DIRECTION DEPENDENCE OF SPIN RELAXATION AND DIFFUSIVE-BALLISTIC CROSSOVER
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‘ Abstract I

The dependence of spin relaxation on the direction of the quantum
wire under Rashba and Dresselhaus (linear and cubic) spin orbit cou-
pling (SOC) is studied using the Cooperon equation. Comprising the
dimensional reduction of the wire in the diffusive regime, the lowest
spin relaxation and dephasing rates for (001) and (110) systems are
found. The analysis of spin relaxation reduction is then extended to
non-diffusive wires where it is shown that, in contrast to the theory
of dimensional crossover from weak localization to weak antilocaliza-
tion in diffusive wires, the relaxation due to cubic Dresselhaus spin
orbit coupling is reduced and the linear part shifted with the number

of transverse channels. 13|

We set h = 1.

Cooperon and Spin Diffusion ‘

The weak localization correction to the conductivity is given by

e? D,
Ao =~ > Y Cappaw—0(Q) (1)
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where o, 5 = &£ are the spin indices, and the Cooperon propagator C
is for epT > 1 (e, Fermi energy), given by
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Expanding C to lowest order in the generalized momentum @ leads to
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Co0(Q) = C(Q) = (De(Q + 2eA +2eAg)* + H) "L (3)

e.g. in GaAs (001), with the Rashba parameter a9 and the shifted
linear Dresselhaus coupling a1 = a; — meypEp/2,

_ Me,g o Me [~ —az 0
Ag = . a.S = . ( N 0) S, (4)
Hy = (mgyep)*(Sz + S, 5
g (mever)”(S; + y) (5)
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2D spectrum of H¢ := 55— splits in gapless singlet and triplet modes
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The local corrections given by C' can be related to spin relaxation (re-
quiring time reversal symmetry)

H. = Uy Ho UL

with the spin diffusion equation for (vp | Ves |) < 1/7
1
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~~ spin precession
spin relax.
0=0ss+ DeHgps (6)

with the D’yakonov-Perel” Spin Relaxation Tensor, B = 0

L — 7'*}/2 (<Bso(k)2>5¢j — <BSO(k>’IlBSO(k>j>) :
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Spin Relaxation Anisotropy in the (001) System

Consider specular scattering
from spin-conserving bound-
aries:
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Using Uy, we find the BC for

the Cooperon and simplify Einzo -
them by applying a second o

transformation U 4 to simple 1 k#0
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Solving the Cooperon Hamiltonian H,. with BC for different directions
n, (0 =0:n=¢), in the (001) plane gives the minima

2 q 2 2 22
3¢ (qsm - 73) (031 + 0 — @3)

9s3 2
E S S we, 7
1/2min = 575 2 24q§m (7)
2
by (Frdn) bl gy
3.man T o
min 9 12q§m

where we set qgp, = \/(04332 — q2)2 -+ Ozil and

= gmerp cos(20)(mev)? — 4(2),
s = = merpsin0) (mev)? — 4(2)),

42 = 2mea, qg3/2 = (mgepyp)”,

In the Fig. above, the spectrum for # = 0 at goW" = 30 is plotted. The
absolute minimum at finite wave vectors K, leads to long persisting
spin helices as shown in the inset.

For a general # we can deduce about the minimal spin-relaxation rate
that Eq. (7) is independent of the width W if a1 (0 = 0) = —q9 and /or
the direction of the wire is pointing in

| <2<k§>(mew)2<(me”>2 — 2(kz)) - q%) . (9)

0 = —arcsin
2 (mgv>yp — 4k2)ymevp) @

Analyzing the prefactor of W2 in the Eq. (8) gives the optimal angle as
plotted in Fig. 1.

Figure 1: Dependence of the W? coefficient in Eq. (8) on the lateral rotation (6).
The absolute minimum is found for a,1(0 = 0) = —qy (here: ¢1/¢o = 1.63) and
for different SO strength we find the minimum at 0 = (1/4+n)wr, n € Z if ¢ <
(¢s3/v/2) (dashed line: q; = (¢s3/v/2)) and at 6 = (3/4 + n)w, n € Z else. Here
we set gs3 = 0.9. The scaling is arbitrary.

e Spin Dephasing
The eigenvector of H.(#) which has the eigenvalue

9 9 N2 | ¢s3* 9
(ag + oo — @3)° + 4545

12

Ey(ky = 0) = g3+ Qo — W2, (10)

is the triplet state |[S = 1om = 0) = (] 1) + | I))/V2 =
| =)=(0,1,0)L. This is equal to the z-component of the spin density
whose evolution is described by the spin diffusion equation, Eq.(6).

