EXTENSION OF P-ADIC DEFINABLE LIPSCHITZ FUNCTIONS

We would like to prove

Theorem. 15 We work either in the Macintyre language or in the subanalytic language. Let $X \subset K^n$ and $f : X \to K$ be definable and λ-Lipschitz. There exists some λ-Lipschitz extension $\tilde{f} : K^n \to K$.

1. NOTATIONS AND PRELIMINARIES

We consider K a finite extension of \mathbb{Q}_p equipped with the canonical metric inherited from the p-adic norm $| \cdot |$. We equip K^n with the product metric. So, if $x = (x_1 \ldots x_n)$ and $y = (y_1 \ldots y_n) \in K^n$, by definition $d(x, y) = \max_{i=1 \ldots n} |x_i - y_i|$.

Write \mathcal{O}_K for the valuation ring, \mathcal{M}_K for the maximal ideal of K and k_K for the residue field. Let us fix ϖ some uniformizer of K. We denote by $\overline{\varpi}_m : K \to \mathcal{O}_K/(\mathcal{M}_K^m)$ the map sending some nonzero $x \in K$ to $x\varpi^{-\text{ord}(x)} \mod \mathcal{M}_K^m$, and sending zero to zero. This is a definable map. We denote by RV the union of $K^\times/(1 + \mathcal{M}_K)$ and $\{0\}$ and by $rv : K \to RV$ the quotient map. More generally, if $m \in \mathbb{N}^*$, we set $RV_m = K^\times/(1 + \mathcal{M}_K^n) \cup \{0\}$ and $rv_m : K \to RV_m$ the quotient map.

For $m, n > 0 \in \mathbb{N}$, we set

$$Q_{m,n} = \{ x \in K^\times \mid \text{ord}(x) \in n\mathbb{Z} \text{ and } \overline{\varpi}_m(x) = 1 \}.$$

A Lipschitz map will mean a 1-Lipschitz map.

Definition 1. A ball of K^n is a ball with respect to the metric d. In other words a ball is a set of the form

$$B = \{ (x_1 \ldots x_n) \in K^n \mid |x_i - c_i| \leq r \}$$

where $(c_1 \ldots c_n) \in K^n$ and $r > 0$ is a real number.

Lemma 2. If $\varphi : K^n \to K^n$ is an isometry, balls of K^n are stable under φ.

Proof. OK. \qed

Remark 3. Let us say that a box of K^n is a product of balls, that is to say some

$$\{ (x_1 \ldots x_n) \in K^n \mid |x_i - c_i| \leq r_i \}.$$ \{lemma:ball_isometry\}

We want to stress out that the above lemma does not hold for boxes. For instance, if $K = \mathbb{Q}_p$, any permutation of \mathbb{F}_p^2 induces an isometry of \mathbb{Z}_p^2, which can be extended to an isometry of \mathbb{Q}_p^2 extending by identity. For instance, let us consider an isometry φ which sends, for $i = 0 \ldots p - 1$, $p\mathbb{Z}_p \times (i + p\mathbb{Z}_p)$ to $(i + p\mathbb{Z}_p)^2$. Then $p\mathbb{Z}_p \times \mathbb{Z}_p$ is a box, but $\varphi(p\mathbb{Z}_p \times \mathbb{Z}_p)$ is not a box. \{lemma:R\}

Lemma 4. Let $x \in K^\times$, $B \subset K$ some ball and $\lambda \in K^\times$. Let $j \geq 2$ be an integer.

(1) If $x + B \subset \lambda Q_{j,1}$, then $rv(x + z)$ is constant for $z \in B$, and takes the value $rv(x)$.

(2) Let us assume that $k_K \neq \mathbb{F}_2$. If $x + B \subset \lambda Q_{1,1}$, then $rv(x + z)$ is constant on B, and takes the value $rv(x)$.
Proof. Let us prove (1). This amounts to prove that the the diameter of B is strictly less than $|x|$. Let us assume the contrary. Then $-x + wx \in B$. So $x + (-x + wx) = wx \in \lambda Q_{j,1}$. But this contradicts the fact that $x \in \lambda Q_{j,1}$.

(2) can be proven similarly. □

Remind [HM97, 3.1] that if $X \subset K^n$ is definable, the dimension of X, denoted by $\text{dim}(X)$ is the greatest integer k for which there is a coordinate projection $\pi : K^n \to K^k$ such $\pi(X)$ has non-empty interior. Some general properties of this dimension are studied in [HM97].

