*School of Engineering and Science, Jacobs University Bremen, Bremen 28759, Germany
\dagger School of Engineering and Science, Jacobs University Bremen, Bremen 28759, Germany, and Asia Pacific Center for Theoretical Physics and Division of Advanced Materials Science Pohang University of Science and Technology (POSTECH) San31, Hyoja-dong, Nam-gu, Pohang 790-784, South Korea

Abstract

The dependence of spin relaxation on the direction of the quantum wire under Rashba and Dresselhaus (linear and cubic) spin orbit coupling (SOC) is studied using the Cooperon equation. Comprising the dimensional reduction of the wire in the diffusive regime, the lowest spin relaxation and dephasing rates for (001) and (110) systems are found. The analysis of spin relaxation reduction is then extended to non-diffusive wires where it is shown that, in contrast to the theory of dimensional crossover from weak localization to weak antilocalization in diffusive wires, the relaxation due to cubic Dresselhaus spin orbit coupling is reduced and the linear part shifted with the number of transverse channels. ${ }^{[1-3]}$

Cooperon and Spin Diffusion
The weak localization

$$
\Delta \sigma=-\frac{2 e^{2}}{2 \pi} \frac{D_{e}}{\text { Vol. }} \sum_{\mathbf{Q}} \sum_{\alpha, \beta= \pm} \mathcal{C}_{\alpha \beta \beta \alpha, \omega=0}(\mathbf{Q})
$$

where $\alpha, \beta= \pm$ are the spin indices, and the Cooperon propagator $\hat{\mathcal{C}}$ is for $\epsilon_{F} \tau \gg 1\left(\epsilon_{F}\right.$, Fermi energy), given by

$$
\hat{\mathcal{C}}_{\omega=E-E^{\prime}}\left(\mathbf{Q}=\mathbf{p}+\mathbf{p}^{\prime}\right)=\tau\left(1-\sum_{\mathbf{q}} \stackrel{E, \mathbf{p}+\mathbf{q}}{\underset{E^{\prime}, \mathbf{p}^{\prime}-\mathbf{q}}{*}}\right)
$$

Expanding $\hat{\mathcal{C}}$ to lowest order in the generalized momentum \mathbf{Q} leads to

$$
\hat{\mathcal{C}}_{\omega=0}(\mathbf{Q}) \equiv \hat{\mathcal{C}}(\mathbf{Q})=\left(D_{e}\left(\mathbf{Q}+2 e \mathbf{A}+2 e \mathbf{A}_{\mathbf{S}}\right)^{2}+H_{\gamma}\right)^{-1}
$$ e.g. in GaAs (001), with the Rashba parameter α_{2} and the shifted linear Dresselhaus coupling $\tilde{\alpha}_{1}=\alpha_{1}-m_{e} \gamma_{D} E_{F} / 2$,

$$
\begin{aligned}
\mathbf{A}_{\mathbf{S}} & =\frac{m_{e}}{e} \hat{a} \cdot \mathbf{S}=\frac{m_{e}}{e}\left(\begin{array}{ccc}
-\tilde{\alpha}_{1} & -\alpha_{2} & 0 \\
\alpha_{2} & \tilde{\alpha}_{1} & 0
\end{array}\right) \cdot \mathbf{S}, \\
H_{\gamma} & =\left(m_{e}^{2} \gamma \epsilon_{F}\right)^{2}\left(S_{x}^{2}+S_{y}^{2}\right) .
\end{aligned}
$$

2D spectrum of $H_{c}:=\frac{\hat{C}^{-1}}{D_{e}}$ splits in gapless singlet and triplet modes

