e2/2π. We defined HW = 1/4eW 2 and the effective external magnetic field

B∗(W ) =

(
1−

(
1 +

W 2

3l2B

)−1
)
B. (3.80)

The spin relaxation field Hs(W ) is for Q SOW < 1,

Hs(W ) =
1

12
(Q SOW )2Hs, (3.81)

suppressed in proportion to (W/L SO)2 similar to B∗(W ), Eq. (3.80). Here, Hs = 1/4eDeτs,

with 1/τs = 2p2
Fα

2
2τ . As mentioned above, the analogy to the suppression of the effec-

tive magnetic field, Eq. (3.80), is expected, since the SO coupling enters the transformed

Cooperon, Eq. (3.73), like an effective magnetic vector potential.[Fal03]

Cubic Dresselhaus coupling, however, would give rise to an additional spin relaxation term,

see Eqs. (3.45) and (C.35), which has no analogy to a magnetic field and is, therefore, not

suppressed in diffusive wires. In Chapter 4 we will show that this additional term, though it

cannot vanish for Q SOW � 1, is width dependent, since the term Eq.(3.45) in the Cooperon

Hamiltonian Hc is also transformed to obtain the modified Neumann boundaries by apply-

ing the transformation UA, which is W dependent.

When W is larger than SO length L SO, coupling to higher transverse modes may become

relevant even if W < Lϕ is still satisfied, since the SO interaction may introduce coupling to

higher transverse modes.[Ale06] We will study these corrections by numerical exact diagonal-

ization in the next section. One can expect that in ballistic wires, le > W , the spin relaxation

rate is suppressed in analogy to the flux cancellation effect, which yields the weaker rate,

1/τs(W ) = (W/Cle)(DeW
2/12L4

S), where C = 10.8.[BvH88a, DK84, KM02] Before we in-

vestigate the exact diagonalization in the pure Rashba case, we consider an anisotropic field

with linear Rashba and Dresselhaus SO coupling to see which form the long persisting spin-

diffusion modes have in narrow wires. Also, here, we can take advantage of the equivalence

of Cooperon and spin-diffusion equation as far as time-reversal symmetry is not violated.

We find three solutions whose spin relaxation rate decay proportional to W 2 for α2 6= α1 and
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which are persistent for α2 = α1. The first solution is s = s0(α1, α2, 0)T for Qx = 0 which

is aligned with the effective SO field B SO(k) = −2γgkx(α1, α2, 0)T . In this case, we have

according to Eq. (3.81) H s,RD1(W ) = (1/12)(Q̃ SOW )2Hs, with Q̃2
SO = (2me(α

2
1 − α2

2))2/α2

and 1/τs = 2p2
Fα

2τ , α =
√
α2

1 + α2
2. As mentioned above by transforming the vector po-

tential AS, Eq. (3.75), this alignment occurs due to the constraint on the spin-dynamics

imposed by the boundary condition as soon as the wire width W is smaller than the spin

precession length L SO. In addition, we find two spin helix solutions in narrow wires,

s = s0




−α2
α

α1
α

0


 sin

(
2π

L SO

x

)
+ s0




0

0

1


 cos

(
2π

L SO

x

)
, (3.82)

and the linearly independent solution, obtained by interchanging cos and sin in Eq. (3.82).

The form of this long persisting spin helix depends therefore on the ratio of linear Rashba

and linear Dresselhaus coupling strength, Fig. 3.6, and its spin relaxation rate is diminished

as H s,RD2/3 = (1/2)H s,RD1.

Figure 3.6: Long persisting spin helix solution of the spin-diffusion equation in a quantum
wire whose width W is smaller than the spin precession length L SO for varying ratio of
linear Rashba α2 = α sinϕ and linear Dresselhaus coupling, α1 = α cosϕ, Eq. (3.82), for
fixed α and L SO = π/meα.

3.4.3 Exact Diagonalization

The exact diagonalization of the inverse Cooperon propagator, as obtained after

the non-Abelian transformation, Eq. (3.73), is performed in the basis of transverse standing

waves, satisfying Neumann boundary conditions,
{

1/
√
W,
√

2/
√
W cos ((nπ/W )(y −W/2))

}
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with n ∈ N∗, and the plane waves exp(iQxx) with momentum Qx along the wire. The re-

sults of this calculation for different values of the dimensionless wire width Q SOW are

shown in Fig. 3.7. The numerical data points are attributed to the different branches of

the eigenenergy dispersion by comparing their eigenvectors. For small Q SOW , the result is

in accordance with the 0-mode approximation: For small wire widths W , the z-component

of the total spin, Sz, is a good quantum number, as can be seen by expanding Eq. (3.75)

in Q SOy. Thus, one can identify the lowest modes with the transverse zero-modes of the

triplet modes corresponding to the eigenvalues of Sz, m = 0,±1, in the rotated spin axis

frame, denoting them as E{t0,n=0} and E{t±,n=0}. The minimum of the E{t0,n=0} mode is

located at Qx = 0. The minimum of E{t−,0} is located at finite Qx > 0, in agreement

with the 0-mode approximation. For larger Q SOW , the modes mix with respect to the spin

quantum number and the transverse quantization modes. As a consequence, energy level

crossings which are present at small wire widths are lifted at larger widths, since the mixing

of spin and transverse quantization modes results in level repulsion being seen in Fig. 3.7 as

avoided level crossings. The branches, E{t0,0} and E{t−,0}, evolve into two modes which be-

come degenerate at large values of Q SOW . These two modes are the only ones whose energy

lies below the energy minimum which we obtained for the 2D modes, E/De = (7/16)Q2
SO,

for a finite Kx-interval around Kx = 0. Therefore, we can identify these modes with edge

modes which are created by the Neumann boundary conditions. We can confirm that these

are edge modes by considering their spatial distribution, shown in Fig. 3.8. Therefore, even

in the limit of large widths W , we do get in addition to the spectrum obtained for the 2D

system with open boundary conditions case the edge modes, whose energy is lowered as

seen in Fig. 3.7. The presence of these edge states and the difference to the 2D system with

open boundary conditions can be seen in Appendix C.5 in the nondiagonal elements which

are proportional to the width times the functions Eqs. (C.65) and (C.66). Even in the limit

of wide wires there are nondiagonal matrix elements which give a significant contribution

which cannot be neglected. The modes above E/De = (7/16)Q2
SO are extended over the

whole wire system and can thus be characterized as bulk-states, as seen in Figs. 3.8 (c) and

(d).[Wen07] In Fig. 3.9, we compare the results which we obtained in the 0-mode approxi-

mation with the results of the exact diagonalization. We plot the absolute minima of the

spectra as function of the dimensionless wire width parameter Q SOW/π = 2W/L SO. We

confirm the parabolic suppression of the lowest eigenvalues for narrow wires ∼ W 2/L2
SO,

obtained earlier.[MC00, Ket07] We note that the oscillatory behavior of the triplet eigen-
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Figure 3.7: Dispersion of the triplet Cooperon modes for different dimensionless wire units
Q SOW : (a) Q SOW = 2, (b) Q SOW = 8, (c) Q SOW = 12, (d) Q SOW = 30, plotted as
function of Kx = Qx/Q SO. For Q SOW � 3, E{t0,0} and E{t−,0} evolve into degenerate

branches for large Kx. (For Q SOW = 30, not all high-energy branches are shown.)
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Figure 3.8: Probability density of the Cooperon eigenmodes in the wire for Q SOW/π = 30.
(a) 3D plot, (b) density plot for one of the two lowest branches, showing their edge mode
character. (c) 3D plot and (d) density plot of the density of the third lowest mode, which
shows bulk character.
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Figure 3.9: Absolute minima of the lowest eigenmodes E{t0,0}, E{t−,0}, and E{t+,0} plotted
as function of Q SOW/π = 2W/L SO. We note that the minimum of E{t−,0} is located at

±Kx 6= 0. For comparison, the solution of the zero-mode approximation Et0 is shown.

values as function of W, obtained in the 0-mode approximation,[Ket07] is diminished ac-

cording to the exact diagonalization. However, there remains a sharp maximum of Et0 at

Q SOW/π ≈ 1.2 and a shallow maximum of Et− at Q SOW/π ≈ 2.5. As noted above, the

values of the energy minima of Et0 and Et− at larger widths W are furthermore diminished

as a result of the edge mode character of these modes.

Comparison to Solution of Spin Diffusion Equation in Quantum Wires

As shown above, the spin-diffusion operator and the triplet Cooperon propagator

have the same eigenvalue spectrum as soon as time-symmetry is not broken. Therefore, the

minima of the spin-diffusion modes, which yield information on the spin relaxation rate,

must be the same as the one of the triplet Cooperon propagator as plotted in Fig. 3.9. In

Ref. [SDGR06], the value at Kx = 0, with Ki = Qi/Q SO, has been plotted, as shown in

Fig. 3.10. We note, however, that this does not correspond to the global minimum plotted

in Fig. 3.9. The two lowest states exhibit two minima as can be seen in Fig. 3.7: one local

at Kx = 0 and one global, which is for large Q SOW at Kx ≈ 0.88. The first one is equal to

the results given by Ref. [SDGR06]. For the WL correction to the conductivity, however,

it is important to retain the global minimum, which is dominant in the integral over the

longitudinal momenta.



Chapter 3: WL/WAL Crossover and Spin Relaxation in Confined Systems 51

F1

F2

F3

1 2 3 4 50

1

0.8

0.6

0.4

0.2

0

QSOW/π

E
/
D

e
Q

2 S
O

Figure 3.10: Lowest eigenvalues at Kx = 0 plotted against Q SOW/π. For comparison, the
global minimum of the Cooperon spectrum for Q SOW & 9 is plotted, F3. Curves F1[n]

are given by 7/16 +
(
(n/(Q SOW/π))

√
15/4

)2
, n ∈ N. F2 shows the energy minimum of

the 2D case, F2 ≡ F1[n = 0]. Vertical dotted lines indicate the widths at which the lowest
two branches degenerate at Kx = 0. They are given by n/(

√
15/4); consider that the wave

vector for the minimum of the ET− mode is (
√

15/4)Q SO.

Magnetoconductivity

Now, we can proceed to calculate the quantum corrections to the conductivity

using the exact diagonalization of the Cooperon propagator. In Fig. 3.11, we show the

resulting conductivity as function of magnetic field and as function of the wire width W .

Here, we have included for all wire widths the lowest seven singlet modes and the lowest

21 triplet modes. We choose this number of modes so that we included sufficient modes to

describe correctly the widest wires considered with Q SOW = 10. Thus, for the considered

low-energy cutoff, due to electron dephasing rate 1/τϕ of 1/DeQ
2
SOτϕ = 0.08 and the high

energy cutoff 1/DeQ
2
SOτ = 4 due to the elastic scattering rate, we estimate that seven sin-

glet modes fall in this energy range. Since for every transverse mode there are one singlet

and three triplet modes, we therefore have to include 21 triplet modes, accordingly. We

note a change from positive to negative magnetoconductivity as the wire width becomes

smaller than the spin precession length L SO, in agreement with the results obtained within

the 0-mode approximation, as reported earlier,[Ket07] plotted for comparison in Fig. 3.11

(without shading). At the width, where the crossover occurs, there is a very weak mag-

netoconductance. This crossover width Wc does depend on the lower cutoff, provided by

the temperature-dependent dephasing rate 1/τϕ. To estimate the dependence of Wc on the

dephasing rate, we have to analyze the contribution of each term in the denominator of



52 Chapter 3: WL/WAL Crossover and Spin Relaxation in Confined Systems

0
1

1

2
4

6
8

10
1.5

1.0

0.5

0.0

-

-

-

-

QSOW

∆σ
“

2e2

2π

”

B/HS

Figure 3.11: The quantum conductivity correction in units of 2e2/2π as function of magnetic
field B (scaled with bulk relaxation field Hs), and the wire width W scaled with 1/Q SO for
pure Rashba coupling and cutoffs 1/DeQ

2
SOτϕ = 0.08, 1/DeQ

2
SOτ = 4: Comparison of the

zero-mode calculation (grid without shading) to the exact diagonalization where the lowest
21 triplet branches and seven singlet branches were taken into account.

singlet and triplet terms of the Cooperon. A significant change should arise if

1

τs
(W = Wc) =

1

τϕ
. (3.83)

Assuming that this occurs for small wire widths, Q SOW < 1, as confirmed for the parame-

ters we used, we apply Eq. (3.81) to Eq. (3.83) and conclude that

Wc ∼
1
√
τϕ
. (3.84)

If we calculate the crossover numerically in the 0-mode approximation we get the relation

plotted in Fig. 3.13 which coincides with Eq. (3.84). We note that the change from WAL

to WL may occur at a different width Wc than the change of sign in the correction to the

electrical conductivity ∆σ(B = 0) occurs, W WL. However, we find that the ratio Wc/W WL

is independent of the dephasing rate and the spin-orbit coupling strength Q SO.

Furthermore, while there is quantitative agreement with the 0-mode approximation in

the magnitude of the magnetoconductivity for all magnetic fields for small wire widths



Chapter 3: WL/WAL Crossover and Spin Relaxation in Confined Systems 53

W < L SO, there is only qualitative agreement at larger wire widths. In particular, the

total magnitude of the conductivity is reduced considerably in comparison with the 0-mode

approximation. We can attribute this to the reduction of the energy of the lowest Cooperon

triplet modes due to the emergence of edge modes, which is not taken into account when

neglecting transversal spatial variations, as is done in the 0-mode approximation. There-

fore, the 0-mode approximation overestimates the suppression of the triple modes, resulting

in an overestimate of the conductivity. Similarly, the magnetic field at which the magne-

toconductivity changes its sign from negative to positive is already at a smaller magnetic

field, as seen by the shift in the minimum of the conductivity towards smaller magnetic

fields (Fig. 3.12), in comparison to the 0-mode approximation (unshaded) in Fig. 3.11. This

is in accordance with experimental observations, which showed clear deviations from the

0-mode approximation for larger wire widths, with a stronger magnetic field dependence

than obtained in 0-mode approximation.[DLS+05, LSK+07, SGP+06, WGZ+06] Note that

the nonmonotonous behavior of the triplet modes as function of the wire width, seen in

Fig. 3.7, cannot be resolved in the width dependence of the conductivity.
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Figure 3.12: The relative magnetoconductivity ∆σ(B) − ∆σ(B = 0) in units of 2e2/2π,
with the same parameters and number of modes as in Fig. 3.11.

3.4.4 Other Types of Boundary Conditions

Adiabatic Boundary Conditions

When the lateral confinement potential V is smooth compared to the SO splitting,

that is, if λF∂yV � ∆α = 2kFα2, where λF is the Fermi wavelength, the boundaries do

not preserve the spin, s in 6= s out, Eq. (3.70), since the spin may adiabatically evolve as the
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electron is scattered from such a smooth boundary.[GKD04] If this applies, the potential

is adiabatic and the spin of the scattered electron stays parallel to the field B SO as its

momentum is changed. This leads to the boundary condition for the spin-density[SDGR06]

sx|y=±W/2 = 0, (3.85)

sy|y=±W/2 = 0, (3.86)

∂ysz|y=±W/2 = 0. (3.87)

We can transform this boundary condition to the one of the triplet Cooperon by using the

unitary rotation between the spin density in the si representation and the triplet represen-

tation of the Cooperon, s̃i, Eq. (3.62), which leads to the boundary condition

1√
2

(−sx + isy)|y=±W/2 = s̃�|y=±W/2 = 0, (3.88)

∂ysz|y=±W/2 = ∂y s̃⇒|y=±W/2 = 0, (3.89)

1√
2

(sx + isy)|y=±W/2 = s̃�|y=±W/2 = 0. (3.90)

Now, if we require vanishing magnetization for the 1D case, then the diagonalization is done

straightforwardly, plotted in Fig. 3.14 (see also Ref. [SDGR06]). We use a basis which satis-

fies the boundary conditions and therefore consists of ∼sin(qy)(1, 0, 0)T , ∼cos(qy)(0, 1, 0)T ,

and ∼sin(qy)(0, 0, 1)T , with q = nπ/W , n ∈ N∗. However, looking at the spin-diffusion

operator [Eq. (3.57)], we see immediately that if we set k to zero and use the fact that

sx,y must vanish at the boundary and sz has to be constant for the chosen k, we receive
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Figure 3.14: Spectrum in the case of adiabatic boundaries. Except for states which are
polarized in z direction, the relaxation rates for all states diverge at small wire widths,
Q SOW � 1.

a polarized mode. Although this mode is a trivial solution, it differs from all other due to

the fact that it has a finite spin relaxation time as Q SOW vanishes. For the choice of basis

for diagonalization, this means: We set qi = niπ/W for respective s̃i therewith one state is

described by {n1, n2, n3} = {n, n + p2, n + p3}, n ∈ N∗, p2 ∈ {−1, 0, 1, · · · }, p3 ∈ N. In

the case {n1, n2, n3} = {n, n, n} all branches diverge with reference to the eigenvalues in the

limes of Q SOW → 0, so that the spin relaxation time goes to zero for small wires.[SDGR06]

In contrast, there is an additional branch in the case of p2 = −1, p3 = 0 which has a finite

eigenvalue and therefore finite spin relaxation time for small wire widths

E

DeQ2
SO

= 2 +K2
x

(
1− 32(Q SOW )2

π4

)
+O[(Q SOW )4]. (3.91)

The smallest spin relaxation rate for vanishing Q SOW , 1/τs,1D, which is given for kx = 0, is

found to be an eigenstate polarized in z direction which relaxes with the rate 1/τs,1D = 2/τs.