Lemma 5 ([HM97]). Let $X \subset K^n$ be definable.

(1) Let $f : X \to K$ be definable. There exists a definable $Y \subset X$ such that $\text{dim}(Y) < \text{dim}(X)$ and $f|_{X \setminus Y}$ is continuous.

(2) There exists a decomposition in definable sets $X = A \cup B$ where A is open and $\text{dim}(B) < n$.

Proof. (1) [HM97, Theorem 5.4].

(2) Indeed, take $A = \overset{5}{\overset{\circ}{X}}$, the topological interior of X, and $B = X \setminus A$. □

Proposition 6. Let $m \in \mathbb{N}^*$. Let $X \subset K^n$ and $f : X \to K^\times$ be some definable function. There exists a decomposition $X = A_1 \cup \ldots \cup A_M \cup B$ in definable sets such that $\text{dim}(B) < n$, the A_i’s are open, and $rv_m(f)$ is constant on any ball contained in some A_i.

We will implicitly use Lemma 5 (2) in this proof.

Proof. Since $RV_m \simeq \mathbb{Z} \times (\mathcal{O}_K / \mathcal{M}_K^m)^\times \cup \{0\}$, and that under this identification $rv_m \simeq | \cdot | \times |x|$, it is enough to prove local constancy for $| \cdot |$ and $|x|$. The last one is easy to perform since $(\mathcal{O}_K / \mathcal{M}_K^m)$ is finite, so we reduce to prove the proposition for $| \cdot |$ only. We do it by induction on n.

For $n = 0$ this is OK.

Let us assume this is true for n, and let $X \subset K^{n+1}$. Up to shrinking X, we can apply the p-adic cell decomposition Theorem, (see [Clu04, Theorem 2.3] for instance). So we can assume that X is a cell of the form

$X = \{(x,t) \in X' \times K \mid x \in X', |\alpha(x)|t - c(x)|1| \text{ and } t - c(x) \in \lambda Q_{j,k}\}$

where $X' \subset K^n$ is definable, $\lambda \in K^\times$, $\alpha, \beta : X' \to K$ are definable, \square_i are $<$ or no condition, and on X

$|f(x,t)| = |g(x)| \cdot |(t - c(x))^{a} \lambda^{-a}|^{\frac{1}{b}}$

for some integers $a, b \in \mathbb{N}$.

By induction hypothesis, and shrinking X' if necessary, we can assume that $|g(x)|, |\alpha(x)|, |\beta(x)|$ and $rv(c(x))$ are constant on balls of X', and so also on balls of X. Now, we add new conditions such as $t - c(x) \in \lambda Q_{j,1}$ for some $j \geq 2$. Then, thanks to Lemma 4, $rv(t - c(x))$ will be constant on balls of X, so in particular, $|t - c(x)|$ will be constant on balls of X. □
2. Technical results

Lemma 7. Let \(f : X \to K \) be some definable \(\lambda \)-Lipschitz function. There exists a unique \(\lambda \)-Lipschitz extension \(\overline{f} : \overline{X} \to K \) which is also definable.

Proof. OK.

Lemma 8. Let \(X \subseteq Y \subseteq K^n. \) Let \(r : Y \to X \) be some Lipschitz retraction. Then for all \(x \in Y \), \(|r(x) - x| = d(x, X) \) and \(X \) is necessarily closed in \(Y \).

Proof. Let us assume that \(|r(x) - x| > d(x, X) \), and let \(x' \in X \) such that \(|r(x) - x| > |x' - x| \). Then \(|r(x) - r(x')| = |r(x) - x'| + |x' - x| = |r(x) - x| + |x - x'| > |x - x'| \). This contradicts the fact that \(r \) is Lipschitz.

And \(X \) is closed in \(Y \) because if \(x_n \to x \) where \(x_n \in X \), then \(|r(x_n) - r(x)| = |x_n - r(x)| \leq |x_n - x| \to 0 \). So \(r(x) = x \in X \).

Lemma 9 (Tristan’s Gluing Lemma). Let \(X \subseteq K^n. \) Let \(X_i \subseteq X \) be a finite collection of definable sets and \(r_i : X \to X_i \) some definable Lipschitz retractions. Then there exists a definable Lipschitz retraction \(r : X \to \bigcup_i X_i \).

