

THREE CUPS OF "MODERN NMR SPECTROSCOPY" ESPRESSO

Ilya G. Shenderovich

Physical background of	NMR in practice	A research
NMR		lecture
1. Classical and quantum-	1. NMR in solution	NMR Study of
mechanical descriptions	1.1 From spectrum to structure	Hydrogen
2. T1 and T2 Relaxations	1.2. Typical protocol for	Bonding in
3. Chemical shift	structure elucidation	Solution
4. Spin-spin scalar coupling	2. NMR in the solid state	Down to 100 K
5. Spin systems of the first	2.1 Orientation-dependent interactions	
and the second orders	2.1 Measurements of	
6. Chemical exchange	internuclear distances	
7. Two-dimensional NMR	2.3 NMR of surfaces	
	and amorphous solids	

Physical background of NMR

University of California, Irvine Understanding NMR Spectroscopy James Keeler, University of Cambridge http://www-keeler.ch.cam.ac.uk/lectures/Irvine/

WILEY NMR SPECTROSCOPY EXPLAINED Simplified Theory, Applications and Examples for **Organic Chemistry and Structural Biology** 1.1 NEIL E. JACOBSEN

Sir Paul Callaghan (1947 – 2012)

Introductory NMR & MRI

https://www.youtube.com/watch?v=7aRKAXD4dAg&list=PLD14D78BC61685BD7

Nuclear magnetic moment

Particle	Mass	Charge	Spin (angular momentum)	Magnetic dipole moment
Electron	\checkmark	\checkmark	\checkmark	\checkmark
Proton	\checkmark	\checkmark	\checkmark	\checkmark
Neutron	\checkmark	×	\checkmark	\checkmark
Neutrino	\checkmark	×	\checkmark	×
Photon	×	×	\checkmark	×
Graviton (?)	×	×	\checkmark	×
Carbon-12	\checkmark	\checkmark	×	×

Angular momentum

Magnetic dipole moment

Nuclear magnetic resonance spectroscopy

 $\Delta v = \frac{2 \cdot \mu \cdot \vec{B}}{h} \approx 2000 \ Hz$

Boltzmann distribution

The potential energy of a molecule : $E(h) = m \cdot g \cdot h$,

The pressure of the idealize gass: $P = n \cdot k \cdot T$,

Let's assume for simplicity that T does not depend on h, then: $\frac{dP}{dh} = \frac{dn}{dh} \cdot k \cdot T$.

The pressure of a gas column of the height h on unit area is:

$$P = P_0 - m \cdot g \cdot n \cdot h \quad \text{we have} \quad dP = -m \cdot g \cdot n \cdot dh.$$

$$\frac{dP}{dh} = \frac{dn}{dh} \cdot k \cdot T = -m \cdot g \cdot n \quad \Rightarrow \quad n \propto \exp(-\frac{m \cdot g \cdot h}{k \cdot T}) = \exp(-\frac{E}{k \cdot T})$$

$$n(h_1) = A \cdot \exp(-\frac{E_1}{k \cdot T}) \quad \text{and} \quad n(h_2) = A \cdot \exp(-\frac{E_2}{k \cdot T}) \quad \Rightarrow$$

$$\frac{n(h_1)}{n(h_2)} = \exp(-\frac{E_1 - E_2}{k \cdot T})$$

$$n = n_0 \cdot \exp(-\frac{\Delta E}{k \cdot T})$$

Boltzmann distribution

NMR spectrometer

Superconducting magnet

Nuclear magnetic resonance spectroscopy

NMR spectrometer

THREE CUPS OF "MODERN NMR SPECTROSCOPY" ESPRESSO

Ilya G. Shenderovich

Physical background of NMR	NMR in practice	A research
1. Classical and quantum-	1. NMR in solution	NMR Study of
mechanical descriptions	1.1 From spectrum to structure	Hydrogen
2. T1 and T2 Relaxations	1.2. Typical protocol for	Bonding in
3. Chemical shift	structure elucidation	Solution
4. Spin-spin scalar coupling	2. NMR in the solid state	Down to 100 K
5. Spin systems of the first	2.1 Orientation-dependent interactions	
and the second orders	2.1 Measurements of	
6. Chemical exchange	internuclear distances	
7. Two-dimensional NMR	2.3 NMR of surfaces	
	and amorphous solids	