It shows compared with the other modes a monotonous behavior as function of Q SOW . If

we allow magnetization for the 1D case, then the combination p1 = −1, p2 = 0 leads to a

valid solution. For wide wires the smallest absolute minimum is the 2D minimum E/De =

(7/16)Q2
SO; there are no edge modes. But already at a width of Q SOW = π/

√
5 ≈ 1.4 all

modes except the z-polarized exceed the rate 1/τs,1D.
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Tubular Wires

In tubular wires, such as carbon nanotubes, and InN nanowires in which only sur-

face electrons conduct,[PHC+09] and radial core-shell InO nanowires,[JLS+08] the tubular

topology of the electron system can be taken into account by periodic boundary conditions.

In the following, we focus on wires where the dominant SO coupling is of Rashba type. If one

requires furthermore that this SO-coupling strength is uniform and the wire curvature can

be neglected,[PHC+09] the spectrum of the Cooperon propagator can be obtained by sub-

stituting in Eq. (3.52) the transverse momentum Qy by the quantized values Qy = n2π/W ,

n is an integer, when W is the circumference of the tubular wire. Thus, the spin relaxation

rate remains unchanged, 1/τs = (7/16)DeQ
2
SO. If then a magnetic field perpendicular to

the cylinder axis is applied as done in Ref. [PHC+09], there remains a negative magneto-

conductivity due to the WAL, which is enhanced due to the dimensional crossover from the

2D correction to the conductivity Eq. (C.39) to the quasi-one-dimensional behavior of the

quantum correction to the conductivity [Eq. (3.79)]. In tubular wires in which the circum-

ference fulfills the quasi-one-dimensional condition W < Lϕ, the WL correction can then

be written as

∆σ =

√
HW√

Hϕ +B∗(W )/4
−

√
HW√

Hϕ +B∗(W )/4 +Hs(W )

− 2

√
HW√

Hϕ +B∗(W )/4 + 7Hs(W )/16
(3.92)

in units of e2/2π. As in Eq. (3.79), we defined HW = 1/4eW 2, but the effective external

magnetic field differs due to the different geometry: Assuming that W < lB, we have[Ket07]

1

τB
= De(2e)

2B2〈y2〉 (3.93)

= De(2e)
2 1

2

(
BW

2π

)2

(3.94)

and the effective external magnetic field yields

B∗(W ) = (2e)

(
BW

2π

)2

(3.95)

= (2e)(Br tube)
2, (3.96)
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with the tube radius r tube. The spin relaxation field Hs is Hs = 1/4eDeτs, with 1/τs =

2p2
Fα

2
2τ , or in terms of the effective Zeeman field B SO,

Hs =
gγg
16

B SO(εF)2

εF
. (3.97)

Thus the geometrical aspect, 〈y2〉 tube/〈y2〉 planar ≈ 6.6, might resolve the difference between

measured and calculated SO coupling strength in Ref. [PHC+09] where a planar geometry

has been assumed to fit the data. This assumption leads in a tubular geometry to an

underestimation of Hs(W ). The flux cancellation effect is as long as we are in the diffusive

regime, le �W , negligible.

3.5 Magnetoconductivity with Zeeman splitting

In the following, we want to study if the Zeeman term, Eq. (3.42), is modifying

the magnetoconductivity. Accordingly, we assume that the magnetic field is perpendicular

to the 2DES. Taking into account the Zeeman term to first order in the external magnetic

field B = (0, 0, B)T , the Cooperon is according to Eq. (3.43) given by

Ĉ(Q) =
1

De(Q + 2eA + 2eAS)2 + i 1
2γg(σ

′ − σ)B
. (3.98)

This is valid for magnetic fields γgB � 1/τ . Due to the term proportional to (σ′ −σ), the

singlet sector of the Cooperon mixes with the triplet one. We can find the eigenstates of C−1,

|i〉 with the eigenvalues 1/λi. Thus, the sum over all spin up and down combinations αβ, βα

in Eq. (3.35) for the conductance correction simplifies in the singlet-triplet representation

to (Appendix C.1)

∑

αβ

Cαββα =
∑

i

(−〈� |i〉 〈i |�〉+ 〈� |i〉 〈i |�〉

+ 〈⇒ |i〉 〈i |⇒〉+ 〈� |i〉 〈i |�〉)λi. (3.99)

3.5.1 2DEG

The coupling of the singlet to the triplet sector lifts the energy level crossings at

K = ±1/
√

2 of the singlet ES and the triplet branch ET− as can be seen in Fig. 3.15 for a

nonvanishing Zeeman coupling. The spectrum, which is not positive definite anymore for
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all wave vectors, K = Q/Q SO, is given by

E B,2D,1 /DeQ
2
SO = 1 +K2

x, (3.100)

E B,2D,2 /DeQ
2
SO = E B,2D,1 +

f1

f
1/3
2

− 1

3
f

1/3
2 , (3.101)

E B,2D,3/4/DeQ
2
SO = E B,2D,1 −

1

2

(
1± i

√
3
)
f1

f
1/3
2

+
1

6

(
1∓ i

√
3
)
f

1/3
2 , (3.102)

with

f1 = B̃2 − 4K2
x − 1, (3.103)

f2 = 3

(√
3
√

108K4
x + f3

1 − 18K2
x

)
, (3.104)

B̃ = gµ BB/DeQ
2
SO, (3.105)

Thus, there are spin states with the same real part of the Cooperon energy, so that they

decay equally in time, but the imaginary part is different, so that they precess with different

frequencies around the magnetic field axis. A significant change of the Cooperon spectrum

appears when gµ BB/De exceeds Q2
SO, as can be seen in Fig. 3.16(b). All states with a low

decay rate do precess now, due to a finite imaginary value of their eigenvalue. Associated

with this change is also a change of the dispersion of the real part of E B,2D,3 which changes

for Ky = 0 from a nearly quadratic dispersion in Kx, a0 + a1K
2
x for B̃ < 1 to one which

changes more slowly as a0 + a1K
2/3
x + a2K

4/3
x + a3K

2
x for B̃ ≥ 1 [see Fig. 3.16 (a)].

Weak Field

In the case of a weak Zeeman field, B̃ � 1, the singlet and triplet sectors are

still approximately separated. A finite B̃ � 1 lifts however the energy of the singlet mode

to EB,2D,2(K = 0)/DeQ
2
SO = B̃2/2 + O(B̃4), thus the singlet mode attains a finite gap,

corresponding to a finite relaxation rate. The absolute minimum of two of the triplet

modes is also lifted by EB,2D,2(K = ±
√

15/4)/DeQ
2
SO = 7/16 + (3/4)B̃2 + O(B̃4), while

their value is independent of B̃ at K = 0. In contrast, the minimum of the triplet mode

EB,2D,3, which approaches ET+ in the limit of no magnetic field (see Fig. 3.4) is diminished to

EB,2D,3(K = 0)/DeQ
2
SO = 2− B̃2/2+O(B̃4). So, in summary, a weak Zeeman field renders

all four Cooperon modes gapfull and that gap can be interpreted as a finite relaxation rate
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Figure 3.15: (a) Real and (b) imaginary parts of the spectrum of the 2D Cooperon with
Zeeman term of strength gµ BB/DeQ

2
SO = 0.4. E B,2D,1 (black), E B,2D,2 (red dashed),

E B,2D,3 (green), E B,2D,4 (blue dashed). Dashed vertical lines are located at Kx = ±1/
√

2,
the wave vector where the triplet mode ET− and the singlet mode ES are crossing each
other (without loss of generality Ky = 0).
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or dephasing rate as the Zeeman coupling mixes all the spin states, breaking time-reversal

invariance.

Strong Field

If we expand the spectrum in 1/B̃ � 1, we find that all modes have the same gap

proportional to the strength of the SO coupling, DeQ
2
SO, while two modes attain a finite

imaginary part with opposite sign

E B,2D,1/DeQ
2
SO = 1 +K2

x, (3.106)

E B,2D,2/DeQ
2
SO = 1 +K2

x +O(1/B̃), (3.107)

E B,2D,3/4/DeQ
2
SO = 1 +K2

x ∓ iB̃ +O(1/B̃). (3.108)

Thus, a strong Zeeman field polarizes the spins and leads to their precession. The SO

interaction, which is too weak to flip the spins, merely results in a relaxation of all modes,

corresponding to a dephasing of the spin precession.

3.5.2 Quantum Wire with Spin-Conserving Boundary Conditions

In the following, we want to study if a Zeeman field modifies the magnetoconduc-

tivity and can shift the crossover from positive to negative Magnetoconductivity as function

of wire width W . We have seen that for appropriate parameters the critical width Wc is

small compared with L SO. Therefore we stay in the 0-mode approximation to get a better

overview of the physics. To do so, we first analyze the spectrum.

The modes with low decay rates are situated at Kx = 0 and Kx ≈ ±1 for small widths and

small enough Zeeman field, B̃ . 1, as can be seen in Fig. 3.17. For Kx = 0, we have

E min,0/DeQ
2
SO = B̃2 + B̃4

(
1 +

(Q SOW )2

12

)
(3.109)

and for Kx = ±1,

E min,±1/DeQ
2
SO =

(Q SOW )2

24
+ B̃2

(
1

2
− (Q SOW )2

96

)

+ B̃4

(
3

16
− (Q SOW )2

384

)
. (3.110)

As in the 2D case, we have a mode which is independent of the Zeeman field and the

spectrum is equal to Et0 with the eigenvector (0, 1, 0, 1)T . Using this spectrum, we estimate
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Figure 3.16: (a) Real and (b) imaginary parts of the spectrum of the 2D Cooperon with
Zeeman term of the strength gµ BB/DeQ

2
SO = 0 . . . 2 in steps of 0.25 (w.l.o.g Ky = 0). The

B independent mode ET0 is not shown.
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Figure 3.17: (a) Real and (b) imaginary parts of the spectrum of the Cooperon with Zeeman
term of the strength gµ BB/DeQ

2
SO = 0 . . . 0.8 in steps of 0.1 in a finite wire of the width

Q SOW = 0.5. The B independent mode Et0 is not shown.
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the correction to the static conductivity in the case of a magnetic field which we include by

means of a Zeeman term together with an effective magnetic field appearing in the cutoff

1/τB as described in Sec. 3.2. The g̃ = g/8meDe factor is used as a material-dependent

parameter. In Fig. 3.18, we see that for large enough g̃ factor, the system changes from

positive magnetoconductivity—in the case without Zeeman field and a small-enough wire

width—to negative magnetoconductivity at a finite Zeeman field for the same wire. Hence,

the ratio Wc/W WL changes and one has to be careful not to confuse the crossover defined

by a change of the sign of the quantum correction, WL→WAL, and the crossover in the

magnetoconductivity. To give an idea how the crossover Wc depends on g̃ and the strength

of the Zeeman field we analyze two different systems as plotted in Fig. 3.19: The first

one, plot (a), shows the drop of Wc in a system as just described where we have one

magnetic field which we include with an orbital and a Zeeman part. For small g̃ we have

Q SOWc(g̃) = Q SOWc(g̃ = 0)− const g̃2, where const is about 1 in the considered parameter

space. In the second system [Fig. 3.19(b)], we assume that we can change the orbital and the

Zeeman field separately. The critical width is plotted against the Zeeman field. To calculate

Wc, we fix the Zeeman field to a certain value, horizontal axis in plot (b), while we vary

the effective field and calculate if negative or positive magnetoconductivity is present. For

different Zeeman fields BZ/Hs we get differentWc. We see thatWc is shifted to larger widths

as the Zeeman field is increased, Q SOWc(BZ/Hs) = Q SOWc(BZ = 0) + const (BZ/Hs)
2,

where const is about 1 in the considered parameter space, while ∆σ(1/τ B = 0) (not plotted)

is lowered as long as we assume small Zeeman fields. If we notice that BZ mixes singlet and

triplet states it is understood that there is no gapless singlet mode anymore and therefore

∆σ(1/τ B = 0) must decrease for low Zeeman fields.

To estimate g̃, we take typical values for a GaAs/AlGaAs system and assume the electron

density to be ns = 1.11×1011 cm−2, the effective massme/me0 = 0.063, the Landé factor g =

0.75 and an elastic mean-free path of le = 10 nm in a wire with Q SOW = 1, corresponding

to W = 1.2µm, if we assume a Rashba spin-orbit coupling strength of α2 = 5 meVÅ. We

thus get g̃ ≈ 0.1 and find that the Zeeman coupling due to the perpendicular magnetic field

can have a measurable, albeit small effect on the magnetoconductance in GaAs/AlGaAs

systems.
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Figure 3.18: The magnetoconductance ∆σ(B) in a magnetic field perpendicular to the
quantum well, where its coupling via the Zeeman term is considered by exact diagonalization
while its effect on the orbital motion is considered effectively by the magnetic phase-shifting
rate 1/τB(W ) for wire width Q SOW = 1, dephasing rate 1/τϕ = 0.06DeQ

2
SO, and elastic-

scattering rate 1/τ = 4DeQ
2
SO. The strength of the contribution of the Zeeman term is

varied by the material-dependent factor g̃ = gµ BHs/DeQ
2
SO in the range g̃ = 0 . . . 1.5 in

steps of 0.5: The system changes from positive magnetoconductivity (g̃ = 0, green) to
negative one (g̃ = 0.5 . . . 1.5, continuous decrease of the absolute minimum).

3.6 Conclusions

In conclusion, in wires with spin-conserving boundaries and a width W smaller

than bulk spin precession length L SO, the spin relaxation due to linear Rashba SO coupling

is suppressed according to the spin relaxation rate (1/τs)(W ) = (π2/3) (W/L SO)2 (1/τs),

where 1/τs = 2p2
Fα

2
2τ . The enhancement of spin relaxation length Ls =

√
Deτs(W )

can be understood as follows: The area an electron covers by diffusion in time τs is

WLs. This spin relaxation occurs if that area is equal L2
SO,[Fal03] which yields 1/L2

s ∼
1/Deτs ∼ (W/L SO)2/L2

SO, in agreement with Eq. (3.81). For larger wire widths, the ex-

act diagonalization reveals a nonmonotonic behavior of the spin relaxation as function

of the wire width of the long-living eigenstates. The spin relaxation rate is first en-

hanced before it is suppressed as the widths W is decreased. The longest living modes

are found to exist at the boundary of wide wires. Since we identified a direct transfor-

mation from the spin-diffusion equation to the Cooperon equation, we could show that

these edge modes affect the conductivity: the 0-mode approximation overestimates the

conductivity for larger wire widths Q SOW > 1 since it does not take into account these

edge modes. They add a larger contribution to the negative triplet term of the quantum
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Figure 3.19: (a) Change of crossover width Wc with g factor: The magnetic field is included
as an effective field 1/τB and in the Zeeman term. The strength of the contribution of the
Zeeman term is varied by the material dependent factor g̃ = gµ BHs/DeQ

2
SO. (b) Change

of crossover width Wc with Zeeman field: To calculate Wc, we fix the Zeeman field to a
certain value, horizontal axis, while we vary the effective field independently and calculate
if negative or positive magnetoconductivity is present. For different Zeeman fields BZ/Hs,
we find thereby a different width Wc. Here, we set g/8meDe = 1. In (a) and (b), the cutoff
due to dephasing is varied: 1/DeQ

2
SOτϕ = 0.04, 0.06, 0.08 (lowest first).
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correction than the bulk modes do, since they relax more slowly. This also results in a

shift in the minimum of the conductivity towards smaller magnetic fields in comparison to

the 0-mode approximation. The reduction of spin relaxation has recently been observed

in optical measurements of n-doped InGaAs quantum wires[HSM+06] and in transport

measurements.[DLS+05, LSK+07, SGP+06, WGZ+06, Mei05] Recently in Ref. [KKN09],

the enhancement of spin lifetime due to dimensional confinement in gated InGaAs wires

with gate-controlled SO coupling was reported. Reference [HSM+06] reports saturation of

spin relaxation in narrow wires, W � L SO, attributed to cubic Dresselhaus coupling.[Ket07]

The contribution of the linear and cubic Dresselhaus SO interaction to the spin relaxation

turns out to depend strongly on growth direction and will be studied in more detail in

Chapter 4. Including both the linear Rashba and Dresselhaus SO coupling we have shown

that there exist two long persisting spin helix solutions in narrow wires even for arbitrary

strength of both SO coupling effects. This is in contrast to the 2D case, where the condition

α1 = α2, respectively in the case where the cubic Dresselhaus term cannot be neglected,

α1 − meγgEF /2 = α2, is required to find persistent spin helices [BOZ06, LCCC06] as it

was measured recently (Ref. [KWO+09]). Regarding the type of boundary, we found that

the injection of polarized spins into a nonmagnetic material is favorable for wires with a

smooth confinement, λF∂yV < ∆α = 2kFα2. With such adiabatic boundary conditions,

states which are polarized in z direction relax with a finite rate for wires with widths

Q SOW � 1, while the spin relaxation rate of all other states diverges in that limit.

In tubular wires with periodic boundary conditions, the spin relaxation is found

to remain constant as the wire circumference is reduced. Finally, by including the Zee-

man coupling to the perpendicular magnetic field, we have shown that for spin-conserving

boundary condition the critical wire width, Wc, where the crossover from negative to posi-

tive magnetoconductivity occurs, depends not only on the dephasing rate but also depends

on the g factor of the material.