The local corrections given by \hat{C} can be related to spin relaxation (re quiring time reversal symmetry)

$$
H_{c}=U_{\mathrm{cD}} H_{\mathrm{SD}} U_{\mathrm{CD}}^{\dagger}
$$

with the spin diffusion equation for $\left(v_{F}\left|\nabla_{\mathbf{r}} \mathbf{s}\right|\right) \ll 1 / \tau$

$$
\begin{aligned}
& 0=\partial_{t} \mathbf{s}+\underbrace{\frac{1}{\hat{\tau}_{s}} \mathbf{s}}_{\text {spin relax. }}-D_{e} \nabla^{2} \mathbf{s}+\underbrace{\gamma\left(\mathbf{B}-2 \tau\left\langle\left(\nabla \mathbf{v}_{F}\right) \mathbf{B}_{\mathrm{SO}}(\mathbf{k})\right\rangle\right) \times \mathbf{s}}_{\text {spin precession }} \\
& 0=\partial_{t} \mathbf{s}+D_{e} H_{\mathrm{sD}} \mathbf{s}
\end{aligned}
$$

with the D'yakonov-Perel' Spin Relaxation Tensor, $\mathbf{B}=0$

$\frac{1}{\tau_{\mathrm{N}}}=\tau \gamma^{2}\left(\left\langle\mathbf{B}_{\mathrm{SO}}(\mathbf{k})^{2}\right\rangle \delta_{i j}-\left\langle\mathrm{B}_{\mathrm{SO}}(\mathbf{k})_{i} \mathrm{BSO}_{\mathrm{SO}}(\mathbf{k})_{j}\right\rangle\right)$

Spin Relaxation Anisotropy in the (001) System

Consider specular scattering

from spin-conserving boundaries

$\left.\mathbf{n} \cdot \mathbf{j}_{s_{i}}\right|_{ \pm \frac{W}{2}}=0$,

$\mathbf{j}_{s_{i}}=-\tau\left\langle\mathbf{v}_{F}\left(\mathbf{B}_{\mathrm{so}}(\mathbf{k}) \times \mathbf{s}\right)_{i}\right\rangle$

$-D_{e} \nabla s_{i}$

Using $U_{\text {CD }}$ we find the BC for the Cooperon and simplify
 them by applying a second transformation U_{A} to simple Neumann BC
$\left.U_{A}\left(\frac{\tau}{D_{e}} \mathbf{n} \cdot\left\langle\mathbf{v}_{F}\left(\left(\mathbf{B}_{\mathrm{so}}(\mathbf{k}) \cdot \mathbf{S}\right)\right)\right\rangle-\mathrm{i} \partial_{\mathbf{n}}\right) U_{A}^{\dagger} U_{A} C U_{A}^{\dagger}\right|_{\text {surface }} ^{K_{\mathrm{x}}}=0$ $\begin{aligned}\left.U_{A}\left(\mathbf{n} \cdot 2 e \mathbf{A}_{\mathbf{S}}-\mathrm{i} \partial_{\mathbf{n}}\right) U_{A}^{\dagger} \tilde{C}\right|_{\text {Surface }} & =0, \\ -\left.\mathrm{i} \partial_{\mathbf{n}} \tilde{C}\right|_{\text {Surface }} & =0\end{aligned}$

Solving the Cooperon Hamiltonian H_{c} with BC for different directions
$\mathbf{n},\left(\theta=0: \mathbf{n}=\hat{e}_{y}\right)$, in the (001) plane gives the minima

$$
\text { wheren west qum }=\sqrt{\left(a_{2}-q\right)^{2}+a_{z=1}^{2}} \text { and }
$$

$\alpha_{x 1}=\frac{1}{2} m_{e} \gamma_{D} \cos (2 \theta)\left(\left(m_{e} v\right)^{2}-4\left\langle k_{z}^{2}\right\rangle\right)$,
$\alpha_{x 2}=-\frac{1}{2} m_{e} \gamma_{D} \sin (2 \theta)\left(\left(m_{e} v\right)^{2}-4\left\langle k_{z}^{2}\right\rangle\right)$,
$q_{2}=2 m_{e} \alpha_{2}, q_{s 3}^{2} / 2=\left(m_{e}^{2} \epsilon_{F} \gamma_{D}\right)^{2}$.
In the Fig. above, the spectrum for $\theta=0$ at $q_{2} W=30$ is plotted. The absolute minimum at finite wave vectors K_{x} leads to long persisting spin helices as shown in the inset
For a general θ we can deduce about the minimal spin-relaxation rate that Eq. (7) is independent of the width W if $\alpha_{x 1}(\theta=0)=-q_{2}$ and/or the direction of the wire is pointing in

$$
\theta=\frac{1}{2} \arcsin \left(\frac{2\left\langle k_{z}^{2}\right\rangle\left(m_{e} \gamma_{D}\right)^{2}\left(\left(m_{e} v\right)^{2}-2\left\langle k_{z}^{2}\right\rangle\right)-q_{2}^{2}}{\left(m_{e}^{3} v^{2} \gamma_{D}-4\left\langle k_{z}^{2}\right\rangle m_{e} \gamma_{D}\right) q_{2}}\right)
$$

Analyzing the prefactor of W^{2} in the Eq. (8) gives the optimal angle as plotted in Fig.