Longitudinal and transverse relaxation

Longitudinal and transverse relaxation

THREE CUPS OF "MODERN NMR SPECTROSCOPY" ESPRESSO

Ilya G. Shenderovich

Physical background of	NMR in practice	A research
NMR		lecture
1. Classical and quantum-	1. NMR in solution	NMR Study of
mechanical descriptions	1.1 From spectrum to structure	Hydrogen
2. T1 and T2 Relaxations	1.2. Typical protocol for	Bonding in
3. Chemical shift	structure elucidation	Solution
4. Spin-spin scalar coupling	2. NMR in the solid state	Down to 100 K
5. Spin systems of the first	2.1 Orientation-dependent interactions	
and the second orders	2.1 Measurements of	
6. Chemical exchange	internuclear distances	
7. Two-dimensional NMR	2.3 NMR of surfaces	
	and amorphous solids	

Chemical shift

Chemical shift

THREE CUPS OF "MODERN NMR SPECTROSCOPY" ESPRESSO

Ilya G. Shenderovich

Physical background of	NMR in practice	A research
NMR		lecture
1. Classical and quantum-	1. NMR in solution	NMR Study of
mechanical descriptions	1.1 From spectrum to structure	Hydrogen
2. T1 and T2 Relaxations	1.2. Typical protocol for	Bonding in
3. Chemical shift	structure elucidation	Solution
4. Spin-spin scalar coupling	2. NMR in the solid state	Down to 100 K
 Spin-spin scalar coupling Spin systems of the first 	 2. NMR in the solid state 2.1 Orientation-dependent interactions 	Down to 100 K
 4. Spin-spin scalar coupling 5. Spin systems of the first and the second orders 	 2. NMR in the solid state 2.1 Orientation-dependent interactions 2.1 Measurements of 	Down to 100 K
 4. Spin-spin scalar coupling 5. Spin systems of the first and the second orders 6. Chemical exchange 	 2. NMR in the solid state 2.1 Orientation-dependent interactions 2.1 Measurements of internuclear distances 	Down to 100 K
 4. Spin-spin scalar coupling 5. Spin systems of the first and the second orders 6. Chemical exchange 7. Two-dimensional NMR 	 2. NMR in the solid state 2.1 Orientation-dependent interactions 2.1 Measurements of internuclear distances 2.3 NMR of surfaces 	Down to 100 K

 $\begin{array}{l} CH_4 \\ \delta(^1H) \approx 2.3 \text{ ppm} \\ ^2J_{HH} \approx -12 \text{ Hz} \end{array}$

CICH₃ $\delta(^{1}H) \approx 3.0 \text{ ppm}$ $^{2}J_{HH} \approx -12 \text{ Hz}$

THREE CUPS OF "MODERN NMR SPECTROSCOPY" ESPRESSO

Ilya G. Shenderovich

Physical background of	NMR in practice	A research
NMR		lecture
1. Classical and quantum-	1. NMR in solution	NMR Study of
mechanical descriptions	1.1 From spectrum to structure	Hydrogen
2. T1 and T2 Relaxations	1.2. Typical protocol for	Bonding in
3. Chemical shift	structure elucidation	Solution
4. Spin-spin scalar coupling	2. NMR in the solid state	Down to 100 K
5. Spin systems of the first	2.1 Orientation-dependent interactions	
and the second orders	2.1 Measurements of	
6. Chemical exchange	internuclear distances	
7. Two-dimensional NMR	2.3 NMR of surfaces	
	and amorphous solids	

Pople nomenclature

Second Order Effects in Coupled Systems

THREE CUPS OF "MODERN NMR SPECTROSCOPY" ESPRESSO

Ilya G. Shenderovich

Physical background of	NMR in practice	A research
NMR		lecture
1. Classical and quantum-	1. NMR in solution	NMR Study of
mechanical descriptions	1.1 From spectrum to structure	Hydrogen
2. T1 and T2 Relaxations	1.2. Typical protocol for	Bonding in
3. Chemical shift	structure elucidation	Solution
4. Spin-spin scalar coupling	2. NMR in the solid state	Down to 100 K
5. Spin systems of the first	2.1 Orientation-dependent interactions	
and the second orders	2.1 Measurements of	
6. Chemical exchange	internuclear distances	
7. Two-dimensional NMR	2.3 NMR of surfaces	
	and amorphous solids	

