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Preface

Arround 1964 Cassels and Pfister initiated a theory of
guadratic forms over function fielde in erbitrary umany variableo,
cf. the last chapter of Lam's Kingston lectures. The discovery
that interesting theorems can be proved for gquadratic forme cver
such complicated fieldsihad a étrohg sppcal to many algebrailsts,
and in the last 12 years the theory of quadratic forme over
fields has been pushed forward considerably. But despite the
remarkable prog:ess'ané the-SGmetimesfvéry ingenious arguunents
this algebraic theory of quadratic forms over fields is to my
opinion not a fully adequate response to tﬁe general hope oT
velief that a rich and interesting theory of quadratic forms
ovér function ficlds is poésible. There should exist an "alge-
braic geometry of quadratic forms" to understand quadratic forms
over function fields in much the same way as algebraic geomtry

is known to be needed to understand function fields therselves.

-For this"algebraic.geometry of quadratic forms the classi-
cal language of algebraic gebmétry is uncsuited. Indeed, the
classical language assumes the presence of an algebraically
closed base field. This would spoil meny interesting phenomena
of quadratic forms, since -1 would be a square in every function

ring. Thus we are urged to use Grothendieck's language of schemeg.

v We'then should also admit schemes X with 2 not a unit in
 the ring 6(X) of global functions. This means that we have to

develop two theories, one for symmetric bilinear forms and one



-1056-

for truly quadratic forms, and that we have to study also the
relations between these theories (e.g. tensor products of

*
symmetric bilinear forms with quadrstic forms, cf. [MH,p.111] )

for X affine).

*%)
Around 1967 I started - not always in the right way /-

such a theory for symmetric bilinear forms over schemes [K].
Since then good progress has been made in the local part of
this theory (symmetric bilinear forms over local rings). But

on the global side only few concrete results have been obtained.

The reason for this just seems to be that not too many

mathematicians have spent much effort in this area. For example

up to now nobody seeme to have computed the Witt ring of the

- spheres Spec,P[xo,...,xn]/( g xi - 1) over the field P of real
‘numbers. In recent years many papers have been written on
hermitian and quadratic forms over rings with involution, =2
subject which virtually includes the affine part of our theory.
But most often‘the authors have been led by a totaily different

motivation, for example surgery theory. ) ‘ I

The aim of these lectures is to stimulate interest in the
global theory of symmetric bilinear forme over schemes. Quadratic
formes are important as well but have not been inclucded for lack

of time. It is reasonable to study instead of symmetric bilirear

*) references at the end of the lectures.

**%) In [K] the definition of the Witt ring W(X) is not the right
one if X is not affine.
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forms more generally hermitian forms over schenes with in-
volution (cf. e.g. the introduction in fk5}), but I refrrined
from this enlargement of the theory here to kecp the conplexity

of our notions as lcw as possible,

It probably is a long way to push our theory r=o far that
good -applications can be made on a iarge scale te quadratic
Torme over function fields. Up to now cuch applications are
visible only for curves, and here the role of corpletc cchemes
is impressive. But of course our theory rhould heve - ac the

usual algebraic geometry - enough meaning by hergel? onc¢ allcw

other applications. The last chapter of the lectures seens to

d

indicate that the Witt rings W(X) studied here ére sﬂgnificant

to understand the set of real points on an algebraic variety
defined over the field R of real numbers. For another epplice-
tion see my talk "Real closures of algebraic varietics" at this
conference. After all our lectures may well be regarded a chuptew
of algebraic K-theory as first visualized by Grothendieck in hisc

work on the Riemann-Roch theorem.

The written version of the lecturés is quite a bit longer
than the oral version, since I had to replace a lot of sketches
and handwaving by solid arguments. I further added two sectiong
and three appendices, marked by astericke, to the umaberial of
the oral lectures +to illustrate and to round off the rcsulte
displayed there. These sections and appendices are not necescary

for an understanding of the other sections. But they arc casily

accessible to anybody who is acquainted with the nain parts of
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the lectures.

I want to thank the staff at Queen's and in particular
Grace Orzech and Paulo Ribenboim for three very pleasant weeks
at Kingston and my audience in the first two weeks for great

endurance.
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Chapter I  Definition of the Grothendieck-Witt ring L(X) and

the Witt ring W(X).

§ 1 Bilinear spaces

Let X be an arbitrary scheme, not necersarily seperated,

o Py

i.e. a "prescheue"

in the terminolegy of Grothendieck's blue
booke [EGa]. We dencte by &, or simply by 6 the structure cheoef
of X. Thue for every open sebt Z c X {he set of cections 6(Z) of
6 over Z is a coumubtative ring with 1 and for an open 2' < I
the restriction map £ - f!Z' from 6(Z) to ¢(Z') is a ring honc-
morphism (mapping 1 tc 1). For x a point of X we denote by 6

the stalk of 6 at x,

6 = lim 6(2)
X —
43x
with Z rurning through the open.neighbourhoods of x. This is a

local ring whose maximal ideal will be denoted by L -

More generally we regard - as nowadays usual - any sheaf
T of abelian groups over X as a functor Z p F(2) from the cate-
gory of open sets of -4 to the category of ahelian groups. The
morphisms of the‘first category are the inclusion naps 2' - 2
existing whenever Z' is contained in Z. Thus for every bair of

Lol

open sets Z',Z2 with 2' ¢ Z we have a "restriction homororphism"

from F(Z) to F(Z') which we denote usually by £ =» f|Z2'. That

thic functor F is o sheaf means by definition that the fellowing
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condition holds true:

Sheaf condition: If Z is an open set in X, and {Zn}qFI ie an

open covering of Z, end if ifo‘a@l is & farily of sections

f €F(2) withf |2 n 2, =72 n 3, whenever Z_ n Z, ie non |
& F(Z,) ol “a g Rl %a B c R ° il
empty, then there existe a unique section f € F(Z) over Z with

~
1

Z =1 for all c.
o o

Notice that this condition implies ¥(¢¥)} = C for the empby
set ¢, and that fora functorF with ¥(#) = C the condition

1t

4, N 2y non empty" sbove can te dropped.

Cur sheaf ¥ of shelian groups is called an 6-mocdule if
every F(Z) is an (uaitary) 6(Z)-mcdule and the restriction homo-
rnorphisms F(Z) -» F(Z2') are compatible with the ring homomorphisns

6(Z) =» ¢(Z') in the obvious sense. Then every stalk

F_ = 1lim F(2)
X
x€2

is a module over the local ring Gx’ A homomorphism n:F' o Fﬂ fron

F to another 6-module Fq consists of a system of 6(Z)-rodule

homomorphisms

1y + ¥(2) »F,(2)

such that for every pair of open sets Z' < 2 the diagran

F(2) ——EE—-—

> Fﬂ(z)
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with the restriction waps as the vertical arrows conmutes.