Figure 1: Dependence of the W^{2} coefficient in Eq. (8) on the lateral rotation (θ). The absolute minimum is found for $\alpha_{x 1}(\theta=0)=-q_{2}$ (here: $q_{1} / q_{2}=1.63$) and (as3/ $\sqrt{2}$ (dashed line $\quad=(q s 3 / \sqrt{2})$ minimum at $\theta=(1 / 4+n) \pi, n \in \mathbb{Z}$ if $q_{1}<$ $q s 3 / \sqrt{ } 2)$ (dashed line: $q_{1}=(q s 3 / \sqrt{ } 2)$) and at $\theta=(3 / 4+n) \pi, n \in \mathbb{Z}$ else. Here

- Spin Dephasing

The eigenvector of $H_{c}(\theta)$ which has the eigenvalue
$E_{1}\left(k_{x}=0\right)=q_{s 3}^{2}+q_{s m}^{2}-\frac{\left(\alpha_{x 1}^{2}+\alpha_{x 2}^{2}-q_{2}^{2}\right)^{2}+\frac{q s 3^{2}}{2} q_{s}^{2}}{12} W^{2}, \quad$ (10)
is the triplet state $|S=1 ; m=0\rangle=(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle) / \sqrt{2} \equiv$ $|\rightrightarrows\rangle \hat{=}(0,1,0)^{T}$. This is equal to the z-component of the spin density whose evolution is described by the spin diffusion equation, Eq. (6). This gives an analytical description (Fig.2) of numerical calculation done by J.Liu et al., Ref. 4

Figure 2: The spin dephasing time T_{2} of a spin initially oriented along the 001 direction in units of $\left(D_{e} q_{2}^{2}\right)$ for the special case of equal Rashba and lin. Dresselhaus SOC. The different curves show different strength of cubic Dresselhaus in units of $q_{s 3} / q_{2}$. In the case of finite cubic Dresselhaus SOC we set $W=0.4 / q_{2}$. If $q_{s 3}=0$: T_{2} diverges at $\theta=(1 / 4+n) \pi, \quad n \in \mathbb{Z}$ (dashed vertical lines). The horizontal dashed line indicated the 2D spin dephasing time, $T_{2}=1 /\left(4 q_{2}^{2} D_{e}\right)$.

Spin Relaxation Anisotropy in the (110) System

The Dresselhaus Hamiltonian with the confinement in $z \equiv[110]$ dire tion $\left(\left\langle k_{z}\right\rangle=\left\langle k_{z}^{3}\right\rangle=0\right.$, and $\left.\left\langle k_{z}^{2}\right\rangle=\int|\nabla \phi|^{2} d z\right)$ has the following form
$H_{[110]}=-\gamma_{D} \sigma_{z} k_{x}\left(\frac{1}{2}\left\langle k_{z}^{2}\right\rangle-\frac{1}{2}\left(k_{x}^{2}-2 k_{y}^{2}\right)\right)$
Including the Rashba SOC $q_{2}=2 m_{e} \alpha_{2}$, noting that its Hamiltonian

$$
\begin{aligned}
& E_{1 / 2 \text { min }}=\frac{3 q_{3 x}^{2}}{22}+\frac{\left(q_{s m}^{2}-\frac{q_{2}^{2}}{2}\right)\left(a_{12}^{2}+a_{x 2}^{2}-q_{2}^{2}\right)^{2}}{2 q_{t a m}^{2}} W^{2}
\end{aligned}
$$

he following Cooperon Hamiltonian
 $\frac{C^{-1}}{D_{e}}=\left(Q_{x}-\tilde{q}_{1} S_{z}-q_{2} S_{y}\right)^{2}+\left(Q_{y}+q_{2} S_{x}\right)^{2}+\frac{\tilde{q}_{3}^{2}}{2} S_{z}^{2}$,

with $\tilde{q}_{1}=2 m_{e} \frac{\gamma_{D}}{2}\left\langle k_{z}^{2}\right\rangle-\frac{\gamma_{D}}{2} \frac{m_{e} E_{F}}{2}$,

$\tilde{q}_{3}=\left(3 m_{e} E_{F}^{2}\left(\gamma_{D} / 2\right)\right)$.