Proof. For simplicity, we can assume that there are two sets \(X_1, X_2 \). Define \(r \) by

\[
 r : X \to X_1 \cup X_2 \quad \begin{cases} r_1(x) & \text{if } d(x, X_1) \leq d(x, X_2) \\ r_2(x) & \text{otherwise.} \end{cases}
\]

Let \(x, y \in K^n \) and let us assume that \(|r(x) - r(y)| > |x - y| \). By definition of \(r \) this implies (up to permutation of \(x \) and \(y \)) that \(d(x, X_1) \leq d(x, X_2) \) and that \(d(y, X_1) > d(y, X_2) \), so that \(x' := r(x) \in X_1 \) and \(y' := r(y) \in X_2 \).

\[
 (1) \quad |x - y'| \geq d(x, X_2) \geq d(x, X_1) = |x - x'|.
\]

This again implies that

\[
 (2) \quad |x - y'| \geq \max(|x - x'|, |x - y'|) \geq |x' - y'|.
\]

Moreover

\[
 (3) \quad |y - x'| \geq d(y, X_1) > d(y, X_2) = |y - y'|.
\]

This again implies that

\[
 (4) \quad |y' - x'| = |(y' - y) + (y - x')| = |y - x'|.
\]

Finally

\[
 (5) \quad |x - y'| \geq |x' - y'| = |y - x'| > |y - y'|.
\]

This implies that

\[
 (6) \quad |x - y| = |(x - y') + (y' - y)| = |(x - y')| \geq |x' - y'|.
\]

Definition 10 ((Open) Cell centred in zero). If \(G \subseteq (RV_m \setminus \{0\})^n \) is non-empty and definable, we say that

\[
 C := rv_m^{-1}(G) \subseteq (K^\times)^n
\]
is an open cell centred in zero. We also say that
\[C' := C \times \{0, \ldots, 0\} \subset K^{n+k} \]
k times
is a cell centred in zero.

\{defi:monomial\}

Definition 11 (Monomial function). We say that a definable map \(f : X \subset (K^\times)^n \to \mathbb{Z} \) is monomial if there exists \(m \in \mathbb{N} \) such that \(f \) factorizes by some \((RV_m)^n\). By this we mean that there exists some definable map \(\tilde{f} : (RV_m)^n \to \mathbb{Z} \) such that \(f = \tilde{f} \circ \pi \) where \(\pi : K^n \to (RV_m)^n \) is the quotient map. This is equivalent to say that piecewise locally \(f \) is given by a monomial \(\prod_i |y_i|^{a_i} \) for some \(a_i \in \mathbb{Q} \).

The following lemma illustrates how this definition is useful to build centred cells.

\{lemma:newcell\}

Lemma 12. Let \(C = rv_m^{-1}(G) \subset K^n \) be some open centred cell. Let \(C' \subset K^{n+1} \) be a 1-cell over \(C \) defined by
\[C' = \{(y, t) \in C \times K \mid |\alpha(y)| \leq |t| \leq |\beta(y)| \text{ and } t \in \lambda Q_{m,n}\} \]
and let us assume that the definable maps \(|\alpha|, |\beta| : C \to \mathbb{Z} \) are monomial. Then \(C' \) is an open centred cell.

Proof. Follows from the definitions. \(\square \)

\{lemma:cellmon\}

Lemma 13. Let \(C \subset (K^\times)^n \) be some open centred cell. Let \(f : C \to \mathbb{Z} \) be some definable function, and let us assume that \(f \) is constant on any ball contained in \(C \). Then \(f \) is monomial.

Proof. Let us write \(C = rv_m^{-1}(G) \) for some definable \(G \subset (RV_m \setminus \{0\})^n \). Then for any \(g \in G \), \(rv_m^{-1}(g) \) is a ball. So \(f \) is constant on \(rv_m^{-1}(g) \), so \(f \) factorizes by \((RV_m)^n\), which by definition means that \(f \) is monomial. \(\square \)

\{lemma:Tristan\}

Lemma 14. Let \(G \subset (RV_m \setminus \{0\})^n \) be non-empty and definable. Let us assume that
\[(E) \quad (\overline{w}_m(g_1) \ldots \overline{w}_m(g_n)) \text{ is constant for all } (g_1 \ldots g_n) \in G. \]

Let
\[C := rv_m^{-1}(G) \subset (K^\times)^n \]
be the associated open cell centred in zero. Let \(G' \subset \mathbb{Z}^n \) be the projection of \(G \), and let
\[C' := \text{ord}^{-1}(G') \subset (K^\times)^n. \]

Then there is a definable Lipschitz retraction \(r \) from \(C' \) to \(C \).