In this way we obtain the "castegory of ©-modules". Clearly

homomorphism o:F A.Fq is an isomorphism in our cztegory if

and only if all 0, are bijective. It follows easily fron the
sheaf condition that o is already an isomorphism if the induced
@X—homomorphisms

o, : EX—»I',b:

on the stalks at all points x of X are bijective.

If 2 is a fixed open sukset of X then we ohtain fror cvery

Gy-module F an &, -module F|Z by restricting the Iunctor F to ilc

category of open subeets of Z, called the restriction of the

Bx-module F to Z.

After these preliminaries we come to our firsest cefinition.

Definition 1. A vector bundle E on X is an ®-nodvle E which is
locally free of finite rank, i.e. for every point x of 4L there

exists an open neigpbourhood Z of x such that the @Z—module EiZ
is isomorphic to the free ®Z4module @;X for some natural nunber

n. We call n, the local rank of E at x and call the locally

constant function x -+ n, on X the rank rkE of E. If X ies connected

then rkE of course is a constant.

Remark. Actually the word fvectqf bundle" here is an sbuse of
language. Vector bundles in the propef sense are definec in
[EGA,II § 1.7]. The locally free G6-modules of finite rank are

the sheafs of sections of.these honest vector buncles and correcc-

pond with them in a unique way.
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If X is affine, i.e. X = Spec(d) with & the commutative
ring 6(X), then every vector bundle E over X is uniquely deter-—

mined by the A-module P := E(X), since E is certainly "quaci-

coherent" [EGA I § 1.4]. P is a finitely generated projective i
A-module. We obtain in this way an equivalence of the category
of vector bundles over X and the category of finitely generated

projective modules over &, cf. [Bb,II § 57,

For E a vector bundle over an arbitary cchere X we denote

by E* the dual vector bundle of E, defined as follows. E¥(Z) is

the set of homomorphisms from the OZ-module ElZ to the Gz—module

Gp. Any such homomorphism a:E|Z - ©, can be nultiplied with

cections of 0(Z) in an obvious way, and E¥*(Z2) is an 6(2) module.

Furthermore for 2' < Z the homomorphism a yieldes a homnonorphismn

1

o' from E|Z' to GZ' by looking oﬁly at the open subsets of Z'.

This map am a' is the restriction nap from E¥(Z) to E¥(Z').

Ir E,Z = @%, then also E*IZ ES 92. Thus E* is indeed again a
vector bundle. For affine open sets Z of X we clearly can identify

E*(Z) with the set of 6(Z)-linear maps from E(Z) to 6(2),

E*(Z) = Homg(z) (E(Z) ,@(Z)).

We also have

E; = Homgy(ﬁx,gx)

for any x in X.

For u in E(Z) and o in E*(Z) we cenote by <u,c> the elewent

cr(u) of 8(Z). {Recall that a yields in perticular s Gap a. frow
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E(Z) to »(2)}. Consider now the dual vechcr huncle I** of E*,

Then we can easily establich a homowmorphiswm 7:Z » S¥* iy g

unique way such that

<a,k(u)> = <u,o>

for u in E(Z), e in E*¥(Z). For any x in X the incduced rap

. *
KX.EX > (E* )X,

coincides with the well known isomorphisw fren the free |-

<

rodule E_ onto ite bidual. Thus ¥ is an irororphicr. We ususlly

identify E and I**,

We also introduce for a vector bundéle E cver X ithe chesaf

E Xy E defined by

(B >y E)(Z) := E(2) x E(2)

with obvious restriction maps. The stalk of E o L =t a point

©
o)

x is EX b3 EX which justifies our fibre product notation to scume

extent.

Definition 2. A symmetric bilihear form B on the vector bundle

E is a morphism

B:EXXE-»G

in the category of sheaves over X, such that for every open 2

the map

B, : E(Z) % E(Z) » 6(2)

is a symmetric bilinear form on the &(Z) module E(Z).
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Clearly then B slso yields a symmetric bilineer form BX

on the free GX—module EX for every x in X.

B induces for each open Z map

0y * E(Z) » E*¥(2)

as follows. For u in E(Z) and v in E(Z2'), Z2' < Z, the homormor-
phienm mz(u):E‘Z » "y maps v onto BZ,(ulZ',v). These mapc together
constitute a homomorpkism e from the bundle E tc the cual tundle

E*, Ior 2 affine

mZ:E(Z) - Hom@(z>(E(Z),@(Z))

is the usual linesr mep frow the projective modvle E(Z) over
6(Z) to its dua}»modulé associated with the bilinear form BZ.

In general any homomorphism o from E to E* has an adjoint howo-

en*

morphism o’ :E —§7> Ex* > E*, The symmetric bilinear forms
on E correspond in the way indicated above uniquely with the
homomorphisms ®:E » E* which are selfadjoint, o = mt. We call

B non degenerate if o is an isomorphism.

4 pair (E,B) consisting of a vector bundle E and a syrme-

tric bilinear form B on E will be called a bilinear bundle. If

B is known to be non degenerate it will be called a bilinear

space. We obtain a category of bilinear bundles by adding the

following definition.

Definition 3. A morphism from a bilincar bundle (Eq,Bq) to a

bilinear bundle (E2’32) iz a homomorphism o from the vector bundle

Eq to E2 such that




|
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Br(o(uw),alv)) = B,(u,v)

.

for any open set Z and any u,v in Eq(Z).

Here we simply wrote o(u),o(v) instesd of nz(n), cz(v)
and Bi instead of BiZ' Such notational simplificntions will

be made quite often, as long ac no confusion is tc be feared.

We now shall give other interpretstions of thke notiocn

"bilinear space" in two cpecisl casecs.

Example 1. Assume X is affine, X = Spec(4). Ther = bhilinerst

[

bundle (E,B) over X is uniguely determined by the pair (¥,7)

consisting of the projective h-mode P := E(X) znd the cymmotric

L

bilinear fornm

¢=BX:P><P—§}:L.