Chapter 4

Direction Dependence of Spin

Relaxation and Diffusive-Ballistic

Crossover

4.1 Introduction

In Chapter 3 it was shown how the spin relaxes in a quasi 1D electron system in

a quantum well grown in the [001] direction, depending on the width of the wire, where

the normal of the boundary was pointing in the [010] direction. In a system with only

Rashba SOC or linear Dresselhaus SOC in a (111) quantum well it is clear from the vec-

tor fields plotted in Fig. 2.2 that a rotation in the plain should not effect the physics,

i.e. the minimal spin relaxation rate will not reduce. The linear Rashba SOC does

not depend on the growth direction at all. It is already known that on the other hand

in a (001) 2D system with both BIA[Dre55] and SIA[BR84] we get an anisotropic spin-

relaxation.[KRW03, CWd07, WJW10] This has also been studied numerically in quasi-1D

GaAs wires[LLK+10]. In this Chapter, Sec. 4.2, we present analytical results concerning

this anisotropy for the 2D case as well as the case of quantum wire with spin and charge

conserving boundaries. As in the previous chapter, also here we focus on materials where

the dominant mechanism for spin relaxation is governed by the DP spin relaxation.

Furthermore, we extend our analysis to other growth directions, Sec. 4.3: Searching for long

spin decoherence times at room temperature, the (110) quantum wire attracted attention.

67



68 Chapter 4: Direction Dependence of Spin Relaxation and Diffusive-Ballistic Crossover

[AOMO01, DHR+04] The properties of spin relaxation in systems with this growth direc-

tion have also been related to WL measurements, Ref. [HPB+97]. We present analytical

explanations for dimensional spin relaxation reduction and discuss the crossover from WL

to WAL, Sec. 4.4.

It was shown in the previous chapter that the cubic Dresselhaus SOC leads to a term,

Eq. (3.45), which hinders the spin relaxation to vanish for small wire widths Q SOW � 1

but W � le, with the wire width W and the elastic mean free path le. As we will show

in the following sections, this term is width dependent but the finite spin relaxation rate

is not reduced if the wire is rotated in the (001) plane. However some of the experiments

are done on ballistic wires, i.e. in the regime where W � le does not hold, and we need

to modify the theory used in Ref. [Ket07] and presented in the previous chapter to enable

us to study the crossover from diffusive to ballistic wires. In Sec. 4.5 we show how the spin

relaxation which is due to cubic Dresselhaus SOC reduces with the number of channels in

the quantum wire.

We consider again the Hamiltonian with SOC, Eq. (3.32)

H =
1

2me
(p + eA)2 + V (x)− 1

2
γgσ (B + B SO(p)) , (4.1)

where me is the effective electron mass. A is the vector potential due to the external

magnetic field B. BT
SO = (B SOx, B SOy) is the momentum dependent SO field. σ is a

vector, with components σi, i = x, y, z, the Pauli matrices, γg is the gyromagnetic ratio

with γg = gµ B with the effective g factor of the material, and µ B = e/2me is the Bohr

magneton constant. To analyze the spin relaxation for different wire directions we use for

the SO interaction which is caused by BIA to lowest order in the wave vector k the general

form, Eq. (2.13),

− 1

2
γgB SO,D = γD

∑

i

êipi(p
2
i+1 − p2

i+2) (4.2)

where the principal crystal axes are given by i ∈ {x, y, z}, i → ((i − 1) mod 3) + 1 and

the spin-orbit coefficient for the bulk semiconductor γD. We consider the standard white-

noise model for the impurity potential as in the previous chapter, V (x), which vanishes on

average 〈V (x)〉 = 0, is uncorrelated, 〈V (x)V (x′)〉 = δ(x− x′)/2πντ , and weak, EF τ � 1.

To address both, the WL corrections as well as the spin relaxation rates in the system, our

starting point is also here the Cooperon[HLN80]

Ĉ(Q)−1 =
1

τ

(
1−

∫
dϕ

2π

1

1 + iτ(v(Q + 2eA + 2meâS) +Hσ′ +HZ)

)
, (4.3)
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as presented in Eq. (3.41). Expanding the Cooperon to second order in (Q + 2eA + 2meâS)

and performing the angular integral which is for 2D diffusion (elastic mean free path le

smaller than wire width W ) continuous from 0 to 2π, yields:

Ĉ(Q) =
1

De(Q + 2eA + 2eAS)2 +HγD

. (4.4)

The effective vector potential due to SO interaction is AS = meα̂S/e, where α̂ = 〈â〉 is

averaged over angle. The SO term HγD , which cannot be rewritten as a vector potential, is

in our case due to the appearance of cubic Dresselhaus SOC.

4.1.1 Example

To get an idea of the procedure we recall the situation presented in Ref. [Ket07] and

Chapter 3 and take up the remark about the additional term due to cubic Dresselhaus SOC,

Eq.(3.45) concerning the width dependence: Starting with the Cooperon Hamiltonian, in

the case of Rashba and lin. and cubic Dresselhaus SOC,

Hc :=
Ĉ−1

De
= (Q + 2eAS)2 + (m2

eEFγD)2(S2
x + S2

y), (4.5)

with the effective vector potential

AS =
me

e
α̂S =

me

e


 −α̃1 −α2 0

α2 α̃1 0







Sx

Sy

Sz


 , (4.6)

with α̃1 = α1 −meγDEF /2,

it can be easily shown that the Hamiltonian Eq. (4.5) has only non vanishing eigenvalues

due to the last term in Eq. (4.5), which is due to cubic Dresselhaus SOC, if we assume no

boundaries except the lateral confinement. This term is neither reduced by reason of the

boundary in the diffusive case, as has been shown in the previous chapter for quantum wires

in [100] direction and will be extended now to other directions, too. However two triplet

eigenvalues of this term depend on the wire width,

EQD1 =
q2
s3

2
, (4.7)

EQD2,3 =
q2
s3

2

(
3

2
± sin(Q SOW )

2Q SOW

)
, (4.8)

with q2
s3/2 = (m2

eEFγD)2. In the following we are going to diagonalize the whole Hamilto-

nian and change the direction of the wire in the (001) plane.
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4.2 Spin Relaxation anisotropy in the (001) system

4.2.1 2D system

We rotate the system in-plane through the angle θ (the angle θ = π/4 is equivalent

to [110]). This does not effect the Rashba term but changes the Dresselhaus one to[CWd07,

WJW10]

1

γD
HD[001] = σyky cos(2θ)(〈k2

z〉 − k2
x)− σxkx cos(2θ)(〈k2

z〉 − k2
y)

− σykx
1

2
sin(2θ)(k2

x − k2
y − 2〈k2

z〉)

+ σxky
1

2
sin(2θ)(k2

x − k2
y + 2〈k2

z〉), (4.9)

with the wave vectors ki. The resulting Cooperon Hamiltonian, including Rashba and

Dresselhaus SOC, reads then

Hc = (Qx + αx1Sx + (αx2 − q2)Sy)
2 + (Qy + (αx2 + q2)Sx − αx1Sy)

2 +
q2
s3

2
(S2
x + S2

y),

(4.10)

where we set

q2
s3

2
=
(
m2
eEFγD

)2
, (4.11)

αx1 =
1

2
meγD cos(2θ)((mev)2 − 4〈k2

z〉), (4.12)

αx2 = − 1

2
meγD sin(2θ)((mev)2 − 4〈k2

z〉) (4.13)

=

(
q1 −

√
q2
s3

2

)
sin(2θ) (4.14)

= 2meα̃1 sin(2θ), (4.15)

with q1 = 2meα1, q2 = 2meα2. We see that the part of the Hamiltonian which cannot be

written as a vector field and is due to cubic Dresselhaus SOC does not depend on the wire

direction in the (001) plane.

Special case: Only lin. Dresselhaus SOC equal to Rashba SOC

As a special example for the 2D case we set qs3 = 0 and q1 = q2. To simplify

the search for vanishing spin relaxation we go to polar coordinates. Applying free wave
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functions (with kx, ky) to Hc, Eq. (4.10), we end up with (singlet part left out)

Hc

q2
2

=




2 +Q2 fθφ −2i exp(2iθ)

4 +Q2 fθφ

c.c. 2 +Q2


 (4.16)

with kx/q2 = Q cos(φ), ky/q2 = Q sin(φ) and

fθφ = (i − 1)
√

2 exp(iθ)(cos(φ+ θ)− sin(φ+ θ))Q. (4.17)

Vanishing spin relaxation is found at Q = 0 for arbitrary values of θ (the spin with vanishing

spin relaxation is pointing along the [110] direction[SEL03]). Another solution is found at

Q = 2 with the condition θ + φ = 3π/4, which is equivalent to the [110] crystallographic

direction.[CWd07]

4.2.2 Quasi-1D wire

In the following we consider spin and charge conserving boundaries. Due to the

SOC we have, as in the previous chapter, Eq. (3.70), modified Neumann condition with the

slight change which is the angle dependency of the vector potential:

(
− τ

De
n · 〈vF [γgB SO(k) · S]〉 − i∂n

)
C|∂S = 0, (4.18)

where 〈. . .〉 denotes the average over the direction of vF and k which we rewrite for the

rotated x-y system

(−i∂y + 2e(AS)y)C

(
x, y = ±W

2

)
= 0, ∀x, (4.19)

where n is the unit vector normal to the boundary ∂S and x is the coordinate along the

wire. In order to do a diagonalization taking only the zero-mode into account, we have

to simplify the boundary condition. A transformation acting in the transverse direction is

needed according to Eq. (4.10): Ĉ → ˜̂
C = UAĈU

†
A, by using the transformation

U = 14 − i sin(qsy)
1

qs
Ay + (cos(qsy)− 1)

1

q2
s

A2
y (4.20)

with Ay = (αx2 + q2)Sx − αx1Sy and qs =
√

(αx2 + q2)2 + α2
x1.
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Spin relaxation

We diagonalize the Hamiltonian, Eq. (4.10), after applying the transformation U,

taking only the lowest mode into account similar to the calculation presented in Sec. 3.4.2.

The spectrum of the Hamiltonian for small wire width, Wqs < 1, is given by

E1/2(kx > 0) = k2
x ± kx

(
2qsm −

(
α2
x1 + α2

x2 − q2
2

)2

12qsm
W 2

)

+
3

2

q2
s3

2
+ q2

sm ∓
q2
s3

2kx

(
α2
x1 + α2

x2 − q2
2

)2
W 2

96qsm

−

(
q2s3
2 + q2

sm

) (
α2
x1 + α2

x2 − q2
2

)2

24q2
sm

W 2 , (4.21)

E1(kx = 0) = q2
s3 + q2

sm −
(α2

x1 + α2
x2 − q2

2)2 +
q2s3
2 q

2
s

12
W 2, (4.22)

E2(kx = 0) =
q2
s3

2
+ q2

sm +
q2
s3

2

q2
2α

2
x1

3q2
sm

W 2, (4.23)

E3 = k2
x +

q2
s3

2
+

(
q2s3
2 + q2

sm

) (
α2
x1 + α2

x2 − q2
2

)2

12q2
sm

W 2, (4.24)

with qsm =
√

(αx2 − q2)2 + α2
x1. First we notice that the only θ dependence is in the

term qsm, which disappears if the Dresselhaus SOC strength α̃1, which is shifted due to

the cubic term, equals the Rashba SOC strength α2 and the angle of the boundary is

θ = (1/4 + n)π, n ∈ Z. Assuming the term proportional to W 2/kx to be small, the

absolute minimum can be found at

E1/2,min =
3

2

q2
s3

2
+

(
q2
sm −

q2s3
2

) (
α2
x1 + α2

x2 − q2
2

)2

24q2
sm

W 2 (4.25)

which is independent of the width W if αx1(θ = 0) = −q2 and/or the direction of the wire

is pointing in

θ =
1

2
arcsin

(
2〈k2

z〉(meγD)2((mev)2 − 2〈k2
z〉)− q2

2

(m3
ev

2γD − 4〈k2
z〉meγD) q2

)
. (4.26)

The second possible absolute minimum, which dominates for sufficient small width W and

qsm 6= 0 (compare with E2(kx = 0)), is found at

E3,min =
q2
s3

2
+

(
q2s3
2 + q2

sm

) (
α2
x1 + α2

x2 − q2
2

)2

12q2
sm

W 2. (4.27)



Chapter 4: Direction Dependence of Spin Relaxation and Diffusive-Ballistic Crossover 73

The minimal spin-relaxation rate is found by analyzing the prefactor of W 2 in Eq. (4.27),

Fig. (4.1). We see immediately that in the case of vanishing cubic Dresselhaus or in the case

where αx1(θ = 0) = −q2 we have no direction dependence of the minimal spin relaxation.

Notice the shift of the absolute minimum away from q1 = q2 due to qs3 6= 0. In the case of

q1 < (qs3/
√

2) we find the minimum at θ = (1/4+n)π, n ∈ Z, else at θ = (3/4+n)π, n ∈ Z,

which is indicated by the dashed line in Fig. (4.1).
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Figure 4.1: Dependence of the W 2 coefficient in Eq. (4.27) on the lateral rotation (θ). The
absolute minimum is found for αx1(θ = 0) = −q2 (here: q1/q2 = 1.63) and for different SO
strength we find the minimum at θ = (1/4 + n)π, n ∈ Z if q1 < (qs3/

√
2) (dashed line:

q1 = (qs3/
√

2)) and at θ = (3/4 + n)π, n ∈ Z else. Here we set qs3 = 0.9. The scaling is
arbitrary.

Spin dephasing

Concerning spintronic devices it is interesting to know how an ensemble of spins

initially oriented along the [001] direction dephases in the wire of different orientation θ.

To do this analysis we only have to know that the eigenvector for the eigenvalue E1 at kx = 0,

Eq. (4.22), is the triplet state |S = 1;m = 0〉 = (|↑↓〉 + |↓↑〉)/
√

2 ≡
|⇒〉 =̂(0, 1, 0)T , Eqs. (3.62). This is equal to the z-component of the spin density whose

evolution is described by the spin diffusion equation, Eq. (3.54). As an example we as-

sume the case where cubic Dresselhaus term can be neglected and where the Rashba and

lin. Dresselhaus SOC are equal. We notice that the dephasing is then width independent.
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At definite angles the dephasing time diverges - as for the in-plane polarized states with

eigenvalue E2(kx = 0) - ,

1

τs(W )
= 2Deq

2
2(1− sin(2θ)) (4.28)

which is plotted in Fig. (4.2). We have longest spin dephasing time at θ = (1/4+n)π, n ∈ Z.

For θ = (3/4 +n)π, n ∈ Z we get the 2D result T2 = 1/(4q2
2De). We notice that this is the

eigenvalue to the triplet state |S = 1;m = 0〉 of the spin relaxation tensor [DP71b, DP71c],

1

(τ̂s)ij
= τγ2

g

(
〈B SO(k)2〉δij − 〈B SO(k)iB SO(k)j〉

)
(4.29)

which we derived in Sec. 3.3.

This gives an analytical description of numerical calculation done by J.Liu et al., Ref. -

[LLK+10].

Switching on cubic Dresselhaus SOC leads to finite spin dephasing time for all angles θ. In

addition, T2 is then width dependent. In the case of strong cubic Dresselhaus SOC where

q2
s3/2 = q2

1 = q2
2, the dephasing time T2 is angle independent and for q2

s3/2 > q2
1 = q2

2 the

minima in T2(θ) change to maxima and vice versa.
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Figure 4.2: The spin dephasing time T2 of a spin initially oriented along the [001] direction in
units of (Deq

2
2) for the special case of equal Rashba and lin. Dresselhaus SOC. The different

curves show different strength of cubic Dresselhaus in units of qs3/q2. In the case of finite
cubic Dresselhaus SOC we set W = 0.4/q2. If qs3 = 0: T2 diverges at θ = (1/4+n)π, n ∈ Z
(dashed vertical lines). The horizontal dashed line indicated the 2D spin dephasing time,
T2 = 1/(4q2

2De).
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Special case: θ = 0

In this case the longitudinal direction of the wire is [100].

If we neglect the term proportional to W 2/kx in Eq. (4.21) the lowest spin relaxation is

found to be

1

Deτs
=
q2
s3

2
+

(
α2
x1 − q2

2

)2 (
q2
s +

q2s3
2

)
W 2

12q2
s

(4.30)

or

1

Deτs
=

3q2
s3

4
+

(
α2
x1 − q2

2

)2 (
q2
s −

q2s3
2

)
W 2

24q2
s

, (4.31)

depending whether

− q2
s3

4
+

(
α2
x1 − q2

2

)2 (
q2
s + 3

q2s3
2

)
W 2

24q2
s

(4.32)

is negative or positive. This shows that the cubic Dresselhaus term adds not only to

the relaxation rate by a constant term but is also width dependent. However, this width

dependence does not reduce the spin relaxation rate below q2
s3/2.

4.3 Spin relaxation in quasi-1D wire with [110] growth di-

rection

To get the spin-relaxation in a [110] quantum wire with Rashba and Dresselhaus

SOC again we have to rotate the spacial coordinate system of the Dresselhaus Hamiltonian

Eq.(4.2) but now with the rotation matrix

R =




1√
2

0 1√
2

− 1√
2

0 1√
2

0 1 0


 . (4.33)

We get

HD[110]

γD
= σx(−k2

xkz − 2k2
ykz + k3

z)

+ σy(4kxkykz)

+ σz(k
3
x − 2kxk

2
y − kxk2

z). (4.34)

The confinement in z-direction (z ≡[110]) leads to 〈kz〉 = 〈k3
z〉 = 0, and 〈k2

z〉 =
∫

dz |∇φ|2.