Proof. The set \((O_{K^\times}/1 + M_K^n)\) is finite, of size \(N = (q-1)q^{n-1} \) to be precise. Let
\[1 = \xi_1, \xi_2, \ldots, \xi_N \subset O_{K^\times} \]
be a set of representatives. So if \((u_1 \ldots u_n) \in (RV_m)^n\) and \((\gamma_1 \ldots \gamma_n) = \text{ord}(u_1 \ldots u_n) \in \mathbb{Z}^n \), and if we set \(A = rv_m^{-1}(u_1 \ldots u_n) \) and \(B = \text{ord}^{-1}(\gamma_1 \ldots \gamma_n) \), one has the following decomposition
\[B = \prod_{(\xi_1 \ldots \xi_n)} (\xi_1 \ldots \xi_n) \cdot A. \]
So by definition of C and C', if $x \in C'$, there exists some unique n-uple $(i_1 \ldots i_n)$ such that $(\xi_{i_1} \ldots \xi_{i_n})x \in C$. We define the retraction r as follows.

$$r : \ C' \to C \quad x \mapsto (\xi_{i_1} \ldots \xi_{i_n})x \text{ where } (i_1 \ldots i_n) \text{ is such that } (\xi_{i_1} \ldots \xi_{i_n})x \in C.$$

Let us check that r is Lipschitz by a tedious disjunction case. Let $x = (x_1 \ldots x_n)$ and $y = (y_1 \ldots y_n) \in C'$. Let $(\xi_{i_1} \ldots \xi_{i_n})$ (resp. $(\xi'_{i_1} \ldots \xi'_{i_n})$) be the tuple that appears in the definition of r. Let us fix some index $j \in \{1 \ldots n\}$.

Case 1. Let us assume that $|x_j| = |y_j|$.

Case 1.1. Let us assume that $\overline{rv}_m(x_j) = \overline{rv}_m(y_j)$. Then the condition (E) implies that $\xi_{i_j} = \xi'_{i_j}$. So

$$|r(x_j) - r(y_j)| = |\xi_{i_j}(x_j - y_j)| = |x_j - y_j|.$$

Case 1.2. Let us assume that $\overline{rv}_m(x_j) \neq \overline{rv}_m(y_j)$. This implies that $|x_j - y_j| \geq |\overline{v}^{m-1}| |x_j|$. Finally, by construction, $rv_m(r(x)_j) = rv_m(r(y)_j)$, so $|r(x)_j - r(y)_j| \leq |\overline{v}^m| |x_j|$. So

$$|r(x_j) - r(y_j)| \leq |\overline{v}^m| |x_j| < |x_j - y_j|.$$

Case 2. $|x_j| < |y_j|$. Then

$$|x_j| = |r(x)_j| < |r(y)_j| = |y_j|.$$

So

$$|r(x)_j - r(y)_j| = |r(y)_j| = |y_j| = |x_j - y_j|.$$

□

3. STATEMENT OF THE MAIN RESULT

A retraction from K^n to a subset $X \subset K^n$ is a map $r : K^n \to X$ which is the identity on X.

Theorem 15 (T_n). Let $X \subset K^n$ and $f : X \to K$ be definable and λ-Lipschitz. Then there exists some λ-Lipschitz extension $\tilde{f} : K^n \to K$.

This is a direct corollary of this proposition.

Proposition 16 (P_n). Let $X \subset K^n$ be definable and closed. There exists a definable Lipschitz retraction $r : K^n \to X$.

Remark 17. (1) If we do not assume X to be closed, this is false. For instance there is no continuous retraction from K^\times to K.

(2) The Archimedean analogue of this proposition is false. For instance there is no continuous retraction $r : \mathbb{R} \to \{-1, 1\}$. However, when $X \subset \mathbb{R}^n$ is a closed convex set, the projection $r : \mathbb{R}^n \to X$ to the closest point of X is a Lipschitz retraction.

(3) In this form, the analogue of Proposition 16 does not hold for ACVF. Indeed let L is an algebraically closed valued field, and let $X = \{x \in L \mid |x| > 1\}$. Then X is a closed set, but one can check that there is no Lipschitz retraction from $r : L \to X$.

If we drop the definability condition, it is easy to prove that when $X \subset K^n$ is any closed subset, there is a Lipschitz retraction $r : K^n \to X$. This follows by Zorn’s Lemma, and the remark that if $z \notin X$, if $x \in X$ satisfies $d(z, x) = d(z, X)$, then the map $X \cup \{z\} \to X$ which sends z to x and is the identity on X is Lipschitz.