Proton exchange

THREE CUPS OF "MODERN NMR SPECTROSCOPY" ESPRESSO

Ilya G. Shenderovich

Physical background of	NMR in practice	A research
NMR		lecture
1. Classical and quantum-	1. NMR in solution	NMR Study of
mechanical descriptions	1.1 From spectrum to structure	Hydrogen
2. T1 and T2 Relaxations	1.2. Typical protocol for	Bonding in
3. Chemical shift	structure elucidation	Solution
4. Spin-spin scalar coupling	2. NMR in the solid state	Down to 100 K
5. Spin systems of the first	2.1 Orientation-dependent interactions	
and the second orders	2.1 Measurements of	
6. Chemical exchange	internuclear distances	
7. Two-dimensional NMR	2.3 NMR of surfaces	
	and amorphous solids	

SPIN ECHOES

2D-NMR

2D-NMR. EXSY (EXCHANGE SPECTROSCOPY)

2D-NMR. EXSY (EXCHANGE SPECTROSCOPY)

L-Histidin, ${}^{1}H$ NMR in D₂O

L-Histidin, COSY NMR in D_2O

Н

N

НĤ

NH₂

L-Histidin, COSY NMR in D_2O

Η

N

НĤ

NH₂

L-Histidin, DEPT-135 NMR in D_2O

Η N L-Histidin, NOESY NMR in D_2O ΗŃ i i - 3.5 Ö 40 dh -4.0 - 4.5 ÷. - 5.0 - 5.5 -6.0 - 6.5 - 7.0

INSTITUT FÜR ORGANISCHE CHEMIE

THREE CUPS OF "MODERN NMR SPECTROSCOPY" ESPRESSO

Ilya G. Shenderovich

http://homepages.uni-regensburg.de/~shi56087/

Physical background of NMR	NMR in practice	A research lecture
 Classical and quantum- mechanical descriptions T1 and T2 Relaxations Chemical shift 	1. NMR in solution 1.1 From spectrum to structure 1.2. Typical protocol for structure elucidation	NMR Study of Hydrogen Bonding in Solution
4. Spin-spin scalar coupling	2. NMR in the solid state	Down to 100 K
and the second orders	2.1 Measurements of	
7. Two-dimensional NMR	2.3 NMR of surfaces and amorphous solids	

NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities Organometallics 2010, 29, 2176-2179 (DOI: <u>10.1021/om100106e</u>)

Article

Organometallics, Vol. 29, No. 9, 2010 2177

	proton	mult	$\mathrm{THF}\text{-}d_8$	CD_2Cl_2	$CDCl_3$	toluene- d_8	C_6D_6	C ₆ D ₅ Cl	(CD ₃) ₂ CO	(CD ₃) ₂ SO	CD_3CN	$TFE-d_3$	CD ₃ OD	D ₂ O
solvent residual signals			1.72 3.58	5.32	7.26	2.08 6.97 7.01 7.09	7.16	6.96 6.99 7.14	2.05	2.50	1.94	5.02 3.88	3.31	4.79
water	OH	s	2.46	1.52	1.56	0.43	0.40	1.03	2.84^{b}	3.33 ^b	2.13	3.66	4.87	
acetic acid	CH_3	s	1.89	2.06	2.10	1.57	1.52	1.76	1.96	1.91	1.96	2.06	1.99	2.08
acetone	CH_3	s	2.05	2.12	2.17	1.57	1.55	1.77	2.09	2.09	2.08	2.19	2.15	2.22
acetonitrile	CH_3	s	1.95	1.97	2.10	0.69	0.58	1.21	2.05	2.07	1.96	1.95	2.03	2.06
benzene	CH	s	7.31	7.35	7.36	7.12	7.15	7.20	7.36	7.37	7.37	7.36	7.33	
tert -butyl alcohol	CH_3	s	1.15	1.24	1.28	1.03	1.05	1.12	1.18	1.11	1.16	1.28	1.40	1.24
	OH	s ^c	3.16			0.58	0.63	1.30		4.19	2.18	2.20		
chloroform	CH	s	7.89	7.32	7.26	6.10	6.15	6.74	8.02	8.32	7.58	7.33	7.90	