The Hamiltonian for the quantum wire in [110] direction has then the following form
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[HPB+97]

H[110] = −γDσzkx
(

1

2
〈k2
z〉 −

1

2
(k2
x − 2k2

y)

)
. (4.35)

Including the Rashba SOC (q2), noting that its Hamiltonian does not depend on the orien-

tation of the wire,[HPB+97] we end up with the following Cooperon Hamiltonian

C−1

De
= (Qx − q̃1Sz − q2Sy)

2 + (Qy + q2Sx)2 +
q̃2

3

2
S2
z , (4.36)

with q̃1 = 2me
γD
2
〈k2
z〉 −

γD
2

meEF
2

, (4.37)

q2 = 2meα2, (4.38)

and q̃3 = (3meE
2
F (γD/2)). (4.39)

We see immediately that in the 2D case states polarized in the z-direction have vanishing

spin relaxation as long as we have no Rashba SOC. Compared with the (001) system the

constant term due to cubic Dresselhaus does not mix spin directions. Here we set the

appropriate Neumann boundary condition as follows:

(−i∂y + 2meα2Sx)C

(
x, y = ±W

2

)
= 0, ∀x. (4.40)

The presence of Rashba SOC adds a vector potential proportional to Sx. Applying a non-

abelian gauge transformation as before to simplify the boundary condition, we diagonalize

the transformed Hamiltonian (App. (D.1)) up to second order in q2W in the 0-mode ap-

proximation.

4.3.1 Special case: without cubic Dresselhaus SOC

The spectrum is found to be

E1 = k2
x +

1

12
∆2(q2W )2, (4.41)

E2,3 = k2
x +

1

24
∆2
(
24− (q2W )2

)

± ∆

24

√
∆2(q2W )4 + 4k2

x(24− (q2W )2)2, (4.42)

with the lowest spin relaxation rate found at finite wave vectors kx min = ±∆
24(24− (q2W )2),

1

Deτs
=

∆2

24
(q2W )2. (4.43)

We set ∆ =
√
q̃2

1 + q2
2.



Chapter 4: Direction Dependence of Spin Relaxation and Diffusive-Ballistic Crossover 77

4.3.2 With cubic Dresselhaus SOC

If cubic Dresselhaus SOC cannot be neglected, the absolute minimum of spin

relaxation can also shift to kx min = 0. This depends on the ratio of Rashba and lin.

Dresselhaus SOC:

If q2/q1 � 1, we find the absolute minimum at kx min = 0,

Emin1 =
q̃3 + q̃2

1 + q2
2

2
−∆c +

1

12
∆c(q2W )2, (4.44)

with

∆c =
1

2

√
(q̃3 + q̃2

1)2 + 2(q̃2
1 − q̃3)q2

2 + q4
2. (4.45)

If q2/q1 � 1, we find the absolute minimum at kx min ≈ ±∆
24(24− (q2W )2),

Emin2 = k2
x min

− kx minq2

(
q̃2

1

q2
2

+ 2

)
− q̃2

3

16kx minq2

+ ∆2 +
q̃3

2

(
q̃2

1

q2
2

+ 1

)

−
(
q̃3q̃

2
1

12
− q̃2

3q2

3072k3
x min

− q2
2

24
(q̃3 − q̃2

1)

+
q4

2

24
−
(
q̃2

1

24
+
q2

2

12

)
q2kx min

− q2

kx min

((
q̃2

3

128
+
q̃3q̃

2
1

192

)
− q̃3q

2
2

96

))
W 2. (4.46)

We can conclude that reducing wire width W will not cancel the contribution due to cubic

Dresselhaus SOC to the spin relaxation rate.

4.4 Weak Localization

In Ref. [Ket07] and the previous chapter the crossover from WL to WAL due

to change of wire width and SOC strength was explained in the case of a (001) system.

Whether WL or WAL is present depends on the suppression of the triplet modes of the

Cooperon. The suppression, in turn, is dominated by the absolute minimum of the spectrum

of the Cooperon Hamiltonian Hc. The findings presented in Sec. 4.2.2 therefore point out

that e.g. the crossover width, at which the system changes from WL to WAL, can shift

with the wire direction θ. Recently experimental results on WL/WAL by J. Nitta et al.,

Ref. [Nit06], seem to show a strong dependence on growth direction. Our presented results
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can also support the method proposed in Ref. [SKK+08] -to determine the relative strength

of Rashba and Dresselhaus SOC from WL/WAL measurements without fitting parameters-

with the inclusion of cubic Dresselhaus term for wire directions different from [100] and

[010] in an analytical manner.

In the (110) system the situation is different: In the 2D case it was shown by Pikus et al.,

Ref. [HPB+97], that in the absence of the Rashba terms the negative magnetoconductivity

cannot be observed. In the case of a wire geometry, we can conclude from Eqs. (4.41-4.46)

that we have no width dependence if Rashba SOC vanishes. A change of the quantum

correction to the static conductivity therefore cannot be achieved in this wire geometry by

changing the wire width. The reason is the vector potential in the boundary condition,

Eq. (4.40), which only depends on the Rashba SOC.

4.5 Diffusive-Ballistic Crossover

In the following we assume a (001) 2D system with both, Rashba and linear and

cubic Dresselhaus SO coupling.

Experiments measuring WL in diffusive quantum wires with SOC[LSK+07, SGB+09] are in

great agreement with theoretical calculations by S. Kettemann, Ref. [Ket07]. But consider-

ing e.g. the works Ref. [KKN09, KHG+10], one realizes that the scope of application of the

theory has to be extended to describe also the crossover to the ballistic regime, le > W . In

Fig. 4.3 we show an example of an experiment done by Kunihashi et al.[KKN09]. The lines

show a fit using Eq. (10) in the paper by S. Kettemann[Ket07] which is equal to the results

presented in Sec. 4.2.2 if the width dependence of the term due to cubic Dresselhaus SOC

is neglected. To get the solid lines the term due to cubic Dresselhaus SOC was neglected,

the dashed include it. When checking Fig. 4.3 (a) the condition le < W is not fulfilled at all

wire width. It follows that this additional term is suppressed if the condition of a diffusive

system does not hold anymore.

We have shown in Sec. 4.2.2 that the presence of cubic Dresselhaus SOC in the

sample leads to a finite spin relaxation even for wire widths Q SOW � 1, regardless of the

boundary direction in a (001) system. To account for the ballistic case we have to modify

the derivation of the Cooperon Hamiltonian, Eq. (4.5). In the case of a wire where the mean



Chapter 4: Direction Dependence of Spin Relaxation and Diffusive-Ballistic Crossover 79

(a)

(b)

Figure 4.3: Example of an experiment done by Kunihashi et al.[KKN09]. The width depen-
dence of the spin relaxation length l1DSO of different carrier density. Solid lines and dashed
lines in (b) show the l1DSO calculated from the theory presented in this work, with neglecting
cubic Dresselhaus term and taking into account full SOIs, respectively.
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free path le is comparable to the wire width W , we cannot perform the step from

∑

q

E,p+ q

E′,p′−q

=
1

2πντ

∑

q

GR
E,σ(p + q)GA

E′,σ′(p
′ − q) (4.47)

to ∫ 2π

0

dϕ

2π
(1 + iτveϕ (Q + 2mea(ϕ).S))−1 (4.48)

and integrate in Eq. (4.3) over the Fermi surface in a continuous way. Instead, we assume

kF /W to be finite and sum over the number of discrete channels N = [kFW/π], where [. . .]

is the integer part. Because HγD ∼ E2
F this constant term due to cubic Dresselhaus should

reduce if we reduce the number of channels. If we expand the Cooperon to second order in

(Q + 2eA + 2meâS) before averaging over the Fermi surface, 〈. . .〉, and use the Matsubara

trick, we get

C−1

De
= 2f1

(
Qy + 2α2Sx + 2

(
α1 − γDv2 f3

f1

)
Sy

)2

+ 2f2

(
Qx − 2α2Sy − 2

(
α1 − γDv2 f3

f2

)
Sx

)2

+ 8γ2
Dv

4

[(
f4 −

f2
3

f2

)
S2
x +

(
f5 −

f2
3

f1

)
S2
y

]
, (4.49)

with me = 1 and functions fi(ϕ) (App. E) which depend on the number of transverse modes

N. In the diffusive case we can perform the continuous sum over the angle ϕ in Eq. (E.3)-

(E.7), and we receive the old result with f1 = f2 = 1/2, f3 = 1/8 and f4 = f5 = 1/16:

Hc = (Qy + 2α2Sx + 2

(
α1 −

1

2
γDEF

)
Sy)

2 + (Qx − 2α2Sy − 2

(
α1 −

1

2
γDEF

)
Sx)2

+ (γDEF )2(S2
x + S2

y). (4.50)

4.5.1 Spin Relaxation at Q SOW � 1

In the first section we analyzed the lowest spin relaxation in wires of different

direction in a (001) system. We have shown, that for every direction there is still a finite spin

relaxation at wire width which fulfill the condition Q SOW � 1 due to cubic Dresselhaus

SOC. It is clear that this finite spin relaxation vanishes when the width is equal to the

Fermi wave length λF . In the following we show how this finite spin relaxation depends

on the number of transverse channels N . We show in Ref. [WK] that the findings are

consistent with calculations going beyond the perturbative ansatz. This is possible in a
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similar manner as has been done previously in Ref. [KM02] for wires without SOC, which

showed the crossover of the magnetic phase shifting rate, which had been known before in

the diffusive and ballistic limit, only.

To find the spectrum of the Cooperon Hamiltonian with boundary conditions as in Sec. 4.2.2,

we stay in the 0-mode approximation in the Q space and proceed as before: According to

Eq. (4.49), the non-Abelian gauge transformation for the transversal direction y is given by

U = exp

(
−i

[
2α2Sx + 2

(
α1 − γDv2 f3

f1

)
Sy

]
y

)
. (4.51)

To concentrate on the constant width independent part of the spectrum we extract the

absolute minimum at Q = 0, Fig. (4.4) and Fig. (4.5). A clear reduction of the absolute

minimum is visible. Due to the factor f3/f1 in the transformation U, the decrease of the

minimal spin relaxation depends also on the ratio of Rashba and linear Dresselhaus SOC.
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Figure 4.4: The lowest eigenvalues of the confined Cooperon Hamiltonian Eq. (4.49), equiv-
alent to the lowest spin relaxation rate, are shown for Q = 0 for different number of modes
N = kFW/π. Different curves correspond to different values of α2/qs.

From Eq. (4.49) it is clear, that not only the HγD is affected by the reduction

of the number of channels N but also the shift of the lin. Dresselhaus SOC, α1, in the

orbital part. A model to extract the ratio of Rashba and lin. Dresselhaus SOC developed

in Ref. [SANR09] by Scheid et al. did not show much difference between the strict 1D case

and the non-diffusive case with wire of finite width. The results presented here should allow

for extending the model to finite cubic Dresselhaus SOC. Deducing from our theory, the

direction of the SO field should change with the number of channels due to the mentioned

N dependent shift.
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Figure 4.5: The lowest eigenvalues of the confined Cooperon Hamiltonian Eq. (4.49), equiv-
alent to the lowest spin relaxation rate, are shown for Q = 0 for different number of modes
N = kFW/π. Different curves correspond to different values of α1/qs.

4.6 Conclusions

Summarizing the results of this chapter, we have characterized the anisotropy and

width dependence of spin relaxation in a (001) quantum wire. There are special angles

θ which are optimal for spin transport in quantum wires of finite width: The [110] and

the [110] direction. At [110] we find the longest spin dephasing time T2. If the absolute

minimum of spin relaxation is found at [110] or [110] direction depends on the strength of

cubic Dresselhaus and wire width. The findings for the spin dephasing time are in agreement

with numerical results. The analytical expression for T2 allows seeing directly the interplay

between the cubic Dresselhaus SOC and the dimensional reduction, having effect on T2.

In addition, we analyzed the special case of a (110) system and found the minimal spin

relaxation rates depending on Rashba and lin. and cubic Dresselhaus SOC in the presence

of boundaries. This results can be used to understand width and direction dependent WL

measurements in quantum wires. Finally, we have shown how the reduction of channels

in the wire reduces the finite spin relaxation rate which is due to cubic Dresselhaus SOC

and does not reduce if the wire is small, Wqs � 1, and diffusive, W � le. The change in

channel number also changes the shift of lin. Dresselhaus SOC strength, α̃1. This has to

be considered if extracting SOC strength from wires with only few transverse channels.



Chapter 5

Spin Hall Effect

5.1 Introduction

In order to realize spintronic devices like the spin field effect transistor, one needs

to induce spin polarized electrons in low dimensional electron systems (LDES)[icvacFDS04,

DD90]. Spin polarized electrons can be generated by injecting a current with ferromagnetic

metallic leads into the LDES. However, it has been found that in practice the efficiency

of such spin injection is poor because of the conductivity mismatch. Therefore, recently

there has been a strong effort to find new ways for generating polarized spin currents. One

possibility is to use a T-shaped conductor with SOC as proposed by Yamamoto[YDKO06],

whose efficiency is restricted however strongly by impurity scattering and is therefore only

applicable to narrow wires with few channels. Another approach is to dope the semicon-

ductor with magnetic impurities: When doped with several percents one speaks of dilute

magnetic semiconductors. With transition metal atoms, like Mn, these materials become

ferromagnetic, such as In1−xMnxAs which has been discovered by Ohno to have a ferromag-

netic phase with a relatively high critical temperature[OMP+92]. Due to the still relatively

small concentration of impurities this system can still be manipulated in a wide range of

carrier density, impurity concentration, and acceptor level energy: As these impurities not

only provide spin, but also dope the system with holes, the density of charge carriers, and

the Fermi energy can be changed, by changing their concentration. By choosing different

elements, also the acceptor level energy can be changed. This together with the disorder

provided by these magnetic impurities does change the magnetic properties substantially,

since the effective magnetic coupling between the magnetic ions does depend itself on the

83
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DOS, their average distance and the disorder strength [SBK+10].

Another way for efficiently injecting spin currents into semiconductors is to make

use of the spin Hall effect (SHE). This effect was first proposed by D’yakonov and Perel

[DP71a] and describes in today’s terminology the extrinsic SHE which requires spin de-

pendent impurity scattering. It was experimentally confirmed by the angle-resolved optical

detection of spin polarization at the edges of a two-dimensional layer [WKSJ05, KMGA04].

The theory of the SHE has been developed in the last 10 years, as reviewed in Refs.

[Sch06, ERH07].

The spin transport not only occurs due to the spin precession in the bulk but is affected

by the scattering from nonmagnetic impurities, which can depend on the direction of the

spin itself due to the so-called skew scattering and the side jump mechanism[Sch06]. In the

first part of the following chapter, we will outline the formalism to calculate analytically

the SHE which arises even in the absence of impurities, the so-called intrinsic SHE, which

is due to the bulk SOC. For the clean case, we will include both, Rashba and Dresselhaus

SOC. In the second part we focus on numerical methods: The first attempt is application of

exact diagonalization which has of course strong limitations concerning the system size. To

overcome this limitations, we apply the Kernel Polynomial Method (KPM) in the last part

of this thesis. It is first applied to treat the metal-insulator transition (MIT) in a symplectic

system, finally we calculate the SHE using the KPM.

5.1.1 About the Definition of Spin Current

We have learned in Sec. 2.3.4 that in presence of the spin-orbit interaction, the

spin current components are not conserved[CSS+04, SZXN06] even if we assume no spin

relaxation: In the continuity equation

∂sz
∂t

+De∇J spin = Ts −
1

(τ̂s)ij
sj (5.1)

= τ〈∇vF (B SO(k)× S)i〉 −
1

(τ̂s)ij
sj . (5.2)

an additional torque term Ts appears in contrast to Eq. 2.12 besides the term which describes

the spin relaxation rate 1/τs. It follows that Noether’s theorem is not applicable to define

the spin current. This is a reason why the comparison between results done with Kubo

formalism and calculations using Landauer-Büttiker approach is not trivial, where the spin
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current in the latter is defined by[MM05]

Isp,µ =
1

4π

∑

p 6=q, ν
Tr[ΓµpG

RΓνqG
A](Vp − Vq), (5.3)

where

Γµp = i(Σµ
p − (Σµ

p )†), (5.4)

with the retarded self energy Σµ
p due to coupling of lead p, which has voltage Vp, and

sample for spin channel µ and advanced and retarded Green’s function GA/R. However,

in an experiment the SHE can be measured. This measurement has to be connected to

the theoretical description using linear response to a transverse electrical field with the

frequency ω which yields, Appendix B, Eq. (B.16),

σµν(ω) =
i

V

∑

m,n

(f(Em)− f(En))

En − Em
〈m |jν |n〉 〈n |jµ|m〉
En − Em + ω + iη

. (5.5)

To calculate the spin Hall conductivity (SHC) the correlation function consists, in contrast

to charge conductivity, of the charge current and a current which contains a spin operator.

In the simplified model we use the spin current which is given by the anticommutator of

the spin and the group velocity v = i [H, r],

Jz =
~
4
{σz,v}. (5.6)

This spin current does not differ from the one defined in Sec. 2.3.[ESL05, BNnM04] Note

that this quantity is dissipationless, because the spin current is even under the time-reversal

operation.

5.2 SHE without Impurities: Exact Calculation

We consider the Hamiltonian for a lattice which provides linear Rashba, Eq. (2.15),

and linear and cubic Dresselhaus SOC, Eq. (2.14), as introduced in Sec. 2.3.3. The confine-

ment to generate the 2D electron gas is in [001] direction. In order to do calculations

numerically, one needs to define a tight binding model on a discrete lattice of finite lattice

spacing a. It has the following characterization:

• square lattice,
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• localized site orbitals are of s symmetry.