We call such a pair (P,%) a bilinear i-rocule, &nd we call

(P,%) a bilinear space over 4 if # is non degenerate, i.e. 17

% induces an isomorphism from the A-module P to the dual i-
module P* = Hom,(P,4). The categery of bilinear bundles over X
is equivélent,to the category of bilinear rodules over 4, and
under this equi#alence, described above, the bilinear spaces

over X correspond with the bilinear spaces over A4,

In an analogous way we shall always transfer without
further comment notions developed for bilinear bundles and

spaces over X to bilinear modules and spaces over 4 if

Example 2. Let Y be an algebraic subset of the affine cpace

CN or the projective space PN(C) which ie defined over ~, i.e.
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,
if
wi%
i
i

cen be described ac the set of zeros of a systen of polynomials
resp. forms with coefficients invP. Cn Y we have an involution
Vi ¥ mapping a point y to the point §'wﬁich has affine reesp.
projective coordinates complex conjugste to those of v. fFor

any subset A of Y we denote by X the imege of 4 under the cou-
plex conjugation yw y. With Y there is attached a scheme X in
the following way. The points of X are the subsets T U T of ¥
with T running through the Zariski-closed irreducible subsete
of ¥, i.e. the closed subsets of Y which are defined over K

and "F-irreducible". For every Zariski-open subset W over Y we
define a subset’ﬁ of X as follows.‘g consists of all points
x=TUTof XwithWn (TyuT non enpty {which inplies Wn T
non emptyi.ﬂThese sets ﬁ are by definition the cpen subsets of
X. Then the structure sheéf BX = 0 is defined &s follows. @(ﬁ)
is the ring of all regular functions f:W - ¢ which are conpat-
ible,with complex conjugation: £(¥) = T(y) for all y in W. In
this way we have obtained all "reduced algebraic schemes over ™"

which are affine resp. projective.

We now assume for simplicity that Y is connected and
consider a complex algebraic vector bundle p:F » Y which is
"defined over P". By this we mean roughly the following. Y has
a covering iwa} by Zariski-open subsets Wa, all stable under
complex conjugation, and there exists a family ixa} of bijective
mappings

Y o~ n
la : D (wa) > Wa >

such that the diagrams
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comrute and the transition raps

..’].

1 n Cn
Aaoxa : (da n WB) X € - (wa N wﬁ) x ¢

are of the form

(Fy2)v (y,uaB(y)Z)

with functions p_o:W_n W, » GL(n,c) all whose coefficientes lie
al’ a B v

1 © .
in \(Wa n WB).

We can introduce a C-antilinear invclution T:F - I

covering the involution yw y on Y such that over every wc tre
. . - ‘ . ! L ,
involution T|p (Wa) corresponde via kc to the stendard irvolu-
. — n . . ,
tion (y,z) > (Y,E) on Wc X €7. In this way an algebraic vector

-

bundle over Y which is defined over -~ may be consicered as &
pair (F,t) consisting of a complex algebraic vector bundle ¥
over I and a "locally trivial" C-antilinesr involution on F

covering the complex conjugation on Y.

We now define an OX-module E as follows. For every open
set W of Y stable under complex conjugation the 0(W)-rodule E(W)
consists of all sections s:W - p-q(W) such that for any Wr

meeting W the map

- ~ i
xa.(s Wn wa):w NW, =0p (W n wu) = >(wn Na)x el
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|
o~ : 1
has coordinate functions lying in ¢(W n wa). Notice that this |

are precisely the regular sections s of the complex vector bundle :

¥ over W which have the property

s(y) = 1(s(y))

for every y in W. Using the maps Aé we sec that E'GQ 18 iso- |
morphic to (@w ). Thus E is a vector bundle over X. It is only
an exercise toaverify that we obtain in this way an equivalence
from the category of algebraic vector bundles over Y which are

defined over ™ to the category of vector Bundles over X. It is :

further easily verified that the symmetric bilinear forms

B:E >y E -)(SX

-

correspond uniquely with the regular maps

B:FXYF-)C

on the classical fibre product F Xy F having the following
properties:

¢) For every y in Y the restriction of B to p—q(y) x~p—1(y) is

a symmetric bilineer form on the C-vector space pfq(y).

b) For u,v in p-q(y)

B(ru,Tv) = B(u,V);

Moreover B is non degenerate if and only if our bilinear forms

on the vector spaces p~1<y> all are non degenerate.

We return to our general theory. Two bilinear modules

(E,,B,) and (E2,B2) over X can be added and multiplied. The
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"orthogonal sum (E1, 1) 1 (E2’B2) is deflned as the vector bundle

E ) E2 hav1ng section modules
. (Eq ® Ez)(z) i= E,l(Z) 53] E2(Z)

{fédﬁiﬁﬁed’ﬁi%hftﬁéffbllowing'bilinear form B = B, 1 B,:

for sectlons uq,v in E (Z) and u2, 5 in'Ee(z) Similarly the
tensor product (E1,B ) e (E2,B2) is deflned as the vector bundle
E1 &Q E2 equlpped w1th the blllnear form B ® B2. Recall that

the functor

does not necessarlly fulflll the sheaf condition, and that
E1 eb E2 is the sheaf assoclated to this "presheaf" But for Z

an afflne open subset of X we have

(E Gs 2)(Z) = E (Z) ®s(z) 2(2)

31 @ 32 can be characterlzed as the unique blllnear form B on X

whlch fulfllls

Z(u ® u2,v ® v2) = qu(uq,v ) Bgz(u2,v2)

for afflne open sets Z and sectlonsuq,v1 in E (Z),fand Uns Vo in
E2(Z) The stalk of our blllnear bundle (Eq, 1) ® (E Bz) at a

]

p01nt % is aust the @ —module E ox sz equipped with the

1
blllnear form B

8

&.

Another way to put.the definitions of By 1 B, and B, ® Bé

ig tHé following. The natural map from the tensor product
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Eﬁ ®e EZ to the buncle (E,I ~ E2)* is an isomorphism since the

E. are locally free. We identify EX ~  EX with (B, », E.J* in. ;
i < )

17 €72
this way. Sinilarly we identify (Eq " EE)* with Ef «~ EX,
regarding the linear fornc on EilZ as linear forms con (ID,l a Eg)!Z T
which are zero orn EJIZ t(i,3) = (1,2) or = (2,1)}. Let
m,iEL o E§ be the homomorphism associated with B;. Then B, 1+ B,

is the bilinear form corresponding to

") g -
( o . DB, o E2 - Eq ~ E2

and Bq i B2 is the bilinear form corresponding to

S VI %
Mg 7 Gpiby By o BR < E3. |

-

From this description of B, ¢+ B2 and B, # B2 it is evident that
these forms are non cegenerate if both Bq and B2 are non defener-—
ate. |

We now discuss a special type of bilinear spaces over XL.
Let <aij) be a symmetric n x n-matrix with coefficients aij in
the ring 6(X). We take the free bundle &7  and denote by

€qreeesy the standard basis of @n, i.e. the global sections

e; = (O,...,j,... C)
i

in €™(X) = o(X)™. We introduce on 67 a symmetric bilinear Zorm
B as follows. Let Z be open in X, and let

u

1

(uq,...,un) e 6(z2)8

v

(Vyeee,v ) € 6(2)"

. . n :
be sections in 07(Z). %We put
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n
B,(u,v) := vy (a.:2) u.v..
VAR i,3=1 13’ 175

. . o N
Clearly B is the unique bilinear form on ¢ with B(e.,e.) = 2 4
. e

J
We abbreviate this bilinear bundle (E,B) by the watrix (aij)'

Clearly (aij) is a space if and only if the Ceterminant of thie
matrix is a unit in 6(X). In this way we obtain up to Iscuworphicr

all free spaces,i.e. all spaces (E,B) with a free vector buncle

E = @n.