Table 1. ¹H NMR Data^a

INSTITUT FÜR ORGANISCHE CHEMIE

THREE CUPS OF "MODERN NMR SPECTROSCOPY" ESPRESSO

Ilya G. Shenderovich

http://homepages.uni-regensburg.de/~shi56087/

Physical background of	NMR in practice	A research
NMR		lecture
1. Classical and quantum-	1. NMR in solution	NMR Study of
mechanical descriptions	1.1 From spectrum to structure	Hydrogen
2. T1 and T2 Relaxations	1.2. Typical protocol for	Bonding in
3. Chemical shift	structure elucidation	Solution
4. Spin-spin scalar coupling	2. NMR in the solid state	Down to 100 K
5. Spin systems of the first	2.1 Orientation-dependent interactions	
and the second orders	2.1 Measurements of	
6. Chemical exchange	internuclear distances	
7. Two-dimensional NMR	2.3 NMR of surfaces	
	and amorphous solids	

¹H NMR (1:25 min) DEPT-135 (3:37 min) COSY (10:33 min)

C₁₀H₁₈O

HSQC-DEPT (20:11 min) HMBC (20:44 min)

NOESY (28:58 min)

¹³C NMR (55:05 min)

(-)-Isoborneol

Borneol

Karplus equation:

 $J_{HH}(\varphi) \approx 12 \cos^2 \varphi - \cos \varphi + 2$

$$\begin{array}{l} \varphi(1\text{-}2a)\approx 5^{0}\rightarrow\mathsf{J}(1\text{-}2a)\approx 11\ \text{Hz}\\ \varphi(1\text{-}2b)\approx 125^{0}\rightarrow\mathsf{J}(1\text{-}2b)\approx 5\ \text{Hz} \end{array}$$

$$\phi(3-2a) \approx 40^0 \rightarrow J(3-2a) \approx 7 \text{ Hz}$$

 $\phi(3-2b) \approx 80^0 \rightarrow J(3-2b) \approx 1 \text{ Hz}$

$$\begin{array}{l} \varphi(3\text{-}4a)\approx 40^{0}\rightarrow J(3\text{-}4a)\approx 7 \text{ Hz} \\ \varphi(3\text{-}4b)\approx 80^{0}\rightarrow J(3\text{-}4b)\approx 1 \text{ Hz} \end{array}$$

Karplus equation:

 $J_{HH}(\varphi) \approx 12 \cos^2 \varphi - \cos \varphi + 2$

$$\phi(1-2b) pprox 6^0
ightarrow J(1-2b) pprox 11 Hz \ \phi(1-2a) pprox 126^0
ightarrow J(1-2a) pprox 5 Hz$$

 $\begin{array}{l} \varphi(3\text{-}2a)\approx 45^{0}\rightarrow J(3\text{-}2a)\approx 7 \text{ Hz} \\ \varphi(3\text{-}2b)\approx 75^{0}\rightarrow J(3\text{-}2b)\approx 1 \text{ Hz} \end{array}$

$$\begin{array}{l} \phi(3\text{-}4a) \approx 45^0 \rightarrow J(3\text{-}4a) \approx 7 \text{ Hz} \\ \phi(3\text{-}4b) \approx 75^0 \rightarrow J(3\text{-}4b) \approx 1 \text{ Hz} \end{array}$$

Iso-Borneol

¹H NMR in DMSO

¹H NMR in DMSO

¹H NMR in CDCl₃

Г

¹H NMR in CDCl₃

	ID	δ, ppm		Int	CH _x	Multiplet		Commectivity	
	¹ H	¹ H	¹³ C	¹ H	x =	Туре	J,Hz	HMBC	COSY
CH ₃ 9 1	1	3.97		1		ddd	10.00 3.48 1.80		
HO $8''''' = 1 - 5 - CH_3 - 5 - CH_3 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - $	2	2.24		1		dddd	13.43 9.97 4.73 3.28		

	ID	δ, p	pm	Int	CH _x	Mult	iplet	Commectivity		
	¹ H	^{1}H	¹³ C	¹ H	x =	Туре	J,Hz	HMBC	COSY	
CH ₃ CH ₃	1	3.97		1		ddd	10.00 3.48 1.80			
	2	2.24		1		dddd	13.43 9.97 4.73 3.28			
10	3	1.86		2		М				
	4	1.70		1		М				
	5	1.59		1		dd	4.5- 4.6			

	ID	δ, p	pm	Int	CH _x	Mult	iplet	Commectivity		
	¹ H	¹ H	¹³ C	¹ H	x =	Туре	J,Hz	HMBC	COSY	
	1	3.97		1		ddd	10.00 3.48 1.80			
3	2	2.24		1		dddd	13.43 9.97 4.73 3.28			
	3	1.86		2		М				
	4	1.70		1		М				
	5	1.59		1		dd	4.5- 4.6			
	6	1.21		2		М				
	7	0.92		1		dd	13.3 3.5			
	8	0.838		3		S				
	9	0.827		3		S				
	10	0.818		3		S				