Proof of Theorem 15. Let $\overline{f} : \overline{X} \to K$ be the definable λ-Lipschitz extension of f (see Lemma 7). Let $r : K^n \to \overline{X}$ be some definable Lipschitz retraction as in Proposition 16. Then $\overline{f} = \overline{f} \circ r$ extends f, and is λ-Lipschitz.

Proof. We start the proof of Proposition 16. We do this by induction on $\dim(X)$. According to Proposition 6, we can find a decomposition $X = \bigcup_{i=1}^{m} X_i$ in definable sets, and for each i some definable isometry $\varphi_i : K^n \to K^n$ such that if we set $C_i := \varphi_i(X_i)$, then C_i is a cell centred in zero.

Case 1. Let us assume that X is a 0-cell over Y. This means that $X = Y \times \{0\}$. By induction hypothesis (\(Q_{n-1}\)), there exists a definable isometry $\psi : K^{n-1} \to K^{n-1}$ such that $Y' := \psi(Y)$ is a centred cell. Then $\varphi = \psi \times \text{id} : K^n \to K^n$ is a definable isometry such that $\varphi(X) = Y' \times \{0\}$ which is a centred cell.

Case 2. Let us assume that X is a 1-cell over Y. This means that there exist some definable maps $\alpha, \beta : Y \to K$, some $\lambda \in K^{\times}$ and $m, n > 0$ some integers such that

$$\chi(X) = \{(y, t) \in Y \times K \mid |\alpha(y)| \leq |t| \leq |\beta(y)| \text{ and } t \in \lambda Q_{m,n}\}.$$

By induction hypothesis (\(R_{n-1}\)) (see Lemma 19 below), cutting Y in finitely many pieces, and up to isometry, we can assume that $Y \subset K^{n-1}$ is a centred cell and that $|\alpha|, |\beta| : Y \to \mathbb{Z}$ are monomial. So we conclude with Lemma 12.

(\(Q_{n-1}\)), there exists a definable isometry $\psi : K^{n-1} \to K^{n-1}$ such that $Y' := \psi(Y)$ is a centred cell.

Proof. According to Proposition 6, we can find a decomposition $X = A_1 \cup \ldots \cup A_m$ in definable sets such that for each $A = A_i$, there is a definable isometry $\varphi : K^n \to K^n$ such that $\varphi(A)$ is a centred cell and $\varphi_{*}(f)$ is monomial.
constant on each ball of A_i. Thanks to (Q_n), for each i we can find a decomposition
$A_i = \bigcup_{j=1}^{n_i} A_{i,j}$ and definable isometries $\varphi_{i,j}$ of K^n, such that $\varphi_{i,j}(A_{i,j})$ is a centred
cell. For each (i, j) we face two possibilities.

Case 1. $A_{i,j}$ is an open centred cell. Then $(\varphi_{i,j})_*(f)$ takes constants values on
balls, because this property is invariant under isometry. In addition, the domain
of $(\varphi_{i,j})_*(f)$ is $\varphi_{i,j}(A_{i,j})$ which is an open centred cell. Thanks to Lemma 13,
$(\varphi_{i,j})_*(f)$ is monomial.

Case 2. $A_{i,j}$ is not an open centred cell. Then $\dim(A_{i,j}) < n$.

Conclusion. Let us denote by B_k the $A_{i,j}$ which are open cells around zero, and
by C the union of B and the others $A_{i,j}$. Thanks to case 1, we are done with the
B_k’s. Moreover $\dim(C) < n$. Thanks to (Q_n) we can find a decomposition $C = \bigcup C_l$
such that up to some isometry, C_l is a centred cell such that $\dim(C_l) < n$. This
means that (up to a permutation of the coordinates), we can write $C_l = C'_l \times \{0\}$ for
some $C' \subset K^{n-1}$. So we apply (R_n-1) to the induced maps $C'_l \to Z$ to conclude.

Corollary 20 (S_n). Let $X \subset K^n$ a definable set such that $\dim(X) < n$. Then
there exists a definable Lipschitz retraction $r : K^n \to \overline{X}$. In addition, any definable
Lipschitz function $f : X \to K$ can be extended in a definable and Lipschitz way.