Two free spaces (or free bilinear bundles) (aij> and (eij)
are isomorphic if and only if there existe an n > n-metrix 8
with coefficients in 6(X) and determinant a unit of “(X) rnch
that ' %
(aij) =5 (aij)S.

The proof is the same as the usual proof over fields.
P

A "diagonal" free bilinear bundle (a..), a.. = a & ., will
1 1] L 1J

also be denoted by <a1,...,an>.,We have

s ece > = ceo e & .
k<a1, s 8 <aq> 1 i <an)

The tensor product of two diagonal free bilinear bundles

<a1,...,an> and <bq,...,bm> is isomorphic to

noIi

<a1b1,...,aqu,azbq,...,aebm,... a b ~.
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§ 2  Subbundles. : i

In this section we develop some elementary linear algebrea

dealing with "subbundles" of a bilinear spesce.

Let E be a vector bundle over X. Assume for every open

subset Z of X there is given an 6(Z)-sgubmodule V(Z) of E(Z), i

and that for open sets Z' ¢ Z the restriction homomorphism from
E(Z) to E(Z') maps V(Z) into V(Z'). If then then functor
V:Z » V(Z) on the category of open subsets of X fulfills the

sheaf condition (ef. § 1) we call V an 6y -submodule of E. [

Definition. We call an 6-submodule V of E & subbundle of E,
if V is locally a direct summand of E. This means that every

point x of X has an open neighbourhood Z such that

*) , E|2= (V|2) e W

with W a suitable OZ ~submodule of E]Z.

Clearly then V and E/V are vector bundles, since direct
summands of locally free @Z -modules of finite rank are again
locally free. On the other hand, if we only know that E/V is

a vector bundle then we have a splitting (*) over every affine

open subset Z of X. Indeed, the canonical projection fron EIZ
onto (E/V)lZ has a section, since (E/V){Z corresponds to & pro-

jective module over 6(3Z).

We now regard a bilinear bundle (E,B) over X with

associated homomorphism o:E - E*¥., For every t-submodule V of E
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we define another ®-submodule V! as followe. If 2 is an open

=< 4 . . . - rr 1
subset of X then V7(Z) consists of all sections s in E(Z) ecven

v

T U

that s|Z' is orthogonal to V(2') with respect to BZ' Tor ever
open 2' c Z. It suffices for this to know that the gerr: s of
s at every point x of Z is orthogonal to VX. Thus every stalk

(VJ')X consists of all t in EX which are orthogonal %o Vx’ i.e.
L L
» (), = W

The 6-module V* is the kernel of the homomorphicr

-

- E-2 5 g 11 yx

with i* the dual of the inclusion homomorphism i from V to E,

' *
~as is immediately verified. )

Assume now B is non degenerate, and V is a subtbundle of E.
Then o is an isomorphism and i* is an epimorphism. Thue e induces

an isomorphism
a:B/VE S yx

and in particular V* is again a subbundle of E,

We identify (E/V)¥* with the G-submodule of E* whose sections
over any open Z c X are'the linear forms X:E]Z = &g which venish
on V|Z. By definition V! is the inverse irage of (E/V)* under
the isomorphism ©:E ——> E*. Thus we obtain from e

an isomorphisn

~4

BV == (E/V)*,

*) i* means restriction of the linear forms on E to V.
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The isomorphisms ¢ and B correspond to bilinear maps

(1) V%, (B/7) 0

(2) v o (E/V) - @b

which are perfect dualitites. These bilinear maps are of course 1
just the maps obtained from B by "restriction" in the obvious l
way. Since V! is again a subbundle of E we also have a perfect

duality
(3) Vi g E/VE 56

induced by B. V is an 6-submodule of Vit Comparing (1) and (3)

we see that actually V = Vi, Let us summarize cur observations.

Proposition 1. Let V be a subbundle of the bilinear space (E,B),

and let o:E —> E* denote the isomorphism from E to E* associ-

ated with B.

i) V! ic a subbundle of E. There exists a unigue isomorphism o

from E/VY to E* such that the diagram

E —2—> E*

Y

~ ¥
= Yo
with canonical vertical surjections commutes.

ii) There exists a unique isomorphism B from v oto (B/V)* such

that the diagram
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vt £ @

b L————

v
- > Ex
o0

with canonical vertical injections corrutes.
1
iii) vt = V.

We assume now that (E,B) is a bilinear bundle and that F

is an G6-submolule of E which is>again a vector bundle. we further
assume that the bilinear form BIF'is non degenerate. The form B
may be degenerate. Let w:E - E* and w:F ——> I™* denote the homo-
morphisms associated with B and’BlF, and let i:¥ - E denote the
inclusion homomorphicem from F to E. As observed sbove ¥t ois the
kernel of the homowmorphism i*eom from E tc F*, hence also the
ternel of the homomorphism p := m-qoi*am fror E to F. llore con-
cretely, if u is a section of E over éome affine open set & then
by definition p(u) is the unique section v of F over Z with

B(u,w) = B(v,w) for all w in F(2).

Since # = i*s@o1 we have pei = idy. Thus E is the direct
L . } . . . —_ .
sum of F and F~. lloreover i.p is a projection operator on & with

image F, the "orthogonal projection" from I onto F. We sunmarize:

Proposition 2. Assume F is an 6-cubmodule of a bilinesr bundle

(E,B), further that F is a vector bundle and B|F is non degenerate.

Then E is the direct sum of F and F'. In particular F is a sub-

bundle of E. We have a canonical orthogonal projection fiom E
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onto F.

Definition. We call a morphism a frow a bilinear bundle

(Eq,Bq) to a bilinear bundle (EE,BQ) an isonetry if « is in-
o

*)

jective and m(Eq) is a subbundle of E,.

Proposition 3. If B,1 is non degenerate then every morphicm o

from (Eq,Bq) to (E2,B2) is an isometry.

Proof. By Proposition 2 it suffices to show that o is an in-
jective homomorphism from E,l to E2. Thie will be true if we

know that the maps ax:qu - E2X on the stalks are 1injective.

‘ - ces g . e . ,
{Apply the sheaf condition!} Now if ux(u) = 0 for some u 1n_E1X

then

"
(@]

By (u,v) = By (e (u),a (v))

for every v in qu. Thus u = O.

Assume now (E,B) is a bilinear space.

