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Abstrat
The dependene of spin relaxation on the diretion of the quantumwire under Rashba and Dresselhaus (linear and ubi) spin orbit ou-pling (SOC) is studied using the Cooperon equation. Comprising thedimensional redution of the wire in the di�usive regime, the lowestspin relaxation and dephasing rates for (001) and (110) systems arefound. The analysis of spin relaxation redution is then extended tonon-di�usive wires where it is shown that, in ontrast to the theoryof dimensional rossover from weak loalization to weak antiloaliza-tion in di�usive wires, the relaxation due to ubi Dresselhaus spinorbit oupling is redued and the linear part shifted with the numberof transverse hannels.[1�3℄We set ~ ≡ 1.

Cooperon and Spin Di�usion
The weak loalization orretion to the ondutivity is given by
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Cαββα,ω=0(Q), (1)

where α, β = ± are the spin indies, and the Cooperon propagator Ĉis for ǫF τ ≫ 1 (ǫF , Fermi energy), given by
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Expanding Ĉ to lowest order in the generalized momentum Q leads to

Ĉω=0(Q) ≡ Ĉ(Q) = (De(Q + 2eA + 2eAS)
2 +Hγ)

−1 (3)e.g. in GaAs (001), with the Rashba parameter α2 and the shiftedlinear Dresselhaus oupling α̃1 = α1 −meγDEF/2,
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e
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eγǫF )
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2D spetrum of Hc :=
Ĉ−1

De
splits in gapless singlet and triplet modes

physical

meaning?

The loal orretions given by Ĉ an be related to spin relaxation (re-quiring time reversal symmetry)
Hc = UCDHSDU†CDwith the spin di�usion equation for (vF | ∇rs |) ≪ 1/τ

0 = ∂ts +
1

τ̂s
s

︸︷︷︸spin relax.−De∇2s + γ(B− 2τ〈(∇vF )BSO(k)〉)× s
︸ ︷︷ ︸spin preession

0 = ∂ts +DeHSDs (6)with the D'yakonov-Perel' Spin Relaxation Tensor, B = 0

1
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.

Spin Relaxation Anisotropy in the (001) System
Consider speular satteringfrom spin-onserving bound-aries:

n · jsi|±W
2

= 0,

jsi = − τ〈vF (BSO(k)× s)i〉
−De∇si.Using UCD we �nd the BC forthe Cooperon and simplifythem by applying a seondtransformation UA to simpleNeumann BC: 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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Solving the Cooperon Hamiltonian Hc with BC for di�erent diretions
n, (θ = 0 : n = êy), in the (001) plane gives the minima
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3
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q2s3
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) (
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)2
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W 2, (7)
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where we set qsm =
√

(αx2 − q2)2 + α2x1 and
αx1 =

1

2
meγD cos(2θ)((mev)

2 − 4〈k2z〉),

αx2 = − 1

2
meγD sin(2θ)((mev)

2 − 4〈k2z〉),
q2 = 2meα2, q2s3/2 = (m2

eǫFγD)
2.In the Fig. above, the spetrum for θ = 0 at q2W = 30 is plotted. Theabsolute minimum at �nite wave vetors Kx leads to long persistingspin helies as shown in the inset.For a general θ we an dedue about the minimal spin-relaxation ratethat Eq. (7) is independent of the widthW if αx1(θ = 0) = −q2 and/orthe diretion of the wire is pointing in

θ =
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2
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m3
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)

. (9)
Analyzing the prefator of W 2 in the Eq. (8) gives the optimal angle asplotted in Fig. 1.
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Figure 1: Dependene of the W 2 oe�ient in Eq. (8) on the lateral rotation (θ).The absolute minimum is found for αx1(θ = 0) = −q2 (here: q1/q2 = 1.63) andfor di�erent SO strength we �nd the minimum at θ = (1/4 + n)π, n ∈ Z if q1 <
(qs3/

√
2) (dashed line: q1 = (qs3/

√
2)) and at θ = (3/4 + n)π, n ∈ Z else. Herewe set qs3 = 0.9. The saling is arbitrary.� Spin DephasingThe eigenvetor of Hc(θ) whih has the eigenvalue

E1(kx = 0) = q2s3 + q2sm − (α2x1 + α2x2 − q22)
2 + qs32

2 q2s
12

W 2, (10)
is the triplet state |S = 1;m = 0〉 = (| ↑↓〉 + | ↓↑〉)/

√
2 ≡

| ⇉〉=̂(0, 1, 0)T . This is equal to the z-omponent of the spin densitywhose evolution is desribed by the spin di�usion equation, Eq. (6).This gives an analytial desription (Fig. 2) of numerial alulationdone by J.Liu et al., Ref. 4.
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Figure 2: The spin dephasing time T2 of a spin initially oriented along the [001]diretion in units of (Deq
2