Applying this assumptions the tight-binding version of the Hamiltonian is given by

H = H0 +HR +HD,lin +HD,cubic, (5.7)

=
∑

i,σ

εic
†
i,σci,σ − t

∑

〈i,j〉,σ

c†i,σcj,σ

+
α2

2a

∑

σ,σ′
l,m

{c†l,m,σ′(iσy)σσ′cl+1,m,σ − c†l,m,σ′(iσx)σσ′cl,m+1,σ}

+
α1

2a

∑

σ,σ′
l,m

{c†l,m,σ′(iσx)σσ′cl+1,m,σ − c†l,m,σ′(iσy)σσ′cl,m+1,σ}

+
γD
a3




∑

σ,σ′
l,m

{c†l,m,σ′(−iσx)σσ′cl+1,m,σ + c†l,m,σ′(iσy)σσ′cl,m+1,σ}

+
1

2

∑

σ,σ′
l,m

{c†l,m,σ′(i(σx − σy))σσ′cl+1,m+1,σ + c†l,m,σ′(i(σx + σy))σσ′cl+1,m−1,σ}





+ h.c.. (5.8)

where c†i,σ is the creation operator at site index i with spin σ =↑, ↓ and c†l,m,σ the creation

operator at site (indexx, indexy) = (l,m). The hopping coupling t is given by t = 1/(2mea
2)

with the lattice constant a. In the following we take the cubic Dresselhaus term only as

a shift of, α̃1 = α1 − 2γD/a
2, according to Eq. (3.44), and assume a clean system, i.e the

on-site energy is set to εi = 0. Applying a Fourier transformation to Eq. (5.7) and going to

momentum space we get (we set a ≡ 1)

H =
∑

kx,ky
σ,σ′




−2t(cos(kx) + cos(ky))︸ ︷︷ ︸

E0

δσσ′c
†
k,σ′ck,σ

+ (α2 sin(ky)− α̃1 sin(kx))c†k,σ′(σx)σσ′ck,σ

+ (α̃1 sin(ky)− α2 sin(kx))c†k,σ′(σy)σσ′ck,σ

}
. (5.9)

The corresponding eigenvalues are

E±(k) = E0(k)±∆(k) (5.10)
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with ∆(k) =
√

(α2
2 + α̃2

1)(sin(kx)2 + sin(ky)2)− 4α2α̃1 sin(kx) sin(ky)

(E−(k) is plotted in Fig. 5.1). The eigenvectors are given by

|+/−〉 =
1√
2



∓({α̃1 sin(kx)−α2 sin(ky)}+i{α̃1 sin(ky)−α2 sin(kx)})

∆

1


 (5.11)

(a) (b)

Figure 5.1: Energy band E−(k), Eq. (5.10) is plotted for pure Rashba SOC as function
of wave vector k. The contour lines indicate the energy at which one finds a Van Hove
singularity in the DOS (below half-filling).

To calculate the SHE using Kubo formula, Eq. (5.5), we have to calculate the

matrix elements of spin current operator and velocity operator. In the site basis of our

lattice they have the following form:

〈n|v |m〉 = 〈0|
∑

ij
αβ

ψ∗n(i, α)ciαvψm(j, β)c†jβ |0〉 , (5.12)

= 〈0|
∑

ij
αβ

ψ∗n(i, α)ciα
1

i
[r,H]ψm(j, β)c†jβ |0〉 , (5.13)

with r =
∑

kσ rkc
†
kσckσ

=
1

i
〈0|
∑

kγ

∑

ij
αβ

ψ∗n(i, α)ciα[rkc
†
kγckγ ]Hc†jβψm(j, β)

− ψ∗n(i, α)ciα
1

i
H[c†kγckγrk]c

†
jβψm(j, β) |0〉 , (5.14)
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with ciαc
†
iαciα |0〉 = ciα |0〉 and ciαc

†
jβcjβ = c†jβcjβciα

=
1

i

∑

ij
αβ

ψ∗n(i, α)[(ri − rj)Hαβ
ij ]ψm(j, β), (5.15)

v =
1

i

∑

ij
αβ

(ri − rj)Hαβ
ij , (5.16)

where we used i, j and k as site indices and the other for spin. Using the definition of the

spin current, Eq. (5.6), we get accordingly

〈n|Jz |m〉 =
e

4i

∑

ij
αβ

(ri − rj)ψn(i, α){σz, H}αβij ψn(j, β). (5.17)

Going into momentum space we are left with

vy =
∑

ky

2t sin(ky)1+ (α2σx + α̃1σy) cos(ky), (5.18)

and for the spin current

Jzx =
∑

kx

t sin(kx)σz. (5.19)

The last Eq. follows from {σz, HD} = {σz, HR} = 0. To evaluate the rhs of Eq. (5.5) we

need the matrix elements of both operators in the eigenvalue basis, which yields the pure

imaginary result

〈∓ |Jzx | ±〉 〈± |vy| ∓〉 = ±it(α2
2 − α̃2

1)
sin(kx)2 cos(ky)

∆(k)
. (5.20)

Assuming zero temperature to calculate σzxy , Eq. (5.5) finally simplifies to[NSSM05, MMF08]

σzxy ≡ σ SH = − ie

V

∑

m,n

f(Em)− f(En)

Em − En
〈m| Jzx |n〉 〈n| vy |m〉

(Em − En) + iη
, (5.21)

= 2
e

V

∑

Em<EF<En

=(〈m| Jzx |n〉 〈n| vy |m〉)
(En − Em)2 + η2

. (5.22)

Applying this to the lattice case with L2 sites, we get

σ SH =
e

L2

∑

kx,ky

{
(fE−(k) − fE+(k))

=(〈−| Jzx |+〉 〈+| vy |−〉)
(E+(k)− E−(k))2 + η2

+(fE+(k) − fE−(k))
=(〈+| Jzx |−〉 〈−| vy |+〉)
(E−(k)− E+(k))2 + η2

}
, (5.23)



Chapter 5: Spin Hall Effect 89

- 4 - 2 0 2 4

- 1.0

- 0.5

0.0

0.5

1.0

EFermi

Σ
sH
H
e
�
8
Π
L

(a)

-4 -2 0 2 4

-1.0

-0.5

0.0

0.5

1.0

E/t

σ
s
H
/
(e
/
8
π
)

(b)

Figure 5.2: (a) SHC σ SH as a function of Fermi energy EF , in a clean system of size
L2 = 170 × 170 with both Rashba and linear Dresselhaus SOC with α2 > α1 (blue curve)
and α2 < α1 (red curve). (b) SHC σ SH as a function of Fermi energy EF , in a clean system
of size V = 150× 150 with only Rashba SOC of strength α2 = 0.8t (blue/solid), α2 = 1.4t
(red/dotted) and α2 = 2t (yellow/dashed).

where we used Eq. (5.20). The level broadening η is introduced for regularization in finite-

size systems [NSSM05, MMF08]. It is chosen to be of the order of the level spacing δE,

vanishing in the thermodynamic limit. Integration over the Brillouin zone we finally arrive

at the clean solution for the SHC which is plotted in Fig. (5.2).

Results and Discussion

The SHC shows electron-hole symmetry: The SHC vanishes at half-filling, EF = 0,

and is an odd function of EF . From Eq. (5.18) one can see that the sign-change is due to

the term which is proportional to the SOC strength. It is worth noticing that an evaluation

of the commutator [r,H] in Eq. (5.13) will lead to

v = − i

me
∂R12×2 + α2(σxey − σyex) + α1(σyey − σxex) (5.24)

(compare for pure Rashba case e.g. with [SCN+04]). A straight forward tight binding

formulation of the velocity operator in this form would yield, in contrast to Eq. (5.16), on-

site matrix elements proportional to the spin-orbit interaction which could yield unphysical

results: The contribution of the velocity operator to the SHC would give 〈+| vy |−〉 =

iα2 sin(kx)/∆(k). Obviously the missing cos(ky) factor leads to an even and therefore wrong

SHC function of EF . Because the linear in momentum SO interactions can be interpreted
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as an effective magnetic field, which however does not break time reversal symmetry, this

is very similar to the case where a Peierls substitution is applied,[Pei33] i.e. where a Peierls

phase is added to the electron whenever it hops in the direction of finite vector field.

The sign changes according to the sign of α2
2 − α̃2

1 and exhibits the value e/(8π) for small

filling with the condition that both bands, E±, are filled, independent of the strength of

SOC. This can bee seen by expanding the spectrum around the Γ point which yields[She04]

σ SH =
e

16meπ2

∫ 2π

0
dϕ

(α2
2 − α̃2

1) cos2(ϕ)(k+ − k−)

(α2
2 + α̃2

1 − 2α2α̃1 sin(2ϕ))
3
2

, (5.25)

=
e

8π

α2
2 − α̃2

1

|α2
2 − α̃2

1|
, (5.26)

with kx = k cos(ϕ) and kx = k sin(ϕ).

Looking at the results from the calculation on a clean lattice, Fig. (5.2) (b), it can be seen

that the value e/(8π) decreases with increasing SOC strength in the case of pure Rashba

SOC. This can be understood by noticing that the value of the SHC[SCN+04]

σ SH =
e

16meπα2
(kF+ − kF−) (5.27)

is diminished when we add corrections to the parabolic assumption: On the lattice we have

(kF+ − kF−) = arccos

(
2

1 +
(
α2
2t

)2 − 1

)
(5.28)

= 2meα2 −
2

3
(meα2)3 +O(meα2)4 (5.29)

and therefore the diminishment is given by

σ SH =
e

8π
− e

24π
(meα2)2. (5.30)

5.3 Numerical Analysis of SHE

5.3.1 Exact Diagonalization

For linear Rashba coupling, the value σ SH = e2/(8π), as presented in the previous

section, has been obtained both by analytical calculations in the continuum model, and

by numerical calculations of the tight binding model[Sch06]. However, in the presence of

nonmagnetic impurities, the DC spin Hall conductance is diminished to exactly zero, as
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soon as the system size L exceeds the elastic mean free path le. In the case of δ-function

potential and pure linear Rashba SOC, in the thermodynamic limit this result is even

independent of the impurity strength, as discovered by Schwab and Raimondi[RS05] by

using self-consistent Born approximation: The vertex correction in the ladder approximation

cancel exactly the term coming from the one-loop part. Following Rashba, Ref. [Ras04], this

can be understood as follows: Corresponding to Eq. (5.10) and Eq. (5.22) we have, at low

filling, positive contribution to σ SH due to interbranch transitions between the occupied

(E+) and unoccupied (E−) states. Adding a perturbation by applying an infinitesimal

small magnetic field, intrabranch transitions at the Fermi energy give rise to a negative

contribution. Surprisingly, this additional contribution cancels the first and we are left

with zero SHC. This counterintuitive finding led to several controversies because the first

numerical calculations in this field showed finite SHC when extrapolated to infinite large

samples[NSJ+05]. However, new numerical results, e.g. Ref. [NSJ+06] as an erratum to

Ref. [NSJ+05], showed agreement with the analytical predictions. In contrast, taking into

account also spin-orbit terms which are cubic in momentum, as they are present in any

system with broken inversion symmetry (cubic Dresselhaus terms), or in quantum wells

with strongly asymmetric confinement (cubic Rashba terms), the spin Hall conductance

has a quite universal value, of σ SH = Ne2/(8π), where N is the number of times the spin-

orbit field B SO(k) winds around a circle, as the momentum is moved once around the Fermi

surface[Sch06].

Resonant Impurities

The effect of resonant impurities and of magnetic impurities on the SHC has

not been studied yet in that detail[LX06, WLZ07a]. Especially, it is unclear how large

its magnitude is, when the Fermi energy is in the vicinity of the resonant levels close to

the metal-insulator transition, where it has been observed that the spin relaxation rate is

minimal[DKK+02], making it a potentially attractive regime for spintronic applications.

In the following we analyze the reduction of the SHC in a finite system with periodic

boundary conditions in presence of non-magnetic impurities of binary type, i.e. on-site

potential Vi = piV where pi = 1 for impurity sites and pi = 0 otherwise. The lattice is

assumed to be contaminated with 10% of impurities. To have a better understanding of

how the SHC changes with the strength of impurities, V , we first calculate the DOS. The



92 Chapter 5: Spin Hall Effect

result is presented in Fig. 5.3. For small V one would expect the Van Hove singularity at

half filling. Due to finite Rashba SOC it is split to finite energies E = ±(2t −
√

4 + α2
2t),

indicated in Fig. 5.1 for the energy below half filling. If the impurity strength is increased,

a preformed impurity band is created. Using exact diagonalization1 and applying the Kubo

formalism, Eq. 5.22, we calculate the SHC. Exemplarily we show the result for σ SH(E) at

V = −2.8t in Fig. 5.4. The SHC is strongly reduced but shows an additional maximum at

energy where the preformed impurity band is located, as can be seen in comparison with

the DOS, Fig. 5.4(b).

To analyze the reduction of SHC for a given filling n, we vary the impurity strength

up to V = −5t and keep the concentration constant at 10%. Similar to the results in the

case of block distribution of impurity strength, we see a monotone suppression at all fillings,

even in the preformed impurity band, Fig. 5.5.

5.3.2 Kernel Polynomial Method

The numerical calculations presented in the previous section, which were based

on exact diagonalization using LAPACK[LAP] routines, are limited to small system sizes.

This leads to finite size effects like oscillations in the SHC, e.g. Fig. 5.4(b) above half filling.

For further calculations concerning the role of the impurity band it is necessary to do a

finite size scaling analysis and consider system-sizes beyond L = 64 which makes an exact

treatment on current hardware impossible: for a D-dimensional matrix such a calculation

requires memory of the order of D2, and the LAPACK routine scales as D3.

Another problem is the adjustment of the cutoff η, see Eq. (5.22), which has to be taken

with care as analyzed e.g. by Nomura et al., Ref. [NSSM05].

To overcome the limitation on small systems, there are different numerical order-D methods.

One procedure is the time evolution projection method developed by Tanaka and Itoh[TI98],

which was already used to calculate SHC[MMF08, MM07]. However, the algorithm requires

both the choice of a sufficient number of time steps and an adjustment of cutoff η. A more

effective method, which uses Chebyshev expansion based on Kernel Polynomial Method,

will be presented in the following.

1using LAPACK[LAP] and OpenMP[OMP] in C++
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Figure 5.3: DOS, as a function of Fermi energy in units of t, in presence of impurities of
binary type with a concentration of 10% calculated using exact diagonalization. The system
size is L2 = 322, and the SOC is Rashba type with α2 = 1.2t with cutoff η = 0.02t.
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Figure 5.4: (a) SHC, as a function of Fermi energy in units of t, in presence of impurities
of binary type calculated using exact diagonalization. The impurity strength is V = −2.8t
with a concentration of 10%. The system size is L2 = 322, and the SOC is Rashba type
with α2 = 1.2t with cutoff η = 0.06. (b) Comparison of a) with DOS (blue curve).

KPM in a Nutshell

The Kernel Polynomial Method (KPM) was first proposed by Silver et al.[SR94]

to calculate DOS of large systems. It is a method to expand integrable functions defined

on a finite interval f : [a, b] −→ R in terms of Chebyshev polynomials of the first,

Tn(x) = cos(n arccos(x)), (5.31)

or second kind

Un(x) =
sin((n+ 1) arccos(x))

sin(arccos(x))
,

i.e., we can write for instance

f(x) =
1

π
√

1− x2

[
µ0 + 2

∞∑

n=1

µnTn(x)

]
, (5.32)

if we assume that the function f has been rescaled to f̃ : [−1, 1] −→ R and can be expanded

using the polynomials of the first kind, which are (as the one of the second kind) defined

on the interval [−1, 1]. If so, the coefficients are given by

µn =

∫ 1

−1
dx f̃(x)Tn(x). (5.33)
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Figure 5.5: SHC σ SH as function of filling n in presence of impurities of binary type calcu-
lated using exact diagonalization. The impurity concentration is set to 10% for all plots and
the average is performed over 200 impurity configurations. The system size is L2 = 322,
and the SOC is Rashba type with α2 = 1.2t with cutoff η = 0.06 (a) V = −0.2t . . . − 2.8t
(b) V = −2.8t . . .− 5t.
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Using the recursion relations of the polynomials,

T0(x) = 1, T−1(x) = T1(x) = x,

Tm+1(x) = 2xTm(x)− Tm−1(x), (5.34)

and correspondingly for the polynomials of the second kind

U0(x) = 1, U−1(x) = 0,

Um+1(x) = 2xUm(x)− Um−1(x), (5.35)

one can calculate the expansion coefficients µn iteratively. Replacing the variable x by the

Hamiltonian one can calculate various spectral quantities. The simplest example is the

calculation of the spectral density,

ρ(E) =
1

D

D−1∑

k=0

δ(E − Ek), (5.36)

with the coefficients given by

µn =

∫ 1

−1
dx ρ(x)Tn[x] (5.37)

=
1

D
Tr[Tn(H̃)], (5.38)

where H̃ is the rescaled Hamiltonian with all D eigenvalues inside the interval [−1, 1]. The

efficiency of the procedure is not yet evident. This changes if one realizes the following

aspects:

• Self averaging properties allow for replacing the trace over the operator by a relatively

small number R� D of random vectors

|r〉 =

D−1∑

i=0

ζri |i〉 , (5.39)

where the amplitudes ζri = eiφ are random phases on site i. This makes the effort for

the calculation of M coefficients µn linear in D.

• The most time consuming operation in this procedure is the matrix-vector multipli-

cation (Appendix F). Due to the fact that the number of neighbors which a site has

in the presented systems, the full multiplication can be replaced by sparse-matrix
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operations using a decomposition of the operators into a matrix which contains the

connectivity information of the sites and a matrix where the hopping matrices accord-

ing to the kind of hopping (e.g. with next nearest neighbor) are stored, as explained

in more detail in Appendix F.