Proof. Indeed, thanks to Lemma 18, we can assume (up to an isometry) that there
exists some definable $X' \subset K^{n-1}$ such that $X = X' \times \{0\}$. So we can apply our
induction hypothesis (P_{n-1}) to conclude.

Thanks to Lemma 18 and the above result, it is enough to prove Proposition 16
for C where C is an open cell centred in zero.

Lemma 21. Let $U \subset \mathbb{Z}^{n-1}$ be definable. Let $\alpha, \beta : \mathbb{Z}^{n-1} \to \mathbb{Q}$ some linear forms
(with possibly $\alpha = -\infty$ and $\beta = +\infty$) such that for any $u \in U$ there exists some
$v \in \mathbb{Z}$ with $\alpha(u) \leq v \leq \beta(u)$. Let us set

$$V = \{(u, v) \in \mathbb{Z}^n \mid u \in U \text{ and } \alpha(u) \leq v \leq \beta(u)\}.$$

Let us also assume that

$$(C) \quad \{(\gamma_1, \ldots, \gamma_n) \in V, \text{ one has } \gamma_n \geq \gamma_i \text{ for } i = 1 \ldots n.$$

Then there exists some definable Lipschitz retraction $r : K^{n+1} \to \overline{\text{ord}^{-1}(V)}$.

Proof. **Step 1.** We first construct a retraction $\text{ord}^{-1}(U \times \mathbb{Z}) \to \overline{\text{ord}^{-1}(V)}$.

Let $f_+ : \text{ord}^{-1}(U) \to \overline{\text{ord}^{-1}(V)}$ be some Skolem function which satisfies $\text{ord}(u, f_+(u)) = (\text{ord}(u), [\alpha(u)])$ for all $u \in \text{ord}^{-1}(U)$, where $[\cdot]$ stands for the ceiling function.

Similarly, let $f_- : \text{ord}^{-1}(U) \to \overline{\text{ord}^{-1}(V)}$ be a Skolem function which satisfies
$\text{ord}(u, f_-(u)) = (\text{ord}(u), [\beta(u)])$ for any $u \in \text{ord}^{-1}(U)$. Let us set

$$H = \{(u, f_+(u)) \mid u \in \text{ord}^{-1}(U)\} \cup \{(u, f_-(u)) \mid u \in \text{ord}^{-1}(U)\}.$$

By construction, $H \subset \text{ord}^{-1}(V)$. Then $\dim(H) = \dim(\overline{H}) = n-1$ and $\overline{H} \subset \overline{\text{ord}^{-1}(V)}$. By induction hypothesis (S_n), we can find $s : K^n \to \overline{H}$ some Lipschitz retraction.

We then define our retraction like this:

$$r : \text{ord}^{-1}(U \times \mathbb{Z}) \to \overline{\text{ord}^{-1}(V)}$$

$$z \mapsto \begin{cases} z \text{ if } \text{ord}(z) \in V \\ s(z) \text{ if } \text{ord}(z) \notin V \end{cases}$$
Let us prove that \(r \) is Lipschitz. Let us consider \(z = (y, x) \) and \(z' = (y', x') \in ord^{-1}(U \times Z) \) and let us prove that \(|r(z) - r(z')| \leq |z - z'| \).

If \(z = (y, x) \) and \(z' = (y', x') \) belong simultaneously to \(ord^{-1}(V) \) or \(ord^{-1}(V)^c \), then \(|r(z) - r(z')| \leq |z - z'| \) because identity and \(s \) are Lipschitz. So we will assume that \(ord(z) \in V \) and \(ord(z') \notin V \). This implies that \(ord(z) \neq ord(z') \).

Since \(|(y, x) - (y', x')| = \max |y - y'|, |x - x'| \) it follows that \(|(y, x) - (y', x)| \) and \(|(y', x) - (y, x')| \) are less or equal than \(|(y, x) - (y', x')| \). So we can assume that \(x = x' \) or \(y = y' \).

Case 1: \(x = x' \). So \(z = (y, x) \in ord^{-1}(V) \) and \(z' = (y', x) \notin ord^{-1}(V) \). So \(|y| \neq |y'| \). For simplicity, let us assume that \(|y| \neq |y'| \). In particular, \(|z - z'| \geq |y_1| \). Let \(z'' = (y, f_-(y)) \in ord^{-1}(V) \) (here we might also have taken \(f_+ \)). Since \(z, z'' \in ord^{-1}(V) \), according to condition \((C) \), \(|f_-(y)| \leq |y_1| \) and \(|x| \leq |y_1| \).