Definition. A totally isotropic subbundle V of (E,B) is a sub-

bundle V of E such that B is zero on V >y V. In other terms,

vt o v,

A totally isotropic sﬁbbundle V of (E,B) will also be

called a sublagrangisn of (E,B). {"Lagrangians" will be intro-

duced in the next section.} For every such sublagrangian the 6-
rodule V¥/V is a subbundle of the vector bundle E/V, since V*

is locally a direct summand of E. From B we obtain in an evident

*) This means that aZ:Eq(Z) - E2(Z) is injective for every
open Z < X.
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way a symmetric bilinear form B on VY/V svch that the natural
projection p:V‘L » V/V is a morphism from the bilinear bundle

(v*, BlVH to /v, B

L L . .
Proposition 4. (V/V,B) is a bilinear space.

Proof. Let ©:E ——> E¥ denote agaln the homomorphien associated
i — 1 . . .
with B and w:VL/V » (V°/V)* the homomorphism ascociated with E.

We obtain from the definitions a commutative diagram

i ’
Yi= B = -5

i 0 » (E/VY)* o (B/V)* —> (VY/V)* 5 G

with exact rows and isomorphisms B and y as deccribed in Pro-

position 1 ii. Thus also ® is an isomorphism.
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§ 3 Metabolic spaces

We now introduce a special type of bilinear spaces. Let

(U,R) be a bilinear bundle. Starting with R we define s symmetric

bilinear form B on the vector bundle U & U* as fcllows. For 2

an open set in X and sections u,,u, in U(Z), u},v% in U*(2)
4 * * . * *
B(u1+uq,u2+u2) t= B(uq,ug) + <y ud> + <ug,uf>.

Thus B coincides with & on U >y U, is zero on U¥ e U*, and 1ie
the natural pairing on U >y U* and U* *X U. Let =:U - U* be the

homomorphism associated with B. Then the horomorphism

U 5 (UeTH* =T e

associated with B is given by the matrix
(m id)
id O
This homomorphism is always an isomorphism and thus B is non

degenerate. We denote thp space (U & U*,B) by M(U,8). & space

isomorphic to some M(U,B) will be called split mebabolic.

{ "Metabolic spaces" will be introduced below.])

Example. If (U,8) is a free diagonal bilinear bundle

<ayyee-58.>, & € 6(X), then clearly

a 1 a
1 0 1 0 ’
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Cn any vector bundle U we can introduce the bilinear foin
R = C, and obtain a space M(U,0) which we denote by H(U). 4

space isomorphic to some H(U) will be called hyperbolic.

Proposition 1. For any symmetric bilinear Form o cn a vector

bundle U the space M(U,20) is isomcrphic to H(U). Ir perticular

all split metebolic spaces are hyperbolic if 2 is » unit in 6(X).

This follows immediately from the following rore general

fact. (Put B = 20, ¥ = ).

Lemma. Let R:U 5 U » 6 be a syumetric bilinear form on the
vector bundle U and let y:U %y U » & be an arbitrary (not
necessarily symmetric) bilinesr form on U. Let yt dencte the

bilinear form defined by
S(u,v) = yy(v,w)
Yg\u, = Yg\V,
(a,v € U(Z), Z open in X). Then
M(T,8) = M(U,p+y+y").

Proof. Let o:U » U* denote the homomorphism "u - y(-,u)"

associated with y. Then the automorphism
U+ u* au+ u* o+ en(u)

of the vector bundle U & U* {u é U(z), u* € U*(2), Z open in 2
is an isometry from M(U,B+Y+Yt) onto M(U,p). Indeed, denoting
the bilinear form of the first space by B' and the bilinear form
of the second space by B, we have for cections u,v in U(Z), u*,v¥

in U*(2):
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B(utu*+o(u) ,v+v¥+0(v)) = 2(u,v) + <u,m(v)> + <v,m(u)> +
+ <u,v*> + <v,u*> = g(u,v) + vy(u,v) + yt(u,v) + <u,v¥> + <v,u¥*>
= B'(u+u*,v+v¥*),

g.e.d.

If 2 is not a unit in 6(X) then not every gplit metabolic
space is hyperbolic. For example the free space (1 g) can not
be hyperbdlic, since for any global section e of a hyperbolic
space (E,B) = H(U) we have B(e,e) € 2 6(X). Nevertheless split

metabolic spaces are "stably hyperbolic" by the following pro-

position.

Proposition 2. For'any bilinear bundle (U,R)

M(U,8) 1 K(U,-B) = H(D) 1 M(U,-p).

Proof. We consider the space E := M(U,g) . h(U,-R). Let U, and
U, be two copies of U. We think of M(U,R) as the bundle
U, » U4 and of M(U,~f) as the bundle U, @ BY. This

E = (U,l a«U:) 1 (Ué o Ug).

Uq and the diagonal A of Uq a U2 are both sublagrangians of E.
The bilinear form B of E gives a perfect duality between A and

U:. Thus A » Uﬁ is a bilinear subspace of E and

A e Uﬁ = H(A) = H(U).

#ccording to § 2, Prop.2,
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E=HU) 1 (A« Uﬁ)*.

Cne know has to compute (A Uﬁ)*. This bilinear space turns
out to be isomorphic to M(U,—B). We leave the detaills os an

exercige (or cf. [E,p.19 £]).

Definition. We call a bilinear space anisotropic if it hss no

totally isotropic subbundle different from zero. Utherwice we

call the space isotropic.

If V is a maximal totally isotropic subbundle of a space
(E,B) then clearly the space (VY/V,B) studied at the end of § 2

is anisotropic.

Proposition 3. If X is affine then every bilinear space E

over X has a decomposition

,_E=EOLM

with Eo anisotropic and M split metabolic.

Such a decomposition of E will be called a Witt lecomposi-

tion. In general the isomorphism class of the anisotropic part
EO 1s not uniquely determined by E. &n example over & local ring
can be extracted from [K,Satz 9.3.81. 4lso the isomorphisn closc
of the split metébolic part M is in general not uniquely ceter-—

mined by E. Here counter-examples are quickly obtained. For

example over any scheme X

1 1 G 1
<1> 1 ( =<1> ( ) ,
1 0 1 0

as is easily verified.
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Proposition 3 follows immediately from the following more

general proposition.

Proposition 3 a. Assume X is affine. Let (E,B) be & space

over X and V a sublagrangian of (E,B). Let U be a subbundle of E T

with N
E=V" e U.

(Such a subbundle exists, since X is affine.) Then U snd V are

in duality under B, hence
(U @ V,B|U & V) = M(U,B|V).
Moreover the space (U »~ V)* is isomorphic to (V'/V,B), hence

by § 2, Prop.2 .

- I

(E,B) = (V¥/V,B) . K(U,B|U).

Proof. The assertion that U ard V are in duality is trivial.

With G :

(U » V)* we have
E:(U‘DV>.LG0
From this we deduce

V¥ =V . G,

Thus clearly (G,BlG) is isomorphic to (V/V,B).

g.€.d.