Adjusting the number of Moments in the KPM

Using exact diagonalization to calculate e.g. SHC as presented in Sec. 5.2 and

Sec. 5.3.1, we were forced to adjust the cutoff η in the Kubo formula, Eq. (5.5) to get the 2D

limit. Otherwise, we would be left with results which are highly oscillatory dependent on the

Fermi energy. In the KPM the Hamiltonian is approximated by a finite polynomial, therefore

the cutoff is implicitly set by choosing the number of moments M . Such a cutoff, which

is inevitable in numerical calculations, leads i.g. to Gibbs oscillations, especially when the

expanded function includes discontinuities or singularities. Therefore the expanded function

is convoluted with a particular kernel (in our case the Jackson kernel) which damps this

oscillations.

Exact Calculations on a finite lattice result in δ peaks in the DOS which are broadened

due to the polynomial cutoff. The broadening can be approximated by Gauss curves of

widths σ. To do finite-size analysis it is crucial to keep the same number of states within

the kernel, i.e. within the distance of σ.[SSB+10] Choosing a number of moments M in the

KPM which is too large will lead to oscillations which are due to finite size of the system

as can be seen in Fig. (5.6). On the other hand, a too small number will smear out features

of the system which are independent of the size. This consideration leads to the condition

σ
!
> ∆, with the averaged level spacing ∆. It is helpful to analyze the relation between

M and the broadening σ. This can be done by a convolution of a δ-distribution with the

mentioned kernel, which leads to[WWAF06]

M =
πt

σ
, (5.40)

and at the boundaries

M =

(
πt

σ

)2/3

.
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This leads us to the following condition:

σ
!
> ∆ (5.41)

πt

M
>
DB

N
(5.42)

M <
πtN

DB
, (5.43)

with the band width DB, and the number of states N .

To get an impression of the relation between both the η cutoff in exact diagonalization and

the finite number of moments in the KPM, we fix the system size, apply Rashba SOC, and

calculate the DOS using the eigenvalues Ei calculated with exact diagonalization,

ρη(E) =
1

π

∑

λ

=
[

1

E − Eλ + iη

]
. (5.44)

Now ρ can be calculated using KPM, and M is adjusted to fit best to ρη(E). The relation

between M and η is plotted in Fig. (5.6). Over a large interval of M we have η ∼ 1/M .

Only when the oscillations are too strong the differences between the Lorentz kernel, i.e.

using Eq. (5.44), and the Jackson kernel appear.
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Figure 5.6: (a) DOS of a system of size L2 = 402 with Rashba SOC, α2 = 0.8t calculated
with exact diagonalization with cutoff η = 0.0215 (blue) and KPM with M = 500 moments.
(b) Relation between number of moments M and cutoff η.
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First application: Metal-Insulator Transition

To determine if a 2D system has a metal-insulator transition (MIT) it is important

to analyze its symmetries: It is well known from the scaling theory of localization that in

the case where time-reversal and spin-rotational symmetry are preserved, i.e. unitary and

orthogonal universality class are present, the scaling function[AALR79]

β(g) =
d ln(g)

d ln(L)
, (5.45)

where g is the dimensionless conductivity, L the side length of our system, scales like

β(g) ≈ − 1

g
(5.46)

for large g, which means that all macroscopic systems are insulators. Here we used the

scaling parameter g = E Th/∆ LS, where E Th = De/L
2 is the Thouless energy and ∆ LS =

1/(ρEFL
2) the typical energy level spacing. However, Hikami et al. could show in Ref.

[HLN80] that if the universality class changes from orthogonal to symplectic, a MIT can

appear in a 2D system. Because SOC breaks spin rotation symmetry one can show that

SO interaction can enhance the localization length ξ drastically.[AT92, KKA10, SST05]

Recalling results from transfer matrix calculations of the Anderson model in 2D with SOC,

the critical disorder strength Vc for the MIT is for strong Rashba SOC α2 = 1t given by

Vc ≈ 6.3t[SST05, And89] and for weaker SOC α2 = 0.1t given by Vc ≈ 4.6t[SST05]. As a

first application of the KPM we use the typical DOS,

ρ typ(E) = exp[〈〈log(ρi(E))〉〉], (5.47)

in comparison to the local DOS

ρi(E) =
1

D

D−1∑

k=0

| 〈i |k 〉 |2δ(E − Ek), (5.48)

as an indicator for the metallic or insulating regime. In contrast to the arithmetic mean of

ρi, ρ avr(E) = 〈〈ρi(E)〉〉, the geometric mean is suppressed until it vanished for V > Vc: The

impurity is added to the Hamiltonian by adding the term H imp =
∑

iσ εic
†
iσciσ where the

εi are uniformly distributed between [−V/2, V/2]. In the following we consider the Fermi

energy to be at half-filling. In the metallic regime we have ρ = 1/(L2∆B) at all sites,

therefore we expect exp[〈〈log(ρi(E))〉〉]/〈ρ〉 = 1.
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In contrast, being deeply in the localized regime the states decay exponentially on the

localization length ξ, |ψ(x)|2 ∼ exp(−x/ξ), which leads to

ρ typ

ρ avr

=
exp

[
1
πL2

∫ L
0 dr r

∫ 2π
0 dϕ ln

(
exp

(
− r
ξ

)
ρ0

)]

1
πL2

∫ L
0 dr r

∫ 2π
0 dϕ exp

[
− r
ξ

]
ρ0

(5.49)

=−
exp

[
1
3
L
ξ

]
L2

2ξ
(
L+ ξ − ξ exp

[
L
ξ

]) (5.50)

=− exp
[

1
3u
]
u2

2 (u+ 1− exp [u])
, (5.51)

with u = L/ξ. From the last equation we can conclude that

• this value vanishes in the thermodynamic limit, lim
L→∞

ρ typ

ρ avr
= 0,

• the fraction is a monotone function of the system length L (in contrast to e.g. the 1d

case).

The explained difference between the averaged and typical DOS is plotted in Fig. 5.7: In (a)

the averaged DOS is plotted for different impurity potentials V . The band edges are shifted

to larger energies with larger V . In contrast, in (b) the typical DOS is plotted for different

system sizes at impurity strength V = 8t. The product of local densities leads to a strong

reduction with the size. This reduction is also significant at the band edges. Knowing the

behavior of the typical DOS ρ typ, we carried out a finite size analysis for different impurity

strengths V in a system with weak Rashba SOC strength α2 = 0.5t to find the critical value

Vc for the MIT. From Landauer-Bütiker calculations[SST05] it follows that at impurity

strength V = 8t we are already in the insulating regime. The typical DOS ρ typ decays

exponentially with L, as plotted in Fig. 5.8 (a), which confirms this assumption. If V is

reduced the localization length ξ shows a strong increase, as shown in Fig. 5.8 (b), which,

in turn, slows down the reduction of ρ typ, which comes along with increasing system size,

significantly in case of large localization lengths. Adding the results from the calculation of

ρ typ/ρ avr, which is plotted in Fig .5.9 as function of the inverse system size 1/L2 for EF = 0,

we can conclude that for V & 5t we are in the insulating regime. For a more precise analysis

we have to go to larger systems due to the large localization lengths.
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Figure 5.7: (a) Averaged DOS ρ avr calculated with KPM (30 impurity configurations) for
system size of L2 = 2802 with Rashba SOC α2 = 0.5t, for different impurity strengths:
V = 1t(black), V = 4t(red), V = 6t(green), V = 8t(blue) (b) Monotoneous reduction of
typical DOS ρ typ with system size L = 70, 140, 200, 280, for impurity strength V = 8t.
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Figure 5.8: (a) Log-plot of typical DOS ρ typ at V = 8t for different system sizes L with
Rashba SOC α2 = 0.5t at half filling, calculated with KPM. The dashed line is a linear fit
to the log-data which yields a localization length of ξ ≈ 100a. (b) Localization length ξ at
EF = 0, plotted as a function of impurity strength V .
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Figure 5.9: Finite size analysis of the typical DOS in relation to the averaged one, ρ typ/ρ avr,
here plotted for EF = 0: The system size has been changed with L = 70, 140, 200, 280.
The impurity strength for the different curves is given by V/t = 1, 3, 4, 5, 6, 8 (monotone
from top to bottom).

5.3.3 SHC calculation using KPM

In this section we are going to present calculation of SHC for much larger systems

than with exact diagonalization analysis, using KPM. Also here we will use the Kubo

formalism which is why we have to reformulate Eq. (5.5) to be applicable to this iterative

method. In contrast to the calculation of the DOS, here we have to deal with a correlation

of two operators. We will follow the approach presented in the KPM review by Weiße et

al.[WWAF06].

We start with a KPM where we expand a function only in one dimension. Given a correlation

function

〈A;B〉ω =

〈
0

∣∣∣∣A
1

ω + iε−HB

∣∣∣∣ 0
〉
, (5.52)

the imaginary part of this function yields

− 1

π
=[〈A;B〉]ω =

D−1∑

k=0

〈0 |A| k〉 〈k |B| 0〉 δ(ω − Ek) (5.53)

assuming that 〈0 |A| k〉 〈k |B| 0〉 is real. To apply KPM, we have to rewrite this expression

in terms of a trace. This can be done similar to a local DOS calculation according to
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Eq. (5.37), which gives the coefficients

µn =
1

D

D−1∑

k=0

| 〈i |k 〉 |2Tn(Ẽk) (5.54)

=

∫ 1

−1
dω̃

1

D

D−1∑

k=0

〈i |1| k〉 〈k |1| i〉 δ(ω̃ − Ẽk)Tn(ω̃) (5.55)

=
1

D

〈
i
∣∣∣Tn(H̃)

∣∣∣ i
〉
. (5.56)

Comparing directly the integrand of Eq. (5.55) with Eq. (5.53) it follows that the moments

of the expansion of the imaginary part of the correlation function are given by

µn = −
∫ 1

−1
dω̃

D−1∑

k=0

〈0 |A| k〉 〈k |B| 0〉 δ(ω̃ − Ẽk)
︸ ︷︷ ︸

≡j(ω̃)

Tn(ω̃) (5.57)

=
〈

0
∣∣∣ATn(−H̃)B

∣∣∣ 0
〉
. (5.58)

Finally the reconstruction is done by using Eq. (5.32).

This scheme has to be adapted to calculate the SHC σ SH in a finite system, as presented

in Eq. (5.22),

σ SH(EF ) = 2
e

V

∑

Em<EF<En

=(〈m| Jzx |n〉 〈n| vy |m〉)
(En − Em)2 + η2

, (5.59)

by finding the according matrix element density function j, Eq. (5.57), which now has to be

a 2d function. Therefore, we rewrite σ SH(EF ) in terms of δ-distributions:

σ SH(ẼF ) =
e

V

∫ 1

−1

∫ 1

−1
dx dy

f(x)− f(y)

(y − x)2 + η2

∑

m,n

=[〈m| Jzx |n〉 〈n| vy |m〉]δ(x− Ẽm)δ(y − Ẽn)

︸ ︷︷ ︸
≡j(x,y)

.

(5.60)

As an example we plotted j(x, y) for a clean system with 70×70 sites and pure Rashba SOC

of strength α2 = 1t using the analytical solution Eq. (5.20), Fig. 5.10. The δ-distributions

have been approximated by Lorentzian functions with a scale parameter η = 0.07, i.e. we

have to take approximately 200 moments in the calculation using KPM. The centrosymme-

try in this plot is due to particle-hole symmetry.
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(a) (b)

Figure 5.10: a)+b) Matrix element density function j(x, y) for a clean system with 70× 70
sites and pure Rashba SOC of strength α2 = 1t using the analytical solution Eq. (5.20).

The expansion is now evaluated in x and y and we have a matrix of moments,

µmn. Extending Eq.(5.57) for this case we yield

µmn =

∫ 1

−1

∫ 1

−1
dx dy j(x, y)Tm(x)Tn(y) (5.61)

=
∑

k,q

=[〈k| Jzx |q〉 〈q| vy |k〉]δ(x− Ẽk)δ(y − Ẽq)Tm(Ẽk)Tn(Ẽq) (5.62)

= =
[∑

k

〈
k
∣∣∣Tm(H̃)JzxTn(H̃)vy

∣∣∣ k
〉]

(5.63)

= =[Tr[Tm(H̃)JzxTn(H̃)vy]]. (5.64)

As already mentioned, we can use the great benefit to replace the trace by an average over

a number R � D = 2 × L2 (the two is due to spin degree of freedom) of random vectors,

Eq.(5.39). Having the µmn calculated, we can reconstruct j(x, y) according to Eq. (5.32),

j(x, y) =

∞∑

m,n=0

µmnhmnTm(x)Tn(y)

π2
√

(1− x2)(1− y2)
, (5.65)

where we added normalization functions

hmn =
4

(1 + δm,0)(1 + δn,0)
. (5.66)
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On a computer we have to replace the infinite sum with a finite one where only M momenta

are taken into account. To cure the mentioned appearance of Gibbs oscillations we use

a convolution with a Jackson kernel, i.e. the coefficients µmn are replaced by µmn →
µmngm(M)gn(M), with kernel-damping factors[WWAF06]

gn(M) =
(M − n+ 1) cos

(
πn
M+1

)
+ sin

(
πn
M+1

)
cot
(

π
M+1

)

M + 1
. (5.67)

The function j(x, y) for finite M is therefore given by

jM (x, y) =

M−1∑

m,n=0

µmnhmngm(M)gn(M)Tm(x)Tn(y)

π2
√

(1− x2)(1− y2)
. (5.68)

Finally, we reconstruct σ SH(EF ) with the calculated matrix element density function jM (x, y)

using a finite number of moments,

σ SH(ẼF ,M) =
e

V

∫ 1

−1

∫ 1

−1
dx dy

f(x)− f(y)

(y − x)2
jM (x, y). (5.69)

We set η to zero because now the divergent terms are damped by the fact that we use only

a finite number of expansion terms M , which correspond to η as shown in Sec. 5.3.2. As a

presentation of the KPM we chose the same system as used for Fig. 5.10. The Lorentzian

function scale parameter was chosen as η = 0.07 which is why we choose M = 200 moments

for the expansion, according to Fig. 5.11 (b). The resulting SHC σ SH(EF ,M) is plotted in

Fig. 5.11 (red curve) and for comparison the analytical solution (blue curve). The slight

asymmetry is due to an asymmetric choice of discrete k-values in the arguments of the

trigonometric functions. This asymmetry disappears for larger systems.
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Figure 5.11: SHC σ SH(EF ,M) calculated with KPM for a system with 70× 70 sites, pure
Rashba SOC of strength α2 = 1t and M = 200 moments (blue curve). For comparison the
analytical solution is plotted (red curve), corresponding to Fig. 5.10.



Chapter 6

Critical Discussion and Future

Perspective

At first we address the topic of diffusive-ballistic crossover which was discussed in

Sec. 4.5.1: The ansatz which was used to show a reduction of spin relaxation rate appearing

due to cubic Dresselhaus SOC, was a discretization of angles when summing over momenta

of the Cooperon. Although the constraint for the angles reduces the Cooperon eigenvalues

significantly, this ansatz is still based on linear response. One consequence is that contribu-

tions appearing at low channel number and steaming from edge to edge skipping orbits, as

shown in Ref. [BvH88b], are not included. Such orbits can lead to flux cancellation effects,

which e.g. can weaken the magnetic field dependence of WL correction to the conductivity.

However, in further work, we will show the reduction of spin relaxation rate dependence on

the number of transverse channels in the framework of a nonperturbative theory based on

the paper by S. Kettemann et al., Ref. [KM02]. In latter work the magnetic phase-shifting

rate 1/τB has been identified with a correlation function of the magnetic vector potential. In

turn, this correlation function is related to a term in the nonlinear σ-model which appears

due to time-reversal symmetry breaking. Thus, in case of an effective magnetic field due to

SOC, which brakes spin rotation symmetry, the respective term in the nonlinear σ-model

has to be identified to yield a nonperturbative expression for the spin relaxation rate 1/τs.

The last chapter of this work stands out from the rest by the fact that the focus is more

on numerical calculations. The code was developed as general as possible by decomposing

all matrix operations in connectivity and hopping matrices including magnetic field and
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different kinds of SOC. Having coded the KPM in a general form, one of the next steps

will be the analysis of diluted magnetic semiconductors using the V-J pd model developed

by G. Bouzerar et al.[BBZ07]. Already analytical calculations show[WLZ07b] that in con-

trast to a lattice with only nonmagnetic impurities, the vertex correction corresponding to

ladder diagrams, σLSH does not cancel the one-loop part σ0
SH which is equal to that derived

by Sinova.[SCN+04] This can be calculated now rigorously for large systems, i.e. also the

clustering of Mn2+ can be included[CWBB12]. Numerical works like Ref. [LX06] show in-

teresting change of sign of the SHC by changing the exchange interaction or the impurity

density and strength. However the work was limited to smaller sizes, L2 = 20 × 20, and

focused on energies away from the impurity band.

Due to the advantaged of the KPM concerning the obsolete cutoff η adjustment, we are

able to go beyond calculations which extracted localization lengths using the computation

of SHC by application of the time evolution projection method (see e.g. Ref. [MM07]).

Last but not least, due to the general structure of the KPM code, also the extension to the

evaluation of other quantities like the anomalous Hall effect is possible.
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[MZM+03] J. B. Miller, D. M. Zumbühl, C. M. Marcus, Y. B. Lyanda-Geller,
D. Goldhaber-Gordon, K. Campman, and A. C. Gossard. Gate-Controlled
Spin-Orbit Quantum Interference Effects in Lateral Transport. Phys. Rev.
Lett., 90(7):076807, Feb 2003.