ID	δ, ppm		Int CH		Mult	iplet	Commectivity		
¹ H	¹ H	¹³ C	¹ H	x =	Туре	J,Hz	HMBC	COSY	
1	3.97		1		ddd	10.00 3.48 1.80		2 7 6	
2	2.24		1		dddd	13.43 9.97 4.73 3.28		7 1 5 4	
3	1.86		2		М			4,6,10	
4	1.70		1		М			3,5,6,2	
5	1.59		1		dd	4.5- 4.6		2,4,8	
6	1.21		2		М			3,4,9	
7	0.92		1		dd	13.3 3.5		2 1	
8	0.838		3		S			5	
9	0.827		3		S			6	
10	0.818		3		S			3	

ID	δ, p	5, ppm		CH _x	Mult	iplet	Commectivity		
¹ H	¹ H	¹³ C	¹ H	x =	Туре	J,Hz	HMBC	COSY	
1	3.97	77.3	1	1	ddd	10.00 3.48 1.80		2 7 6	
2	2.24	39.0	1	2	dddd	13.43 9.97 4.73 3.28		7 1 5 4	
3	1.86	25.9	1		Μ			4,6,10	
4	1.70	28.3	1	2	М			3,5,6,2	
5	1.59	45.1	1	1	dd	4.5- 4.6		2,4,8	
6	1.21	28.3 25.9	2	2	Μ			3,4,9	
7	0.92	39.0	1	2	dd	13.3 3.5		2 1	
8	0.838	20.2	3	3	S			5	
9	0.827	18.7	3	3	S			6	
10	0.818	13.4	3	3	S			3	

	ID ¹ H	δ, ppm		Int	CH _x	Multiplet		Commectivity	
		¹ H	¹³ C	¹ H	x =	Туре	J,Hz	HMBC	COSY
	1	3.97	77.3	1	1	ddd	10.00 3.48 1.80	2C,3C, 5C, 6C, 9C	2 7 6
3	2	2.24	39.0	1	2	dddd	13.43 9.97 4.73 3.28	1C, 3C, 4C, 6C	7 1 5 4
	3	1.86	25.9	1		Μ		1C, 3C, 4C, 6C, 7C	4,6,10
	4	1.70	28.3	1	2	М		1C, 2C, 3C, 5C, 6C	3,5,6,2
	5	1.59	45.1	1	1	dd	4.5- 4.6	1C, 5C, 6C, 10C, 11C	2,4,8
	6	1.21	28.3 25.9	2	2	Μ		1C, 2C, 3C, 4C, 5C, 6C, 7C, 9C	3,4,9
	7	0.92	39.0	1	2	dd	13.3 3.5	1C, 3C, 4C, 7C	2 1
	8	0.838	20.2	3	3	S		3C, 7C	5
	9	0.827	18.7	3	3	S		3C, 7C	6
	10	0.818	13.4	3	3	S		1C, 5C, 6C, 7C, 11C	3

NOESY NMR in CDCl₃

NOE: 1-2, 1-Me, 2-Me

SOLVENT EFFECT

INSTITUT FÜR ORGANISCHE CHEMIE

THREE CUPS OF "MODERN NMR SPECTROSCOPY" ESPRESSO

Ilya G. Shenderovich

http://homepages.uni-regensburg.de/~shi56087/

Physical background of	NMR in practice	A research
NMR		lecture
1. Classical and quantum-	1. NMR in solution	NMR Study of
mechanical descriptions	1.1 From spectrum to structure	Hydrogen
2. T1 and T2 Relaxations	1.2. Typical protocol for	Bonding in
3. Chemical shift	structure elucidation	Solution
4. Spin-spin scalar coupling	2. NMR in the solid state	Down to 100 K
5. Spin systems of the first	2.1 Orientation-dependent interactions	
and the second orders	2.1 Measurements of	
6. Chemical exchange	internuclear distances	
7. Two-dimensional NMR	2.3 NMR of surfaces	
	and amorphous solids	

ARTIFICIAL SWEETENER "LEICHTE SUESSE KAUFLAND":

NATRIUMCÝCLAMAT, SACCHARIN, NATRIUMHÝDROGENCARBONAT, LACTOSE, NATRIUMCITRATE

"LEICHTE SUESSE KAUFLAND":