So \(|z - z''| = |x - f_-(y)| \leq |y_1| \leq |z - z'| \).

Likewise

\[|z'' - z'| = \max(|y - y'|, |x - f_-(y)|) \leq \max(|y - y'|, |y_1|) \leq |z - z'| \]

So it suffices to show that \(|r(z) - r(z'')| \leq |z - z''| \) and that \(|r(z'') - r(z')| \leq |z'' - z'| \).

Since \(z, z'' \in ord^{-1}(V) \), \(r(z) = z \) and \(r(z'') = z'' \) and this implies the first inequality. Finally, \(z'' \in H \) and \(z' \notin ord^{-1}(V) \) so by definition of \(r \), \(r(z'') = s(z'') \) and \(r(z') = s(z') \). Since \(s \) is Lipschitz, \(|r(z'') - r(z')| = |s(z'') - s(z')| \leq |z'' - z'| \).

Case 2: \(y = y' \). So \(z = (y, x) \in ord^{-1}(V) \) and \(z' = (y, x') \notin ord^{-1}(V) \).

Case 2.1. Let us assume that

\[|x' < \alpha(|y|) \leq |x| \leq \beta(|y|) \]

So \(|z - z'| = |x - x'| = |x| \). Let us consider \(z'' = (y, f_-(y)) \). Then

\[|x'| < |f_-(y)| = \frac{|\alpha(|y|)|}{|x|} \leq |x| \]

So

\[|z' - z''| = |f_-(y)| \leq |x| \leq |z - z'| \]

Likewise

\[|z'' - z| = |f_-(y) - x| = |x| \leq |z - z'| \]

So it suffices to show that \(|r(z'') - r(z')| \leq |z'' - z'| \) and that \(|r(z) - r(z'')| \leq |z - z'| \). The first inequality is true because \(r(z') = z' \) and \(r(z'') = z'' \) since \(z', z'' \in ord^{-1}(V) \). The second inequality is true because \(z'' \in H \) and \(ord(z) \notin V \) so by definition of \(r \), \(r(z'') = s(z'') \) and \(r(z) = s(z) \) and \(s \) is Lipschitz.

Case 2.2. Let us assume that

\[\alpha(|y|) \leq |x| \leq \beta(|y|) < |x'| \]

So \(|z - z'| = |x - x'| = |x'| \). Let us consider \(z'' = (y, f_+(y)) \). Then

\[|f_+(y)| = |\beta(|y|)| < |x'| \]

So

\[|z' - z''| = |x' - f_+(y)| = |x'| = |z - z'| \]

Likewise

\[|z'' - z| = |f_+(y) - x| \leq |f_+(y)| = |\beta(|y|)| < |x'| = |z - z'| \]

So it suffices to show that \(|r(z'') - r(z')| \leq |z'' - z'| \) and that \(|r(z) - r(z'')| \leq |z - z'| \). The first inequality is true because \(r(z') = z' \) and \(r(z'') = z'' \) since
Lemma 22. Let \(U \subset \mathbb{Z}^{n-1} \) be definable. Let \(a, b \in \mathbb{Z} \) with \(a > 0 \). Let \(\alpha, \beta : \mathbb{Z}^{n-1} \to \mathbb{Q} \) some linear forms (with possibly \(\alpha = -\infty \) and \(\beta = +\infty \)), such that for any \(u \in U \) one has \(\alpha(u), \beta(u) \in a\mathbb{Z} + b \) and there exists some \(v \in \mathbb{Z} \) with \(\alpha(u) \leq v \leq \beta(u) \). Let us set

\[
V = \{(u, v) \in \mathbb{Z}^n \mid u \in U, v \in a\mathbb{Z} + b \text{ and } \alpha(u) \leq v \leq \beta(u)\}
\]

\[
V' = \{(u, v) \in \mathbb{Z}^n \mid u \in U \text{ and } \alpha(u) \leq v \leq \beta(u)\}
\]

Then there exists some definable Lipschitz retraction \(r : \text{ord}^{-1}(V') \to \text{ord}^{-1}(V) \).

Proof. Define \(r \) by

\[
r : \text{ord}^{-1}(V') \to \text{ord}^{-1}(V),
\]

\[
(x_1 \ldots x_n) \mapsto (x_1 \ldots x_{n-1}, \varpi^i x_n) \text{ where } i \in \{0 \ldots a - 1\}
\]

is the unique index such that

\[
(x_1, \ldots x_{n-1}, \varpi^i x_n) \in \text{ord}^{-1}(V).
\]

Proof of Proposition 16: \((\mathcal{P}_n)\). Thanks to Lemma 9 and 18, it is enough to prove that for any centred cell \(C = rv_m^{-1}(G) \subset K^n \), there exists a definable Lipschitz retraction \(r : K^n \to \overline{C} \).