Bibliography 125

[NATE97] J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki. Gate control of spin-
orbit interaction in an inverted In(0.53)Ga(0.47)AS/In(0.52)Al(0.48)AS het-
erostructure. Phys. Rev. Lett., 78(7):1335–1338, 1997.

[NATE98] Junsaku Nitta, Tatsushi Akazaki, Hideaki Takayanagi, and Takatomo
Enoki. Gate control of spin-orbit interaction in an InAs-inserted
In0.53Ga0.47As/In0.52Al0.48As heterostructure. Physica E: Low-dimensional
Systems and Nanostructures, 2(1-4):527–531, 1998.

[Nit06] J. Nitta. privtate communication of unpublished results. 2006.

[NSJ+05] K. Nomura, Jairo Sinova, T. Jungwirth, Q. Niu, and A. H. MacDonald. Non-
vanishing spin hall currents in disordered spin-orbit coupling systems. Phys.
Rev. B, 71(4):041304, Jan 2005.

[NSJ+06] K. Nomura, Jairo Sinova, T. Jungwirth, Q. Niu, and A. H. MacDonald. Er-
ratum: Nonvanishing spin hall currents in disordered spin-orbit coupling sys-
tems [phys. rev. b71, 041304(r) (2005)]. Phys. Rev. B, 73(19):199901, may
2006.

[NSSM05] K. Nomura, Jairo Sinova, N. Sinitsyn, and A. MacDonald. Dependence of
the intrinsic spin-Hall effect on spin-orbit interaction character. Phys. Rev.
B, 72(16), October 2005.

[OMP] Openmp.org. Available at: http://openmp.org/wp/.

[OMP+92] H. Ohno, H. Munekata, T. Penney, S. von Molnár, and L. Chang. Magne-
totransport properties of p-type (In,Mn)As diluted magnetic III-V semicon-
ductors. Phys. Rev. Lett., 68(17):2664–2667, Apr 1992.

[OTA+99] Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, and H. Ohno. Spin Relax-
ation in GaAs(110) Quantum Wells. Phys. Rev. Lett., 83(20):4196–4199, Nov
1999.

[OW53] Overhauser and Albert W. Paramagnetic Relaxation in Metals. Phys. Rev.,
89(4):689–700, Feb 1953.

[Pei33] R. Peierls. Zur Theorie des Diamagnetismus von Leitungselektronen.
Zeitschrift für Physik, 80(11-12):763–791, November 1933.

[PF06] Alexander Punnoose and Alexander M. Finkel’stein. Spin Relaxation in the
Presence of Electron-Electron Interactions. Phys. Rev. Lett., 96(5):057202–4,
February 2006.
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System Spin splitting at EF α2 Reference
(meV) (meV Å)

AlSb/InAs/AlSb 3.2 - 4.5 60 [HvWK+98]
AlSb/InAs/AlSb 0 0 [BEW+99]
AlSb/InAs/AlSb 0 0 [SAYI99]

AlGaAs/GaAs/AlGaAs - 6.9± 0.4 [JRA+95]
2DEG GaAs/AlGaAs - 5± 1 [MZM+03]
AlGaSb/InAs/AlSb 5.6 - 13 120 - 280 [SAYI99]

InAlAs/InGaAs/InAlAs 1.5 40 [DMD+89]
InAlAs/InGaAs/InAlAs 4.9 - 5.9 63 - 93 [NATE97]
InAlAs/InGaAs/InAlAs - 50 - 100 [HNA+99]
InGaAs/InAs/InGaAs 5.1 - 6.8 60 - 110 [NATE98]
InGaAs/InAs/InGaAs 9 - 15 200 - 400 [Gru00]
InGaAs/InP/InGaAs - 63 - 153 [ELSL97]

GaSb/InAs/GaSb 3.7 90 [LMFS88]
Si/SiGe QW - 0.03 - 0.12 [MJM+04]
SiO2/InAs/ 5.5 - 23 100 - 300 [MKMM00]

n-In0.2Ga0.8As/GaAs QW 50-70 [HSM+06]

Table A.1: Values of Rashba parameter α2 measured in experiments [QW=quantum wire].
(List extracted from[FMAE+07].)

Parameter AlAs AlP AlSb GaAs GaP GaSb InAs InP InSb

me 0.15 0.22 0.14 0.067 0.13 0.039 0.026 0.0795 0.0135

Table A.2: Experimental values of me[VMRM01]

System γD (eV Å3) Reference

GaAs 24.5 [MST83]
GaAs 17.4 - 26 [PMT88]
GaAs 26.1± 0.9 [DPWS92]
GaAs 16.5± 3 [JRA+95]
GaAs 11 [RJA+96]
GaAs 9 [KH07]
GaAs 28± 4 [MZM+03]

InGaAs 24 [KSZ+96]

Table A.3: Values of Dresselhaus parameter γD measured in experiments. (List extracted
from[FMAE+07].)
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material QW width spacer 1 spacer 2 mobility density α2/α1 α′2/α
′
1

Å Å Å (cm2/Vs) cm−2 SGE CPGE

InAs/AlGaSb 150 3.0× 105 8× 1011 2.1 2.3
InAs/AlGaSb 150 2.0× 105 1.4× 1012 1.8
InAs/InAlAs 60 75 1.1× 105 7.7× 1011 1.6

GaAs/AlGaAs ∞ 700 3.5× 106 1.1× 1011 7.6 7.6
GaAs/AlGaAs 82 50 50 2.6× 106 9.3× 1011 -4.5 -4.2
GaAs/AlGaAs 150 600 300 1.0× 105 6.6× 1011 -3.8
GaAs/AlGaAs 150 400 500 2.6× 105 5.3× 1011 -2.4
GaAs/AlGaAs 300 700 3.2× 106 1.3× 1011 2.8
GaAs/AlGaAs 300 700 1000 3.4× 106 1.8× 1011 1.5

Table A.4: Measured α2/α1 ratios with spin-galvanic effect (SGE) and Circular photogal-
vanic effect (CPGE) with the according parameters at 4.2K [QW=quantum wire].[GGB+07]
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Linear Response

Applying linear response to first order with a perturbation W (t) we get for the

time dependent expectation value of an operator Â

〈
Â
〉
t

= Tr
[
ρ0Â

]
− i

∫ ∞

−∞
dt′ θ(t− t′)

〈
[ÂD(t), ŴD(t′)]

〉
0
, (B.1)

where the index D indicates the Dirac picture. The source of the perturbation is an electric

field E(t) = E0e
−i(ω+iη)t with η being an infinitesimally small positive value. The pertur-

bation is then given by W (t) = −P̂ · E(t), with the dipole operator P̂ =
∑

i qir̂i and the

charge qi at the positions ri.

The response to the applied electric field is a current Jµ = σµνEν . For the next steps we

keep the definition of the current general. Later on we can relate it to the spin Hall current

Jzx = −σzxyEy, with the spin Hall conductivity σzxy ≡ σ SH.

〈Jµ〉t = i
∑

ν

∫ ∞

−∞
dt θ(t− t′)

〈
[JµD(0), PνD(t′ − t)]

〉
ei(ω+iη)(t′−t)E0νe

−i(ω+iη)t

︸ ︷︷ ︸
Eν(t)

(B.2)

the spin Hall conductivity (in the following the subscript D will be left out)

σµν(ω) = i

∫ ∞

−∞
dt θ(−t) 〈[Jµ(0), PνD(t)]〉 e−i(ω+iη)t (B.3)

In the next step we want to replace P̂ by its time derivative. This can be accomplished by

applying the Kubo identity

[A(t), ρ0] = −iρ0

∫ β

0
dx Ȧ(t− ix) (B.4)
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in combination with 〈[J, P ]〉 = Tr([P, ρ0]J). We get

σµν(ω) = V

∫ β

0
dx

∫ ∞

0
dtTr(ρ0Jν(0)Jµ(t+ ix))ei(ω+iη)t, (B.5)

using (1/V )Ṗ = J, with the system volume V , β = 1/kBT and the density matrix

ρ0 =
e−βH0

Tr(e−βH0)
. (B.6)

Extracting the time dependency of the current operator JµD(t+ix) = ei(t+ix)H0Jµe
−i(t+ix)H0

and using the eigenvector basis {|i〉} we can write the conductivity tensor in the following

way

σµν(ω) = V

∫ β

0
dx

∫ ∞

0
dt
∑

m,n

〈m |Jν(0)|n〉
〈
n
∣∣∣ei(t+ix)EnJµe

−i(t+ix)Em
∣∣∣m
〉
ei(ω+iη)t·

(B.7)

· Tr(ρ0a
†
mana

†
paq). (B.8)

We used H =
∑

mEma
†
mam. For the next step we need the identity

Tr(ρ0a
†
mana

†
paq) = δmqδnpf(Em)(1− f(En)), (B.9)

where f(E) is the Fermi distribution function.

Proof. The factor δmqδnp is due to momentum conservation. The second part is yield by

commutator relation

Tr(ρ0a
†
mana

†
paq) = Tr(ρ0a

†
man(δnm − ama†n)) (B.10)

= Tr(ρ0(a†manδnm − a†manama†n)) (B.11)

= Tr(ρ0(a†manδnm − a†mamana†n)) (B.12)

= Tr(ρ0(a†manδnm − a†mam(1− a†nan)) (B.13)

= Tr(ρ0(a†manδnm − nm(1− nn)). (B.14)

Applying Eq.(B.9) to Eq.(B.7) and evaluating the integral over x we get

σµν(ω) = V

∫ ∞

0
dt
∑

m,n

f(Em)(1− f(En))
1− e−β(En−Em)

(En − Em)︸ ︷︷ ︸
f(Em)−f(En)

En−Em

〈m |Jν |n〉 〈n |Jµ|m〉

· eit(ω+iη+En−Em). (B.15)
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Finally we perform the t-integration and rewrite the formula for currents j:

=
i

V

∑

m,n

(f(Em)− f(En))

En − Em
〈m |jν |n〉 〈n |jµ|m〉
En − Em + ω + iη

. (B.16)

B.1 Kubo Formula for Weak Disorder

In the following we are interested in the real part of Eq.(B.16) for the longitudinal

conductivity at zero frequency. We rewrite the real part to a form which is suitable for the

diagrammatic perturbation. The first step is (factor 2 due to spin degeneracy)

σx,x(ω = 0) = lim
ω→0

2π

V

e2

m2
e

∑

m,n

f(Em)− f(En)

En − Em
〈m |px|n〉 〈n |px|m〉 δ(Em − En + ω) (B.17)

=
2π

V

e2

m2
e

∫ ∞

0
dE

(
−∂f(E)

∂E

)
〈m |px|n〉 〈n |px|m〉 δ(E − Em)δ(E − En).

(B.18)

Including impurities we average over all configurations, writing the sum as a trace

σ impx,x(0) =
2π

V

e2

m2
e

∫ ∞

0
dE

(
−∂f(E)

∂E

)
〈Tr [δ(E −H0)pxδ(E −H0)px]〉

imp
,

Now we chose the basis in momentum space {|k〉}. After applying orthogonality relation

we get

σ impx,x(0) =
1

2πV

e2

m2
e

∫ ∞

0
dE

∑

k,k′

kxk
′
x

〈
k

∣∣∣∣
1

E −H0 − iη
− 1

E −H0 + iη

∣∣∣∣k′
〉
·

·
〈

k′
∣∣∣∣

1

E −H0 − iη
− 1

E −H0 + iη

∣∣∣∣k
〉

(B.19)

=
1

2πV

e2

m2
e

∫ ∞

0
dE

∑

k,k′

kxk
′
x·

·
〈
2GRE(k,k′)GAE(k′,k)−GRE(k,k′)GRE(k′k)−GAE(k,k′)GAE(k′,k)

〉
imp

(B.20)

with the definition

G
R/A
E (k′,k) =

〈
k′
∣∣∣∣

1

E −H0 ∓ iη

∣∣∣∣k
〉
. (B.21)

This can be simplified by noticing that the averages
〈
GRGR

〉
imp

and
〈
GAGA

〉
imp

are small

compared with the other terms
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Proof. We start by writing down the Green’s function with finite complex self-energy Σ

G R/A(E) =
1

E − (H0 − µ+ Σ R/A)
(B.22)

=
x∓ iI

x2 + I2
(B.23)

with x = E − (H0 − µ + <Σ) and ∓I = =Σ R/A, where µ is the chemical potential. To

calculate G R(E)G R(E), and accordingly for the pair of advanced Green’s functions, we

write the expression in terms of x, I and the spectral function

S =
1

π

I

x2 + I2
. (B.24)

This yields

GRGR =
(x− iI)2

(x2 + I2)2
(B.25)

=
1

(x2 + I2)
− 2iIx

(x2 + I2)2
− 2I2

(x2 + I2)2
(B.26)

= π
S

I
− 2π2i

S2

I
x− 2π2S2. (B.27)

Assuming the weak disorder limit, i.e. the impurity density n imp → 0, it follows that

due to τ ∝ n−1
imp, with τ−1 ≡ −2=ΣR, the spectral function becomes a delta distribution.

Using[Mah00]

lim
I→0

(
S

I
− 2πS2

)
= 0 (B.28)

we end up with

GRGR = lim
I→0
−2π2i

S2

I
x (B.29)

= − iπ
1

I2
xδ(x) (B.30)

= 0. (B.31)

In the last step we applied again Eq. (B.28).

In contrast to this result we get for the retarded-advanced-pair of Green’s functions in the

weak disorder limit

GRGA = lim
I→0

1

x2 + I2
(B.32)

= lim
I→0

π
S

I
, (B.33)

which is divergent and therefore significant.
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Furthermore, we assume low temperature which is why the derivative of the Fermi

function fixes the energy of the Green’s functions to the Fermi energy,

−∂fT=0

∂E
= δ(E − EF ). (B.34)

We end up with

σ impx,x(0) =
1

πV

e2

m2
e

∑

k,k′

kxk
′
x

〈
GRE(k,k′)GAE(k′,k)

〉
imp

. (B.35)
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Cooperon and Spin Relaxation

C.1 Sum Formula for the Cooperon

Writing the Cooperon (Eq. 3.43)

Ĉ(Q) =
1

De(Q + 2eA + 2eAS)2 +HγD

. (C.1)

in singlet, |S = 0;m = 0〉 = (|↑↓〉 − |↓↑〉)/
√

2 ≡ |�〉 and triplet |S = 1;m = 0〉 = (|↑↓〉 +

|↓↑〉)/
√

2 ≡ |⇒〉 , |S = 1;m = 1〉 ≡ |�〉 , |S = 1;m = −1〉 ≡ |�〉 representation, without

magnetic field the singlet sector is decoupled from the triplet one. To sum over Cαββα in

the case of a finite magnetic field and having calculated the eigenvectors |i〉 and eigenvalue

λi for the Cooperon Hamiltonian, we can use the following simplification:

∑

αβ

Cαββα =
∑

αβ

∑

mS
m′S′

〈αβ |mS 〉
〈
m′S′ |βα

〉 〈
mS |C|m′S′

〉
. (C.2)

Only several of the prefactors 〈αβ |mS 〉 〈m′S′ |βα〉 are non-zero:

For αβ =�

〈� |�〉 〈� |�〉 = 1, (C.3)

For αβ =�

〈� |�〉 〈� |�〉 = 1, (C.4)
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For αβ =↑↓

〈↑↓ |�〉 〈� |↓↑〉 = − 1

2
, (C.5)

〈↑↓ |�〉 〈⇒ |↓↑〉 = +
1

2
, (C.6)

〈↑↓ |⇒〉 〈� |↓↑〉 = − 1

2
, (C.7)

〈↑↓ |⇒〉 〈⇒ |↓↑〉 = +
1

2
, (C.8)

For αβ =↓↑

〈↓↑ |�〉 〈� |↑↓〉 = − 1

2
, (C.9)

〈↓↑ |�〉 〈⇒ |↑↓〉 = − 1

2
, (C.10)

〈↓↑ |⇒〉 〈� |↑↓〉 = +
1

2
, (C.11)

〈↓↑ |⇒〉 〈⇒ |↑↓〉 = +
1

2
. (C.12)

Inserting the eigenvectors,

∑

αβ

Cαββα =
∑

αβ

∑

mS
m′S′

∑

i

〈αβ |mS 〉
〈
m′S′ |βα

〉
〈mS |i〉

〈
i |C|m′S′

〉
, (C.13)

we end up with

=
∑

i

(〈� |i〉 〈i |�〉+ 〈⇒ |i〉 〈i |⇒〉+ 〈� |i〉 〈i |�〉 − 〈� |i〉 〈i |�〉)λ−1
i . (C.14)

Writing

∑

αβ

Cαββα = C↑↑,↑↑ + C↑↓,↓↑ + C↓↑,↑↓ + C↓↓,↓↓ (C.15)

= Tr







1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



C




(C.16)

≡ Tr[ΛC] (C.17)
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in singlet-triplet representation by using the transformation UST ,

UST ≡




|�〉
|↑↓〉
|↓↑〉
|�〉



⊗




|�〉
|�〉
|⇒〉
|�〉




=




0 1√
2
− 1√

2
0

1 0 0 0

0 1√
2

1√
2

0

0 0 0 1



, (C.18)

it can be seen that the singlet term has positive contribution to the conductivity in contrast

to the triplet terms which have a different sign: Transforming Λ using UST we get

USTΛU−1
ST =




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



, (C.19)

where we can immediately extract the signs.

C.2 Spin-Conserving Boundary

In the following we set γg = 1. In order to generate a finite system, we need to

specify the boundary conditions. These can be different for the spin and charge current.