\Rightarrow In 2D states polarized in the z -direction have vanishing spin relax ation as long as we have no Rashba SOC

- Spin Relaxation in the Wire

Again we apply appropriate Neumann boundary condition

$$
\left(-i \partial_{y}+2 m_{e} \alpha_{2} S_{x}\right) C\left(x, y= \pm \frac{W}{2}\right)=0, \quad \forall x
$$

and solve the Cooperon equation:

- Special case: without cubic Dresselhaus SOC

The lowest spin relaxation rate is found at finite wave vectors $k_{x_{\text {min }}}= \pm \frac{\Delta}{24}\left(24-\left(q_{2} W\right)^{2}\right)$

As in the 2D case the spin relaxation rate vanishes for vanishing Rashba $\mathrm{SOC} \Longrightarrow$ there is no width dependence of weak localization/weak antilocalization in the case without Rashba SOC. If cubic Dresselhaus SOC cannot be neglected, the absolute minimum of spin relaxation can also shift to $k_{x,}=0$ (see solution in Ref. 3).

Diffusiv-Ballistic Crossover

For every direction in the diffusive (001) system there is still a finite spin relaxation, Eq. (7) and (8), due to cubic Dresselhaus SOC, at wire widths $W \ll L_{\mathrm{so}}$ (spin precession length L_{so}). Experiments, e.g. the work by Kunihashi et al., Ref. 5, however, show that in wires which do not fulfill the condition $l_{e}<W$, the cubic Dresselhaus term is suppressed,

In the right Fig. we show width dependence of the spin relaxation length $l_{\mathrm{so}}^{1 D}$ of different carrier density ${ }^{[5]}$. Solid lines and dashed lines show the $l_{\mathrm{so}}^{1 D}$ calculated from the heory by S.K. ${ }^{[1]}$, with neglecting cubic Dresselhaus term and tak ing into account full SOIs, respec tively.

To explain this one has to assume a finite number of transverse chanels $N=k_{F} W / \pi$ in the q space, Eq. (2). The Cooperon to diagonalize reads then $\left(m_{e} \equiv 1\right)$

$$
\begin{aligned}
\frac{C^{-1}}{D_{e}}= & 2 f_{1}\left(Q_{y}+2 \alpha_{2} S_{x}+2\left(a_{1}-\gamma_{D} v^{2} \frac{f_{3}}{f_{1}}\right) S_{y}\right)^{2} \\
& +2 f_{2}\left(Q_{x}-2 \alpha_{2} S_{y}-2\left(a_{1}-\gamma_{D} v^{2} \frac{f_{3}}{f_{2}}\right) S_{x}\right) \\
& +8 \gamma_{D}^{2} v^{4}\left[\left(f_{4}-\frac{f_{3}^{2}}{f_{2}}\right) S_{x}^{2}+\left(f_{5}-\frac{f_{3}^{2}}{f_{1}}\right) S_{y}^{2}\right],
\end{aligned}
$$

with functions f_{i} which depend on N . The suppression of the cubic Dresselhaus term, also depending on Rashba SOC, is plotted in Fig. (3)

Figure 3: The lowest eigenvalues of the confined Cooperon Hamiltonian Eq. (17), equivalent to the lowest spin relaxation rate, are shown for $Q=0$ for differe number of modes $N=k_{F} W / \pi$. Different curves correspond to different values

References

11S. Kettemann, Phys. Rev. Lett. 98,176808 (2007).
2] P. Wenk and S. Kettemann, Phys. Rev. B 81, 125309 (2010)
[3] P. Wenk and S. Kettemamn, Phys. Rev. B 83, 115301 (2011)
4] J. Liu, T. Last, E. Koop, S. Denega, B. van Wees, and C. van
Magn. 23, 11 (2010).