NATRIUMCYCLAMAT, SACCHARIN, NATRIUMHYDROGENCARBONAT, LACTOSE, NATRIUMCITRATE

"LEICHTE SUESSE KAUFLAND":

NATRIUMCYCLAMAT, SACCHARIN, NATRIUMHYDROGENCARBONAT, LACTOSE, NATRIUMCITRATE

ARTIFICIAL SWEETENER "LEICHTE SUESSE KAUFLAND":

- 1 Part Saccharin (4 mg/Tablet):
 - 300-400 times sweeter than Sucrose.
 - ii. 5 mg/kg body-weight (ca. 60 Tabletten, 275 g Sucrose).
- ^D iii. Do not provoke tooth decay.
 - iv. Has a bitter taste.
 - 12 Parts Natriumcyclamate (40 mg/Tablet):
 - _{Na[®]} i. 30 times sweeter than Sucrose.
 - ii. 7 mg/kg body-weight (ca. 9 Tablet, 39 g Sucrose).
 - iii. Provoke cancer?

0.015 Parts Lactose (a table top sweetene?):

i. Milk sugar, 6 times less sweet than Sucrose.

ÒН

Na⁺

CH₂OH

OH

OH

ΟН

- 1.4 Parts Natriumcitrate (shelf-life extension?):
- i. Acidity regulator.
- ii. Contributing a tart flavor.
- 4 Parts Sodium bicarbonate (shelf-life extension?):i. Baking soda. (dissolution assistance?)

INSTITUT FÜR ORGANISCHE CHEMIE

THREE CUPS OF "MODERN NMR SPECTROSCOPY" ESPRESSO

Ilya G. Shenderovich

http://homepages.uni-regensburg.de/~shi56087/

Physical background of	NMR in practice	A research
NMR		lecture
1. Classical and quantum-	1. NMR in solution	NMR Study of
mechanical descriptions	1.1 From spectrum to structure	Hydrogen
2. T1 and T2 Relaxations	1.2. Typical protocol for	Bonding in
3. Chemical shift	structure elucidation	Solution
4. Spin-spin scalar coupling	2. NMR in the solid state	Down to 100 K
5. Spin systems of the first	2.1 Orientation-dependent interactions	
and the second orders	2.1 Measurements of	
6. Chemical exchange	internuclear distances	
7. Two-dimensional NMR	2.3 NMR of surfaces	
	and amorphous solids	

Chemical shift anisotropy

H.Benedict, H.H.Limbach, M. Wehlan, W. P. Fehlhammer, N. S. Golubev, R. Janoschek, J. Am. Chem. Soc. 1998, 120, 2939

Magic-angle-spinning

Magic-angle-spinning

 $[(CO)_5Cr-C\equiv N\cdots H\cdots N\equiv C-Cr(CO)_5]^-$

H.Benedict, H.H.Limbach, M. Wehlan, W. P. Fehlhammer, N. S. Golubev, R. Janoschek, J. Am. Chem. Soc. 1998, 120, 2939

INSTITUT FÜR ORGANISCHE CHEMIE

THREE CUPS OF "MODERN NMR SPECTROSCOPY" ESPRESSO

Ilya G. Shenderovich

http://homepages.uni-regensburg.de/~shi56087/

Physical background of	NMR in practice	A research
NMR		lecture
1. Classical and quantum-	1. NMR in solution	NMR Study of
mechanical descriptions	1.1 From spectrum to structure	Hydrogen
2. T1 and T2 Relaxations	1.2. Typical protocol for	Bonding in
3. Chemical shift	structure elucidation	Solution
4. Spin-spin scalar coupling	2. NMR in the solid state	Down to 100 K
5. Spin systems of the first	2.1 Orientation-dependent interactions	
and the second orders	2.1 Measurements of	
6. Chemical exchange	internuclear distances	
7. Two-dimensional NMR	2.3 NMR of surfaces	
	and amorphous solids	