Here we derive the spin-conserving boundary conditions. Let us first recall the diffusion

current density j at position r as derived from a classical picture in Sec. 2.3.4, which is given

by

jsi(r, t) = 〈vski (r, t)〉 −De∇si(r, t), (C.20)

where ski is the part of the spin-density which evolved from the spin-density at r − ∆x

moving with velocity v and momentum k. Using the Bloch equation

∂ŝ

∂t
= ŝ×B SO(k)− 1

τ̂s
ŝ, (C.21)

we rewrite the first term in Eq. (C.20) yielding the total spin-diffusion current as

jsi = −τ〈vF [B SO(k)× S]i〉 −De∇si. (C.22)

In Sec. 3.4.1 we consider specular scattering from the boundary with the condition that the

spin is conserved, so that the spin current density normal to the boundary must vanish

n · jsi |±W/2 = 0, (C.23)
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where n is the vector normal to the boundary. Noting the relation between the spin-

diffusion equation in the si representation and the triplet components of the Cooperon

density s̃i ({|�〉 , |⇒〉 , |�〉}), Eq. (3.60),

U CD(εijkB SO,j)i=1..3,k=1..3U
†
CD = −i(〈s̃i|B SO · S |s̃k〉)i=1..3,k=1..3, (C.24)

where the matrix U CD is given by Eq. (3.61), we can thereby transform the boundary con-

dition for the spin-diffusion current, Eq. (C.23), to the triplet components of the Cooperon

density s̃i,

0 = n · js̃i |y=±W/2. (C.25)

Requiring also that the charge density is vanishing normal to the transverse boundaries,

which transforms into the condition −i∂nρ̃| Surface = 0 for the singlet component of the

Cooperon density ρ̃, we finally get the boundary conditions for the Cooperon without ex-

ternal magnetic field, Eq. (3.70),

(
− τ

De
n · 〈vF [B SO(k) · S]〉 − i∂n

)
C| Surface = 0. (C.26)

The last expression can be rewritten using the effective vector potential AS, Eq. (3.43),

(n · 2eAS − i∂n)C| Surface = 0. (C.27)

In the case of Rashba and linear and cubic Dresselhaus SO coupling in (001) systems, we

get

De

τ
2eAS = − 〈vF (B SO(k) · S)〉

= v2
Fme


 −(α1 − γD(mevF )2

4 ) −α2

α2 α1 − γD(mevF )2

4


 .S. (C.28)

C.3 Relaxation Tensor

To connect the effective vector potential AS with the spin relaxation tensor, we

notice that τ̂ can be rewritten in the following way:

1

τ̂s
= τ(〈B SO(k)2〉δij − 〈B SO(k)iB SO(k)j〉)i=1..3,j=1..3 (C.29)
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using U CD, Eq. (3.60),

= τU †CD{〈B SO(k)x〉S2
x + 〈B SO(k)y〉S2

y

+ 〈B SO(k)xB SO(k)y〉(SxSy + SySx)}U CD (C.30)

= τU †CD〈(B SO(k).S)2〉U CD (C.31)

=
τ

v2
F

U †CD〈(vFB SO(k).S)2〉U CD. (C.32)

Because
τ

v2
F

〈(vF [B SO(k).S])2〉 =
2τ

v2
F

〈(vF [B SO(k).S])〉2 (C.33)

is true for linear Rashba and linear Dresselhaus SO coupling but, in general, false if cubic-

in-k terms are included in the SO field, we have to write

τ〈(B SO(k).S)2〉 =
2τ

v2
F

〈(vFB SO(k).S)〉2 + ct (C.34)

so that we conclude
1

τ̂s
= U †CD(De(2eAS)2 + ct)U CD (C.35)

with the separated cubic part ct = Dem
2
eE

2
Fγ

2
D(S2

x +S2
y). This reflects nothing but the fact

that the effective SO Zeeman term in Eq. (3.32) can only be rewritten as a vector potential

AS when the SO coupling is linear in momentum.

As an example we assume a very general Cooperon that means the growth direction of the

material and the SO coupling should be very general. We set

(2eAS)2 +Hγ = (α11Sx + α21Sy + α31Sz)
2 + (α12Sx + α22Sy + α32Sz)

2 + α4S
2
z (C.36)

After the transformation we get

1

τ̂
=




α2
21 + α2

22 + α2
31 + α2

32 + α4 −α11α21 − α12α22 −α11α31 − α12α32

−α11α21 − α12α22 α2
11 + α2

12 + α2
31 + α2

32 + α4 −α21α31 − α22α32

−α11α31 − α12α32 −α21α31 − α22α32 α2
11 + α2

12 + α2
21 + α2

22


 .

(C.37)

C.4 Weak Localization Correction in 2D

In contrast to the case where we have a wire with a finite width, we can calculate

the weak localization correction to the conductivity analytically in the 2D case. The cutoffs



Appendix C: Cooperon and Spin Relaxation 143

due to dephasing c1 = 1/DeQ
2
SOτϕ and elastic scattering c2 = 1/DeQ

2
SOτ determine whether

we have a positive or negative correction. Integrating over all possible wave vectors K =

k/Q SO in the case without boundaries yields

∆σ = −2e2

2π

1

(2π)2

∫ √c2
0

dK (2πK)

(
− 1

ES(Q SOK)/Q2
SO + c1

+
1

ET0(Q SOK)/Q2
SO + c1

+
1

ET+(Q SOK)/Q2
SO + c1

+
1

ET−(Q SOK)/Q2
SO + c1

)
(C.38)

= −2e2

2π

(
−1

2
ln

(
1 +

c2

c1

)
+

1

2
ln

(
1 +

c2

1 + c1

)

+





arctan

(
5
4

1√
7
16

+c1

)
− arctan

(√
1
16

+c2+1√
7
16

+c1

)

√
7
16 + c1

− 1

2
ln


 2 + c1

3
2 + c1 + c2 + 2

√
1
16 + c2








+





arctan

(
3
4

1√
7
16

+c1

)
+ arctan

(√
1
16

+c2−1√
7
16

+c1

)

√
7
16 + c1

− 1

2
ln


 1 + c1

3
2 + c1 + c2 − 2

√
1
16 + c2








) . (C.39)

As an example, we choose parameters which have been used in the case of boundaries,

1/DeQ
2
SOτϕ = 0.08, 1/DeQ

2
SOτ = 4: ∆σ/(2e2/2π) = −0.29. The exact calculation of wide

wires (Q SOW > 1) approaches this limit as can be seen in Fig. 3.11. The weak localization

correction in 2D as function of these parameters is plotted in Fig. C.1.

C.5 Exact Diagonalization

We write the inverse Cooperon propagator, the Hamiltonian H̃c, in the representa-

tion of the longitudinal momentum Qx, the quantized transverse momentum with quantum

number n ∈ N, and in the representation of singlet and triplet states with quantum numbers

S,m, where we note that H̃c is diagonal in Qx,

〈Qx, n, S,m | H̃c | Qx, n′, S′,m′〉. (C.40)
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Figure C.1: Weak localization correction in 2D in units of (2e2/2π). The parameters are
c1 = 1/DeQ

2
SOτϕ and c2 = 1/DeQ

2
SOτ . Thick line indicates ∆σ = 0.

The spin subspace is thus represented by 4× 4 matrices, which we order starting with the

singlet S = 0 and then S = 1,m = 1, m = 0, and m = −1. Thus, we get

〈Qx, n | H̃c | Qx, n〉 = Q2
SO




An 0 0 0

0 Bn iFn Dn

0 −iFn Cn iFn

0 Dn −iFn Bn



. (C.41)

The calculation of the matrix elements yields (we set P = Q SOW/π)

A0 = K2
x, (C.42)

B0 =
3

4
+K2

x −
1

4

sin(Pπ)

Pπ
, (C.43)

C0 =
1

2
+K2

x +
1

2

sin(Pπ)

Pπ
, (C.44)

D0 = −1

4
− 1

4

sin(Pπ)

Pπ
, (C.45)

F0 =
√

2Kx
sin(Pπ2 )

Pπ
2

, (C.46)

and for n > 0:

An = K2
x +

( n
P

)2
, (C.47)

Bn =
3

4
+K2

x +
( n
P

)2
+

2P 2 − n2

4(n+ P )(n− P )

sin(Pπ)

Pπ
,

(C.48)
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Cn =
1

2
+K2

x +
( n
P

)2
− 2P 2 − n2

2(n+ P )(n− P )

sin(Pπ)

Pπ
,

(C.49)

Dn = −1

4
− n2 − 2P 2

4(n− P )(n+ P )

sin(Pπ)

Pπ
, (C.50)

Fn =

√
2(2n2 − P 2)

2
(
n− P

2

) (
n+ P

2

) sin(Pπ2 )
Pπ
2

. (C.51)

For n 6= n′, the spin matrices have the form

〈Qx, n | H̃c | Qx, n′〉 =
Q2

SO

π
P




0 0 0 0

0 a ig d

0 −ig b if

0 d −if c



. (C.52)

Calculating the matrix elements for n = 0, n′ > 0, we get

a =
1√
2




(
1 + (−1)n

′
)

sin(Pπ)

(n′ − 2P )(n′ + 2P )
−

4
(
−1 + (−1)n

′
)
Kx cos

(
Pπ
2

)

(n′ − P )(n′ + P )


 , (C.53)

b = −
√

2
(

1 + (−1)n
′
)

sin(Pπ)

(n′ − 2P )(n′ + 2P )
, (C.54)

c =
1√
2




4
(
−1 + (−1)n

′
)
Kx cos

(
Pπ
2

)

(n′ − P )(n′ + P )
+

(
1 + (−1)n

′
)

sin(Pπ)

(n′ − 2P )(n′ + 2P )


 , (C.55)

d =

(
1 + (−1)n

′
)

sin(Pπ)
√

2(n′ − 2P )(n′ + 2P )
, (C.56)

f = 2




(
−1 + (−1)n

′
)

cos(Pπ)

2(n′ − 2P )(n′ + 2P )
−

(
1 + (−1)n

′
)
Kx sin

(
Pπ
2

)

(n′ − P )(n′ + P )


 , (C.57)

g = −2




(
−1 + (−1)n

′
)

cos(Pπ)

2(n′ − 2P )(n′ + 2P )
+

(
1 + (−1)n

′
)
Kx sin

(
Pπ
2

)

(n′ − P )(n′ + P )


 . (C.58)
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And for n > 0, n′ > 0, we get

a = R{2,+} sin(Pπ) + 4KxR{1,−} cos

(
Pπ

2

)
, (C.59)

b = −2R{2,+} sin(Pπ), (C.60)

c = R{2,+} sin(Pπ)− 4KxR{1,−} cos

(
Pπ

2

)
, (C.61)

d = R{2,+} sin(Pπ), (C.62)

f = −
√

2

(
R{2,−} cos(Pπ) + 2KxR{1,+} sin

(
Pπ

2

))
, (C.63)

g =
√

2

(
R{2,−} cos(Pπ)− 2KxR{1,+} sin

(
Pπ

2

))
, (C.64)

with the functions

R{1,±} =

(
1± (−1)n+n′

)
(n2 + n′2 − P 2)

((n− n′)− P )((n+ n′)− P )((n− n′) + P )((n+ n′) + P )
, (C.65)

R{2,±} =

(
1± (−1)n+n′

)
(n2 + n′2 − (2P )2)

((n− n′)− 2P )((n+ n′)− 2P )((n− n′) + 2P )((n+ n′) + 2P )
.

(C.66)
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Hamiltonian in [110] growth

direction

The Cooperon Hamiltonian in the 0-mode approximation is given as follows

Hc,0 =




A B C

B∗ D E

C∗ E∗ F


+Mq3, (D.1)

with

A =
1

4q2W
(q2

(
4k2

x + 3
(
q̃2

1 + q2
2

))
W

− 16kxq̃1 sin

(
q2W

2

)
+
(
q̃2

1 − q2
2

)
sin(q2W )), (D.2)

B =
i
(

4kx sin
(
q2W

2

)
− q̃1 sin(q2W )

)

√
2W

, (D.3)

C = − q2

(
q̃2

1 + q2
2

)
W +

(
q2

2 − q̃2
1

)
sin(q2W )

4q2W
, (D.4)

D =
q2

(
2k2

x + q̃2
1 + q2

2

)
W +

(
q2

2 − q̃2
1

)
sin(q2W )

2q2W
, (D.5)

E =
i
(

4kx sin
(
q2W

2

)
+ q̃1 sin(q2W )

)

√
2W

, (D.6)

F =
1

4q2W
(q2

(
4k2

x + 3
(
q̃2

1 + q2
2

))
W

+ 16kxq̃1 sin

(
q2W

2

)
+
(
q̃2

1 − q2
2

)
sin(q2W )) (D.7)
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and the term due to cubic Dresselhaus SOC

Mq3 =

q3




1
4 sinc(q2W ) + 3

4 0 1
4 sinc(q2W )− 1

4

0 1
2 − 1

2 sinc(q2W ) 0

1
4 sinc(q2W )− 1

4 0 1
4 sinc(q2W ) + 3

4


 . (D.8)
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Summation over the Fermi Surface

The Cooperon Hamiltonian in the 2D case is given by

Hc = τv2{〈cos2(ϕ)〉(Q + 2mea.S)2
x

+ 〈sin2(ϕ)〉(Q + 2mea.S)2
y

+ 4m2
eγDv

2〈cos2(ϕ) sin2(ϕ)〉(Q + 2mea.S)x.Sx

− 4m2
eγDv

2〈sin2(ϕ) cos2(ϕ)〉(Q + 2mea.S)y.Sy

+ (2m3
eγDv

2)2(〈cos2(ϕ) sin4(ϕ)〉S2
x

+ 〈sin2(ϕ) cos4(ϕ)〉S2
y)}, (E.1)

with wave vector Q. We set

me ≡ 1, (E.2)

f1 := 〈sin2(ϕ)〉, (E.3)

f2 := 〈cos2(ϕ)〉, (E.4)

f3 := 〈sin2(ϕ) cos2(ϕ)〉, (E.5)

f4 := 〈sin4(ϕ) cos2(ϕ)〉, (E.6)

f5 := 〈sin2(ϕ) cos4(ϕ)〉. (E.7)

Using the Matsubara trick we write

∫ 2π

0

dϕ

2π
=

2

πN

N∑

s=1

1√
1−

(
s
N

)2 . (E.8)
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This gives us

f1 =
2

πN

N−1∑

s=1

s2

N2

√
1−

(
s
N

)2 , (E.9)

f2 =
2

πN

N∑

s=1

√
1−

( s
N

)2
, (E.10)

f3 =
2

πN

N∑

s=1

( s
N

)2
√

1−
( s
N

)2
, (E.11)

f4 =
2

πN

N∑

s=1

( s
N

)4
√

1−
( s
N

)2
, (E.12)

f5 =
2

πN

N∑

s=1

( s
N

)2
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. (E.13)

Writing Eq. (E.1) in a compact way gives us Eq. (4.49).



Appendix F

KPM

The recursion relations of the polynomials of first and second kind, Eq. (5.34)

and Eq. (5.35), allow for a simple iteration procedure: The core of KPM is the iterative

construction of the states |αn〉 = Tn(H̃) |α〉, described by the following steps[WWAF06],

|α0〉 = |α〉 , (F.1)

|α1〉 = H̃ |α0〉 , (F.2)

|αn+1〉 = 2H̃ |αn〉 − |αn−1〉 , (F.3)

where |α〉 is the starting vector. For instance, to calculate the local DOS at site i, our

starting vector would be the site-occupation vector |i〉. Then the coefficients for the Tn(E)

polynomial are given by µn = 〈i |in 〉 and ρi(E) is reconstructed by using Eq. (5.32). Conse-

quently, the most time consuming part is the matrix-vector multiplication H |αn〉. Because

H is sparse in our case, a very efficient multiplication is done by decomposing the operator

• in a matrix A which contains the information about connected sites, which comprises

their site number and the type of hopping between them

• and a matrix SOH which contains all hopping matrices which are two-dimensional

due to SOC.

The type of hopping is coded in a number hij , e.g. hij = 0 can be defined as “hopping from

i to j ⇐⇒ hopping in the positive x-direction”. To give an example: The site i is connected

with site j = A[i][2 ∗ k]1 and the type of hopping is hij = A[i][2 ∗ k + 1], with k being an

1we use C-type of writing matrices
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integer running from 0 up to the number of neighbors. The hopping matrix t(i, j), which

includes the SOC, is then given by

t(i, j) =


 SOH[hij ][0][0] SOH[hij ][0][1]

SOH[hij ][1][0] SOH[hij ][1][1]


 . (F.4)

This leads finally to the following algorithm for the operation H.v = v out:

Listing F.1: Optimized matrix-vector multiplication

for ( m=0; m<siteNum ; m++ )

{
temp up = temp down =0. ;

Msize m = A[m] . s i z e ( ) / 2 ;

for ( j =0; j<Msize m ; j++ )

{
m2 = A[m] [ 2 * j +1] ;

m1 = A[m] [ 2 * j ] ;

temp up += SOH[m2 ] [ 0 ] [ 0 ] * v [2*m1]+SOH[m2 ] [ 0 ] [ 1 ] * v [2*m1+1] ;

temp down += SOH[m2 ] [ 1 ] [ 0 ] * v [2*m1]+SOH[m2 ] [ 1 ] [ 1 ] * v [2*m1+1] ;

}

v out [ 2*m]= temp up ;

v out [ 2*m+1]=temp down ;

}

where Msize m is the number of neighbors a site m has and siteNum is the number of sites.
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