This gives an analytical description (Fig.2) of numerical calculation
done by J.Liu et al., Ret. 4.
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Figure 2: The spin dephasing time T; of a spin initially oriented along the [001]
direction in units of (D,q5) for the special case of equal Rashba and lin. Dresselhaus
SOC. The different curves show different strength of cubic Dresselhaus in units of
¢s3/q2- In the case of finite cubic Dresselhaus SOC we set W = 0.4/qy. 1f g3 = 0:
Ty diverges at § = (1/4+n)w, n € Z (dashed vertical lines). The horizontal dashed
line indicated the 2D spin dephasing time, Ty = 1/(4¢5D,).

Spin Relaxation Anisotropy in the (110) System

The Dresselhaus Hamiltonian with the confinement in z =[110] direc-

tion ((k,) = (k3) =0, and (k2) = [|V¢|?dz) has the following form

1 1
Hpy1g) = =Ypozka <§<k2> — 5(7‘@:% - 27‘?13)) : (11)

Including the Rashba SOC g9 = 2mean, noting that its Hamiltonian
does not depend on the orientation of the wire, we end up with

the following Cooperon Hamiltonian

O—l ) 5 62
D — (Qx —q15; — QQSy) + (Qy T QQS:E>2 + 53337 (12>
e

E
with g1 = 2me 2 (k) — 2L (13)

G = (3meE%(vp/2)). (14)

= In 2D states polarized in the z-direction have vanishing spin relax-
ation as long as we have no Rashba SOC.

e Spin Relaxation in the Wire
Again we apply appropriate Neumann boundary condition

(—20y + 2meanSy)C (x, Y = i%) =0, Vo (15)

and solve the Cooperon equation:
e Special case: without cubic Dresselhaus SOC

The lowest spin relaxation rate is found at finite wave vectors

= (g2, (16)

As in the 2D case the spin relaxation rate vanishes for vanishing
Rashba SOC = there 1s no width dependence of weak localiza-
tion /weak antilocalization in the case without Rashba SOC.
If cubic Dresselhaus SOC cannot be neglected, the absolute minimum
of spin relaxation can also shift to k, = 0 (see solution in Ref. 3).

Diftusiv-Ballistic Crossover ‘

For every direction in the diffusive (001) system there is still
a finite spin relaxation, Eq.(7) and (8), due to cubic Dressel-
haus SOC, at wire widths W <« Lg, (spin precession length
Ls,).  Experiments, e.g.  the work by Kunihashi et al., Ref.
5, however, show that in wires which do not fulfill the condi-

tion le < W, the cubic Dresselhaus term 1is suppressed, too.
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In the right Fig. we show width g0kl o\o 4L a N =1ex10"m? -
dependence of the spin relaxation ® .0 N-tmm®
length 1P of different carrier den-
sity[5]. Solid lines and dashed lines o

show the IL calculated from the 3 2'0.:\
theory by S.K.m, with neglecting 1.0
cubic Dresselhaus term and tak-
ing into account full SOIs, respec-
tively.
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To explain this one has to assume a finite number of transverse chan-
nels N = kpW/m in the q space, Eq. (2). The Cooperon to diagonalize
reads then (me = 1)

o -
D. =211 (Qy + 2095, + 2 (a1 — ’YDUQ%) Sy)
2
+2f2 (Qx — 20005y — 2 (al — VDU2%> S:c)
2

WA 2\ o
‘|‘8’7DU <f4f—2> Sx—|—<5f—1> Sy ] (17)

with functions f; which depend on N. The suppression of the cubic
Dresselhaus term, also depending on Rashba SOC, is plotted in Fig. (3).
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Figure 3: The lowest eigenvalues of the confined Cooperon Hamiltonian Eq. (17),
equivalent to the lowest spin relaxation rate, are shown for () = 0 for different
number of modes N = kpW /m. Different curves correspond to different values of

a2/ qs, qs = \/(2a2)2 + (yv4/2 — 201)2.
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