Definition. A subbundle V of a space (E,B) is called =

Lagrangian if V¥ = V. A space which has a Lagrangian is called

metabolic.
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Clearly any split metabolic space M(U,8) Las the
Lagrangiean U*¥, hence is metabolic.

From Proposition 3%a we obtain irmecdiately the fbllcwing

two statements about metabolic spaces and Lagransgiens

Gorollary 1. Every retabolic £pace over an affine gcchiere is

split metabolic.

Corollary 2. Let V be a sublagrangian of a space (L,B) over

any scheme X. Then

i) rk E > 3 rk V.

ii) V is a Lagrengian if ang only if rk & = 2 »k V.

Indeed, it suffices to check thesc statcmente 1),1i1) evor
affine open subsets of X, where they are evicent by

3 a.

fropositior

Already over an elliptic curve there existe infinitely
many metabolic spaces which are not split metabolic, cf. [k,
§ 13.1].

We discuss the behaviour of metabolic spaces with respect

to tensor products.

Proposition 4. If V is a Lagrangian of the space (2,B) then
for any other space (E',B') the submodule V & E' of E» E' is 2

Lagrangian of (E,B) ® (E',B'). For a split metabolic space
M(U,8) more explicitly

M(U,8) 2 (B',B') =M(,8) & (E',B')).
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In particular

BE(U) » (&',B') = H(U »~ E').

Proof. V # F injects into B » E' since E' is locally free.
(E/V) = E' can be identified with E # E'/V @ E'., Thus V = E!'

is a subbundle of E # E'. Clearly V # E' is totally isotropic.

Since

rk(V » E') = vk Verk E' = 5 rk(E » E')
V 2 E nust be a Lagrangian.

We now consider the case

(E,B) = M(U,e) = (U e U*,B).

-

Ia

=

hen the subbundle U*¥ <« E' of E « E' is a Lagrangian which under
B2 B' is in duality with U ~ E', Since & » k' ic the direct sun

of U= E' and U¥ = E' ye indced have

(E,8) » (&',B') = N(U » E',8 » B').

As an example we consider the space
; 11
M) = (,' o)‘

Let e,,e, be a basis of 1M(<1>) with value matrix (3 8) under

the bilinear form of M(<1>). Then €45€4-€5 has the value matrix

(2 9Y. mus

M(K1>) = <1,-1D,

Multiplying this relation with an arbitrary spacc (E,B) we

obtain by the preceding proposition 4 the following,
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Corollary. (E,B) . (E,-B) = N(E,B).

This can a2lsc casily be verified in ¢ direct way.
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§ 4  The Grothendieck-Witt ring L(X).

We now often denote a space (E,B) by a single letter B
for short. We look at the set Bil(X) of isomorphism classeg (®)
of bilinear spaces E over X. On Bil(X) we have an esddition anc
a multiplication given by the orthogonal sum and the tensor

product of spaces. In this way Bil(X) is a commutative serlring.

It has the isomorphism class of the space <1> = (GX,m) ac unit

element with m:sx Xy GX > ®X the multiplication on GX.

We now consider the Grothendieck-ring k Bil(X) of the !

cemiring Bil(X). This is a well known construction. The elements

of K Bil(X) are formal differences [E] - [F] of clascses rel,rz!
of spaces E,ﬁuwith thie rule that two différences [31] - [Fq]

and [E,] - [Fg] are equel if and only if
Eq L F2 1 G = E2 1 F1 1 G
, . .
for some space G over X. Recall that the map () » [E] ) from

Bi1(X) to K'Bil(X) is a universal map from Bil(X) tc a ring, i.e.

for every semiring homomorphism‘x:Bil(X) - A to a8 ring A there ?

exists a unigue ring homomorphism p:K Bil(X) - L& such that the

diagram

Bil(X) > K Bil(X)

N A

A

*) Gf course [E] is identified with [E] - [0O]1.
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commutes.

Let o denote the additive subgroup of K Bil(X) penerated
by the elements [E] ~ [H(V)] with E metabolic =nd V a Legrangian
cf E. If E1 and E2 are metabolic spaces with Lazgrangiens Vq

and V2 then E,l L E2 is metabolic with the Lairangian Vq m VE'

From this remark we obtain immediately that » is the set of
differences [E] - [F] of metabolic spaces E and F having iso-

morphic Lagrangians.

a is an ideal of K Bil(X). Indeed if E ige mretabolic with
Lagrangian V and F is an arbitrary space, then zccording to
§ 3 Prop.4

[FI((E-TR(V]) = TF @ E) - (K = V),

and F » V is a Legrangian of F = E.

-

We now define the Grothendieck-Witt ring L(X) of the

scheme X as the ring K Bil(X)/a. The image of a clacs
[E] € K Bil(X) in L(X) will again be denoted by TEl. In L(X)
we have by definition ‘

[E] = [H(V)]

for E a metabolic space with Lagrangian V.

Proposition 1. If X is affine then ¢ = O, hence L(X) = K Bil(X).

Proof. Let (E,B) be a space with Lagrangian V. Then, as ex-
plained in § 3, E = U @ V with some subbundle U which is dual

to V with respect to B. We have
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(E,B) = M(U,B|U) = 1(U,R),
and, again by § 3,
M(U,R) 1 M(U,-g) = H(U) . MN(U,-R).
Thus in K Bil(X)

15,81 = MMQU,R)T = TH] = [HW)T = (a1

This proves o = O.

For hyperbolic spaces we have the following general fact.

Proposition 2. Let V be a vector bundle over a scheme X and W

be z subbundle of V. Then in L(X) &

)} = TEGD T + [EV/AD ).

Proof. We work in the bilinear space H(V) = V < V*, Let W'
denote the submodule W N V¥ of V¥, This ic the shea? of linear
forms on V which are zero on W, i.e. the Kernal of the restric-
tion homomorphism V¥ o W*, (n the other hand we obtain from the
exact sequence |

C »wWoaVaV/WasC

of vector bundles a dual exact sequence
O » (V/W)* 5 V* - W 5 0.

Thus we have canonical isomorphisms

(V/W)* —== W', V¥/W' o W,

In particular W' is a subbundle of V*, Clearly

U:i=W e wv'
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is a totally isotropic subbundle of H(V). It har the 1o

rk W+ 2k W' = rk W+ 2 (V/W)* = vk V.

Thus U is a Lagrangian of H(V). We have in L{X}

[H(W)] = [H(] = [EMW] + [HW)] = [BW] + [HQ/W)*)] =

H(W) + H(V/W),

as claimed above.

We now can prove the fcllowing weak snalogue cof the Witt

-decoxposition in § 3 for an arbitrary scheze X. (The Witt de-

composition in § 3 could only be done over affine X, cf. & 3,

Prop. 2%a.)

Theorem 3. Let V be a sublagrangian of = cspace (E,B) over X.