In fact, cutting \(G \) in finitely many parts, we can even assume that \(G \) satisfies the condition (E) of Lemma 14. So we can apply Lemma 14, and then assume that \(C \) is of the form \(\text{ord}^{-1}(G) \) for some definable \(G \subset \mathbb{Z}^n \).

For each \(i \) we introduce

\[
G_i = \{ (\gamma_1 \ldots \gamma_n) \in \mathbb{Z}^n \mid \gamma_i \geq \gamma_j \text{ for } j = 1 \ldots n\}.
\]

Then \(G = \bigcup_{i=1}^n G_i \). If we fix \(i \), up to a permutation of the coordinates, we can assume that \(G_i \) satisfies the condition (C) in Lemma 21. Finally, one can cut a definable set of \(\mathbb{Z}^n \) in a finite number of pieces of the form \(\text{ord}^{-1}(V) \) as in Lemma 22. So if we use 22 and 21, we can apply Lemma 21 which ends the proof.

4. Pedagogical example: the case of dimension 1

We want to sketch a proof of Proposition 16 when \(n = 1 \).

Proof of Proposition 16 when \(n = 1 \). We can assume that \(X = rv_m^{-1}(G) \).

If \(G \subset RV_m \setminus 0 \) is a singleton, then it is a ball. Let us pick some point \(x \in C \). The map extended outside \(C \) by the constant map to \(x \) is a definable Lipschitz retraction.
Let us assume that there exist $a \in \mathbb{N}^*$, $b_0, b_1 \in \mathbb{Z}$ and $c \in (O_K/M_{MK}^m \mathbb{K})^\times$ such that

$$G = \{ x \in RV_m \mid b \leq \text{ord}(x) \in -a\mathbb{N} + b \text{ and } \overline{w}_m(x) = c \}.$$

So G has a component at infinity. Let us consider S some system of representatives for $K^\times/Q_{m,a}$, say $\varpi^i\xi$ for $i = 0 \ldots a-1$, and ξ some representatives of $(O_K/MK^m)^\times$. Then one easily checks that if ord$(x) \leq b$, there is a unique $\varpi^i\xi \in S$ such that $p^i\xi x \in C$. Finally let us pick d a point in

$$B = \{ z \in K \mid \text{ord}(z) = b \text{ and } \overline{w}_m(z) = c \}.$$

So B is the ball of smallest radius of C. We then define r as follows.

$$r : \quad K^\times \rightarrow C$$

$$x \mapsto \begin{cases} x & \text{if } x \in C \\ \varpi^i\xi x & \text{if ord}(x) \leq b \\ d & \text{if ord}(x) > b \end{cases}$$

One checks by a tedious case disjunction that r is Lipschitz.

Let us assume that there exist $a \in \mathbb{N}^*$, $b_0, b_1 \in \mathbb{Z}$ and $c \in (O_K/M_{MK}^m \mathbb{K})^\times$ such that

$$G = \{ x \in RV_m \mid a\mathbb{N} + b \geq \text{ord}(x) \in \text{ and } \overline{w}_m(x) = c \}.$$

Let us consider S some system of representatives for $K^\times/Q_{m,a}$, say $\varpi^i\xi$ for $i = 0 \ldots a-1$, and ξ some representatives of $(O_K/MK^m)^\times$. Then one easily checks that if ord$(x) \leq b$, there is a unique $\varpi^i\xi \in S$ such that $p^i\xi x \in C$. Finally let us pick d a point in

$$B = \{ z \in K \mid \text{ord}(z) = b \text{ and } \overline{w}_m(z) = c \}.$$

So B is the ball of greatest radius of C. We then define r as follows.

$$r : \quad K^\times \rightarrow C$$

$$x \mapsto \begin{cases} x & \text{if } x \in C \\ \varpi^i\xi x & \text{if ord}(x) \geq b \\ d & \text{if ord}(x) < b \end{cases}$$

One checks by a tedious case disjunction that r is Lipschitz.

Any definable set $G \subset RV_m$ is a finite union of sets of the above form. So we can conclude using Lemma 9. \square

References