2
) for the speial ase of equal Rashba and lin. DresselhausSOC. The di�erent urves show di�erent strength of ubi Dresselhaus in units of

qs3/q2. In the ase of �nite ubi Dresselhaus SOC we set W = 0.4/q2. If qs3 = 0:
T2 diverges at θ = (1/4+n)π, n ∈ Z (dashed vertial lines). The horizontal dashedline indiated the 2D spin dephasing time, T2 = 1/(4q2

2
De).

Spin Relaxation Anisotropy in the (110) System
The Dresselhaus Hamiltonian with the on�nement in z ≡[110℄ dire-tion (〈kz〉 = 〈k3z〉 = 0, and 〈k2z〉 =

∫
|∇φ|2dz) has the following form

H[110] = −γDσzkx

(
1

2
〈k2z〉 −

1

2
(k2x − 2k2y)

)

. (11)
Inluding the Rashba SOC q2 = 2meα2, noting that its Hamiltoniandoes not depend on the orientation of the wire, we end up with

the following Cooperon Hamiltonian
C−1

De
=
(
Qx − q̃1Sz − q2Sy

)2
+ (Qy + q2Sx)

2 +
q̃23
2
S2
z , (12)

with q̃1 = 2me
γD
2
〈k2z〉 −

γD
2

meEF

2
, (13)

q̃3 = (3meE
2
F (γD/2)). (14)

⇒ In 2D states polarized in the z-diretion have vanishing spin relax-ation as long as we have no Rashba SOC.� Spin Relaxation in the WireAgain we apply appropriate Neumann boundary ondition
(−i∂y + 2meα2Sx)C

(

x, y = ±W

2

)

= 0, ∀x (15)
and solve the Cooperon equation:� Speial ase: without ubi Dresselhaus SOCThe lowest spin relaxation rate is found at �nite wave vetors
kxmin = ±∆

24(24− (q2W )2),
1

Deτs
=

(q̃21 + q22)

24
(q2W )2. (16)

As in the 2D ase the spin relaxation rate vanishes for vanishingRashba SOC =⇒ there is no width dependene of weak loaliza-tion/weak antiloalization in the ase without Rashba SOC.If ubi Dresselhaus SOC annot be negleted, the absolute minimumof spin relaxation an also shift to kxmin = 0 (see solution in Ref. 3).
Di�usiv-Ballisti Crossover

For every diretion in the di�usive (001) system there is stilla �nite spin relaxation, Eq. (7) and (8), due to ubi Dressel-haus SOC, at wire widths W ≪ LSO (spin preession length
LSO). Experiments, e.g. the work by Kunihashi et al., Ref.5, however, show that in wires whih do not ful�ll the ondi-tion le < W , the ubi Dresselhaus term is suppressed, too.
In the right Fig. we show widthdependene of the spin relaxationlength l1DSO of di�erent arrier den-sity[5℄. Solid lines and dashed linesshow the l1DSO alulated from thetheory by S.K.[1℄, with negletingubi Dresselhaus term and tak-ing into aount full SOIs, respe-tively.
To explain this one has to assume a �nite number of transverse han-nels N = kFW/π in the q spae, Eq. (2). The Cooperon to diagonalizereads then (me ≡ 1)

C−1

De
= 2f1

(

Qy + 2α2Sx + 2

(

a1 − γDv
2f3
f1

)

Sy

)2

+ 2f2

(

Qx − 2α2Sy − 2

(

a1 − γDv
2f3
f2

)

Sx

)2

+ 8γ2Dv
4

[(

f4 −
f23
f2

)

S2
x +

(

f5 −
f23
f1

)

S2
y

]

, (17)
with funtions fi whih depend on N. The suppression of the ubiDresselhaus term, also depending on Rashba SOC, is plotted in Fig. (3).
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Figure 3: The lowest eigenvalues of the on�ned Cooperon Hamiltonian Eq. (17),equivalent to the lowest spin relaxation rate, are shown for Q = 0 for di�erentnumber of modes N = kFW/π. Di�erent urves orrespond to di�erent values of
α2/qs, qs =√(2α2)2 + (γv2F/2− 2α1)2.
Referenes[1℄ S. Kettemann, Phys. Rev. Lett. 98, 176808 (2007).[2℄ P. Wenk and S. Kettemann, Phys. Rev. B 81, 125309 (2010).[3℄ P. Wenk and S. Kettemann, Phys. Rev. B 83, 115301 (2011).[4℄ J. Liu, T. Last, E. Koop, S. Denega, B. van Wees, and C. van der Wal, J. Superond. Nov.Magn. 23, 11 (2010).[5℄ Y. Kunihashi, M. Kohda, and J. Nitta, Phys. Rev. Lett. 102, 226601 (2009).