Then we have in L(X) the equation (c¢f. § 3 for notations)

[E,B} = [H(V)] + [V*/V,E].

Notice that for V a maximal sublagrangian of (E,B) the

space (V!/V,B) is anisotropic.
Proof. We work in the space

(F,B') := (E,B) . (V¥/V,-E).
Let

c,':V‘l.' 2 Erm vi/v

denote the "diagonal injection" of V! into this space. The sub-

module a(V*) of F is clearly totally isotropic. We want toc show

ey
W 5
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that a(V%) is a Lagrangien of (¥,B'). It cufficez to check this
over affine open subsets of X, and thus we acsume now that I
itself is affine. &g explained in § 2 (proof of Trop. %) wWe

have deconpositions

E= Vel 16, VE=Veacs

with U dusl to V under B. The second decomposition yields &

canonical iscmorphism from G onto Vi/V. We have

a(V:) = Ve A

with A the "diagonel" of the subbundle G « V*/V cf F. Clearly

G o VYV = A @ VYV,

-

Thus V @ A is-a direct summand of
F= (el 1 (ae Vv,
and we have verified that a(V') is a subbundle of F. We have
rk o (VY) = rk(VY) = vk V + vk VY/V.
Cn the other hand

Tk F=2rk V+zrk G+1r VYV = 2(rk V+ rk V&/V).
Thus a(V*) is indeed a Lagrangian of (F,B').

Since now X 1s again an arbitrary scheme. The vector
bundle o(V*) is isomorphic to V. Thus we obtain in L(X) the

relation

*) [E,B] + [VY/V,-B1 = [H(VH)].




-142-
By the preceding Proposition 2
[(B(VS)] = [HWD] « [HEE@Y/V) .
On the other hand
1 (vi/v,-B] + [vY/V,B] = [M(vi/Vv,B)] = Tuqvi/v)l.
| Thus adding (V/V,E] én both sides in (*) we arrive ot the
h? desired relation

[E,B] = [H(V)] + [Vv*/V,E].

-
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§5 Definition of the Witt ring WE). X

First we recall Grothendinck's definition of hie ring
K(X) of vector bundles on X in a way adapted to our precesent
study. Let Vect(X) denote the set of isomorphicm classes (V)

of vector bundles V on X. The direct sum and¢ the tensor pro-
duct of vector bundles give on Vect(X) an addition and a multi-

plication which turn Vect(X) into a commut=stive semiring. This

semiring has the unit element (GX>'

Let K Vect(X) denote the Grothendieck ring of this semi-

ring Vect(X). We denote the class of a vector bundle V in
K Vect(X) by [V]. We introduce the additive subgroup ¢ cof

K Vect(X) generated by the elements

(v] - Tw] - [w/w]

with V running through the vector bundlecs of X and W running
through the subbundles of V. Clearly ¢ is an ideal of K Vect(X).
The ring K(X) is defined ae the quotient K Vect(X)/+ by this

ideal. We shall denote the class of a vector bundle V in K (%)

again by [V].

Notice that if X ic affine we have ¢ = (

K(X) = K Vect(X).

, nence

We have a "hyperbolic map"

HO:Vect(X) - Bil(X)

sending the isomorphism class of a vector bundle V to the ico-
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morphism class of the hyperbolic cpace H(V). Clearly HO is

additive. Thus HO induces an additive rap

Hy:R Vect(X) » K Bil(¥X).

We now consider the composition

Hy:K Vect (X)) —> K Bil(X) ——>> L(X)

of H,l with the natural surjection from L Bil(¥X) to L(X%). according
to Proposition 2 of the preceding section H2 vonisher on ¢, Thus
we obtain finally an additive map

H:K(X) - L(X).
This map H sends an element [qu - [U2] of K(X) to

The image H K(X) of H is an ideal of L(X) since for F a

space and U,],U2 vector bundles over X

(FI((B(U,)] - [H(U)]) = [HE » U)] - [BE » U0,

We define the Witt ring W(X) of the scheme X as the quotient of
L(X) by this ideal,

WD = LX/E K.
Recalling the definition of L(X) we may also write
W(X) = K Bil(X)/=
with W the ideal of K Bil(X) additively generated by the clascec

of all metabolic spaces on X. This ideal is the cet of cdifferences

(1,] - [M,] of metabolic $paces My, M.




We denote the class of a space (E,B) in W(X) by {E,B}.

We call {E,Bf the Witt class of the spacc (E,B). We often write

{El instead of {E,B! for short, Since
(E,B) 1 (&,-B) = N(E,B),
cf. § 3, we have in W(X)
- {E,B} = {E,-B}.

This implies that every element of W(X) it the Wittt clace of

some cpace, and not Just the difference cf twc Witt clasces.

Definition. We cell two spaces Eq and Eg over X equivalent

(or "Witt-equivalent"), and write E, ~ E if {E 1 = {E.}.
" : 1 2? i c

Clearly W(X) is the quotient of the cemiring Bil(x) by

this equivalence reletion,

: i
W(Z) = Bil(X)/m. ﬁ
We have the following simple description of Witt equivalence. m

Proposition. Two spaces Eq,E2 over X are equivalent if and

only if there exist metabolic spaces Mq,M2 over X such that

E,‘_\_M,\&Ealﬁz.

Proof. 1If Eq L Mq = E2 Y M2 with metabolic spaces Mq,Mg then

clearly

Ed = B, 2l = {5, 2 mp) = 4B,

Assume now that {qu = {Egi. Then we have in K Bil(¥) an equation
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[Eq] - {32] = [N2] - {qu

with metabolic spaces Nq and N2. Thus there evislr » epace

(G,B) over X such that
.E,.| i N1 L G = E2 L N2 1 G,
We add on both sides the space (G,-B) and obtai
E,I L :N,l L N(G,B) > E2 L N2 LVK(G,B>.
Thie finishes the proof of the proposition.

-

- In the present lectures we are mainly interested in W(X)

and not in L(X). We could have defined W(X) directly by intro-

ducing on Bil(X) the equivalence relation dercribed in the pro-

position. But for technical reasons also L(X) arn¢ the precisec

relationship between L(X) and W(X)-Will be needed.
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£ 6 Functoriality

We now discuss the functorial behaviour of our inges

L(X) and W(X). Let f: Y > X be a rorphism of schenecs. For E &

vector bundle on X the inverse image f*(E) (cf. [EGL, Crap. C, ﬁ

§ 4]) ie a vector bundle on L Indeed, if U is an open set of

X with E!U 2 @g then f'q(U) is an open set ¢f Y with

H@E W) - e,
| 70

A useful description of this vector bundle is ac followe.

Let Uc X and Vc Y be affine open stbsets ¢f X 2nd Y with

f(V) c U. Then f vields a ring homomorphism frou ®K<U> to @Y(V),
and ~-

™ (E)(V) = E(U) QQX(U) 6y (V),

cf. [EGA I, § 1.6].