 $\vec{\mu}_{0} \qquad \vec{\mu}_{2} \qquad E_{d} = -\frac{|\vec{\mu}_{1}||\vec{\mu}_{2}|}{r^{3}} (1 - 3\cos^{2}\theta)$ $\vec{\mu}_{1} \qquad \vec{r} \qquad \mathbf{\hat{\mu}_{1}} \qquad \mathbf{\hat{r}} \qquad \mathbf{\hat{$ $E_{d} = \frac{\left|\vec{\mu}_{1}\right|\left|\vec{\mu}_{2}\right|}{r^{3}}\left(1 - 3\cos^{2}\theta\right)$ βα $E_{d} = -\frac{\left|\vec{\mu}_{1}\right|\left|\vec{\mu}_{2}\right|}{r^{3}}\left(1 - 3\cos^{2}\theta\right) \stackrel{\overrightarrow{B}_{0}}{\stackrel{\overrightarrow{\mu}_{2}}{\stackrel{\overrightarrow{\mu}_{2}}{\stackrel{\overrightarrow{\mu}_{1}}{\stackrel{\overrightarrow{r}}}}}}}}} \begin{pmatrix}\overrightarrow{\mu}_{1} \stackrel{\overrightarrow{\mu}_{1} \stackrel{\overrightarrow{r}}{\overrightarrow{r}}\stackrel{\overrightarrow{r}}{\stackrel{\overrightarrow{r}}{\stackrel{\overrightarrow{r}}{\stackrel{\overrightarrow{r}}{\stackrel{\overrightarrow{r}}}}}}} \begin{pmatrix}\overrightarrow{\mu}_{1} \stackrel{\overrightarrow{r}{\overrightarrow{r}}\stackrel{\overrightarrow{r}}{\stackrel{\overrightarrow{r}}{\stackrel{\overrightarrow{r}}}}}}} (1 - 3\cos^{2}\theta)$ $\vec{\mu}_{2}$ $E_{d} = \frac{\left|\vec{\mu}_{1}\right\|\vec{\mu}_{2}}{\pi^{3}} \left(1 - 3\cos^{2}\theta\right)$ $\alpha\alpha$ $\alpha\beta$

$$E_d = \frac{\vec{\mu}_1 \vec{\mu}_2}{r^3} \left(1 - 3\cos^2 \theta \right)$$

¹H-¹⁵N and ²H-¹⁵N dipolar interaction without CSA

Ch. Hoelger, H.H.Limbach, J. Phys. Chem., 1994, 98, 11803.

¹H MAS NMR @ 10 kHz

7 CH3-

BPh4

Ph. Lorente, I.G.Shenderovich, G.Buntkowsky, N.S.Golubev, G.S.Denisov, H.H. Limbach, Magn. Reson. Chem. 2001, 39, S18

¹⁵N CSA of solid 1:1 complexes of collidine-¹⁵N with acids

Ph. Lorente, I.G.Shenderovich, G.Buntkowsky, N.S.Golubev, G.S.Denisov, H.H. Limbach, Magn. Reson. Chem. 2001, 39, S18

¹⁵N-²H Dipolar Coupling

Ph. Lorente, I.G.Shenderovich, G.Buntkowsky, N.S.Golubev, G.S.Denisov, H.H. Limbach, *Magn. Reson. Chem.* 2001, *39*, S18

H/D isotop effect on chemical shift

chemical shift tensor

¹⁵N-²H dipolar coupling DND ~ R⁻³_{ND}

¹⁵N NMR Chemical Shift as a Measure of "Acidity"

Ph. Lorente, I.G.Shenderovich, G.Buntkowsky, N.S.Golubev, G.S.Denisov, H.H. Limbach, *Magn. Reson. Chem.* 2001, *39*, S18

Cross polarisation (CP) – before contact pulse

Cross polarisation (CP) –contact pulse

 $\omega_1(N) = \gamma_N B_{1\nu}(N) = \gamma_H B_{1\nu}(H) = \omega_1(H)$ Hartmann-Hahn condition

Cellulose Grafted with Aminocarboxyl Groups

R. Manriquez, F.A. Lopez-Dellamary, J. Frydel, T. Emmler, H. Breitzke, G. Buntkowsky, H.-H. Limbach, I.G. Shenderovich *J. Phys. Chem. B* **2009**, *113*, 934.

30% wet-tensile-strength improvement

L-Leucine Lyophilized at Different pH

Isotopically Labeled Aminocarboxyl Groups

Number of ¹⁵N in Close Proximity to ¹³C

Cellulose Grafted with Aminocarboxyl Groups

30% wet-tensile-strength improvement is provided by zwitterionic dimers organized in ribbons or tetramers

R. Manriquez, F.A. Lopez-Dellamary, J. Frydel, T. Emmler, H. Breitzke, G. Buntkowsky, H.-H. Limbach, I.G. Shenderovich J. Phys. Chem. B 2009, 113, 934.

INSTITUT FÜR ORGANISCHE CHEMIE

THREE CUPS OF "MODERN NMR SPECTROSCOPY" ESPRESSO

Ilya G. Shenderovich

http://homepages.uni-regensburg.de/~shi56087/

Physical background of	NMR in practice	A research	
NMR		lecture	
1. Classical and quantum-	1. NMR in solution	NMR Study of	
mechanical descriptions	1.1 From spectrum to structure	Hydrogen	
2. T1 and T2 Relaxations	1.2. Typical protocol for	Bonding in	
3. Chemical shift	structure elucidation	Solution	
4. Spin-spin scalar coupling	2. NMR in the solid state	Down to 100 K	
5. Spin systems of the first	2.1 Orientation-dependent interactions		
and the second orders	2.1 Measurements of		
6. Chemical exchange	internuclear distances		
7. Two-dimensional NMR	2.3 NMR of surfaces		
	and amorphous solids		

Pure siliceous materials

NMR of Surfaces

Mesoporous Silica Materials

MCM-41, SBA-15 silica

MCM-41, $\varnothing \sim 2 \div 4$ nm SBA-15, $\varnothing \sim 7 \div 20$ nm Surface $\sim 1000 \text{ m}^2/\text{g}$

¹H NMR at 300 K

D. Mauder, D. Akcakayiran, S. B. Lesnichin, G. H. Findenegg, I. G. Shenderovich J. Phys. Chem. C 2009, 113: 19185.

¹⁵N-pyridine as a sensor of "acidity"

P. Lorente, I.G. Shenderovich, N.S. Golubev, G.S. Denisov, G. Buntkowsky G., H.-H. Limbach Magn. Reson. Chem. 2001, 39: S18

¹⁵N NMR @ 130K

J. Albrecht, N.S. Golubev, G.H. Findenegg, H.-H. Limbach J. Phys. Chem. B 2003, 107: 11924-11939

¹⁵N NMR @ 300K

I.G. Shenderovich, G. Buntkowsky, A. Schreiber, E. Gedat, S. Sharif, J. Albrecht, N.S. Golubev, G.H. Findenegg, H.-H. Limbach J. Phys. Chem. B 2003, 107: 11924-11939

Pyridine dynamics inside MCM-41 and SBA-15 @ 300K

I.G. Shenderovich, G. Buntkowsky, A. Schreiber, E. Gedat, S. Sharif, J. Albrecht, N.S. Golubev, G.H. Findenegg, H.-H. Limbach J. Phys. Chem. B 2003, 107: 11924-11939

Inner surface of mesoporous silica

Rough surface SBA-15

Idealized surface MCM-41

Structure of Amorphous Materials Mesoporous Silica Materials

Universität Regensburg

Input exp.: Silanol density (3 nm⁻²); Pore diameter D; Lattice parameter a_0

Transmission electron microscopy

Circular Pores Model

Hexagonal Pores Model

MCM-41	Q ³ : Q ⁴		
	Exp.	circular	hexagonal
sample 1	0.32	0.27	0.35
sample 2	0.35	0.30	0.45

Distribution of the surface hydroxyl groups

Microporous and Mesoporous Materials 77 (2005) 1-45

Review

Ordered mesoporous materials in catalysis

Akira Taguchi, Ferdi Schüth *

Distribution of the surface hydroxyl groups

¹⁵N CPMAS NMR, 130K

Propionic Acid Functionalized SBA-15

A.A. Gurinov, D. Mauder, D. Akcakayiran, G.H. Findenegg, I.G. Shenderovich ChemPhysChem 2012, 2012, 13: 2282-2285.

Propionic Acid Functionalized SBA-15

Strong Acids Functionalized SBA-15

D. Mauder, D. Akcakayiran, S. B. Lesnichin, G. H. Findenegg, I. G. Shenderovich J. Phys. Chem. C 2009, 113: 19185.

Strong Acids Functionalized SBA-15

D. Mauder, D. Akcakayiran, S. B. Lesnichin, G. H. Findenegg, I. G. Shenderovich J. Phys. Chem. C 2009, 113: 19185.

Conclusion

Our ability to manipulate the chemical reactivity of a

surface by a fluid filling is limited by:

steric hindrance caused

by the structure of the surface

presence of

chemisorbed species