For any vector bundle E on X there eyiscts a canonical

isomorphism of vector bundles

K:f* (E*) ——> £*(E)*,

This isomorphism can be described as follows., Let again U and V

be affine open subsets of X and Y with f(V) c U. Then

£ (E*) (V) = E*(U) %X(U) 64 (V) =

On the other hand
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1w

F*(E)* (V) = Homf‘:‘v(V)(f*(E) (V>,«’;Y(’v)) =
= H°m®Y(V)(E(U) QGX(U) @Y(V),GI(V)).

Thus we have an obvious natural isomorphism

KV,U : DX (E*) (V) = £*(E)* V)

since E(U) is a finitely presented 6y, (U)-module, cf. [Bb, I

§ 2 no 91. If (V,,U,) is a secord pair of sffine open subsets

of Y and X with £(V,) < U, anc V,cV, U, c U, then the ¢isagran

P E) (1) —LaU s ey ()

hd * ? * (1
£*(E)(V,) ——> £ (E)* (V)

V..U,

with the restriction homomorphisms as vertical arrows commutes,

2s is easily checked. In particular (V = Vq) the homororphicm

Ky y does not depend on U but only on V. Since now we write ty
9

instead of Ky . The family of isomorphisms
b . .
Ky T*(E*) (V) —=> *(E)* (V)
with V running through the affine cpen subsets of Y is compatible

with the restriction maps by the diagram above. Thus by general

sheaf theory there exists a unique isomorphism
k : £*(B*) ——> *(E)*

of vector bundles which induces KV on the sections over V for

every affine open subset V of Y.
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If B is a symmetric bilinear form on E then we obtain
a syrmmetric bilinear form f*(B) on f*(E) as follows. Llet
¢n:E » E* denote the homoworphism associated with B, and let v

denote the composite map

ex(5) L0 5 px(pr) o (B

If V and U are affine open subsets on Y and X with f(V) c U,

then
by ¢ EXE)) 5 £HE*(V)

vields a bilinear form {e,f € f*(E)(V)}

By(e,f) = <e,by(£)>

on f*(E)(V).~¥t is easily verified that Py is siuply fhé

QY(V) -bilinear form on E(U) ?GX(U) SY(V) obtained from the
@X(U)—bilinear form By on E(U) by scalar extension. In particular
By is symmetric. Thus ¥ = *t, and # yields a symmetric bilinear
form B on f*(E) which yields the bilinear forms Ry above

on the affine open subsets V of Y. We denote £ by f¥(B).

If y is a point on Y and x = f(y) then the &y  -bilinear
3¢
form f*(B)y on

¥* -
f (E)y = EX s ®

GX,X Y,y

is clearly the bilinear form obtained from the GX Y—bilinear
,d

form BX on EX by scalar extension.

If B is non degenerate then ©® is an isomorphism. Thus

also * is an isomorphism, i.e. f*(B) is again non degenerate.




In this way every space E = (E,B) over X% yields a epace

£%(E) = (£*(E), 2% (B))

over Y. Clearly for spaces E and ¥ over X
£ (E L F) = £*(E) o £*(¥),

f*(E @ F) = £*(E) = *(F).

Thus we have a homomorphism
£*:Bi1(X) - Bi1(Y)

of semirings.

If V is a subbundle of a space E then f*(V) ic 2 sub-
bundle of f*(E), since

*(B)/£* (V) = £*(E/V)

is a vector bundle. More specifically, if V is =2 Lagrangian of
E then f*(V) is a Lagrangian of £*(E). Indeed, f*(V) ie totally
isotropic and

rk (V) = vk V = ; k E = ; rk £*(E).

Thus our map f* from Bil(X) to Bil(Y) induces ring homo-
morphisms

L(£):L(X) » L(Y), W(E):WX) » W(Y).
Clearly L(f) and W(f) both map unit elements to unit element:.

In this way X & L(X) and X » W(X) are turned into contra—

variant functors L and W from the category of schemes to the




-151-

category of commutative rings. We usually simply write f* for

L(f) and also for W(f).

Exercise. If V is a subbundle of a space E cver X and
f:Y » X 2 morphism then in the space f*(E) the subbundles

(V)Y and (VY coincide.

In the case of affine schemes X = Spec(4), Y = Spec(C)
a morphism f:Y - X corresponds to a ring homomorphism a:A - C.

Instead of f*:W(X) -» W(Y) we then most often use the notation

ox : W(A) o W(C).

For a space (P,8) over & clearly

Q,*{P,'B} = {P 24 C, B 2y cl

with B 24 C denoting the scalar extension of the bilinear form 8

on the projective A-module P to a C-bilinear form on P e, C.

Usually the homomorphism from L(k) to L(C) induced by f
will also be denoted by ox.
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§ 7  The rank homomorphism.

Assume the scheme X is connected. Then every vector bundie
E on X has a constant rank rk E. In particuler we have for spaces

an evident rank homomorphism

rk:Bil(X) » I y {C}

of semirings. This yields a homomorphism
rk:X Bil(X) - Z

of rings. Clearly for- E a metabolic space with Lagrangian V

- rk([E]-[E(D]) = rk(E) - rk E(V) = C.

Thus we obtain a rank homomorphism, again denoted by "rk", from

L(X) to Z,
rk:L(X) - Z.

Unfortunately this homomorphism does not venish on the class
[H(V)] of any hyperbolic space H(V) # G. But rk E(V) ie an even

number. Thus we obtain nevertheless a ring homomorphblen
viW(X) » Z/2Z

defined by
v({E}) = rk E mod 2.

We usually write v(E) instead of v({E}l), and we call v(k) the

rank index of E.

If X is not connected then we have to replace % and Z/2 Z

by the rings of locally constant functions on X with values in

Z and Z/2 Z respectively.
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Chapter II Local theory

§ 1 Connection with Witt's theory.

We have to study the Witt rings of the local rings 6
Slightly more generally we study the Witt ring W(4) of a semi-

local ring A, i.e. a commutative ring A which hac only finitely

many maximal ideals LCTTERRY. P This will not cause additional

]
difficulties, and semilocal rings turn out to be a more appro-

priate category for our purposes than local ringe (cf. in this

connection e.g. the theory of "real closures" [K4]).

*
If A is not connected ) then we have an orthogonal systen

of primitive idempotents €qreeesCy

Introducing the connected rings Ai t= Aei we may write

t
A =T A..
i=1

Let (E,B) be a space over A. In particular then E is a projective

module over A, and E.l i= eiE is a projective module over Ai’
hence a free module. Moreover B induces non degenerate symmetric

bilinear forms
B-:E. x E. - A.
171 i i

*) This means Spec(4) is not connected,
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We write symbolically

(E,B) =

e

(E.,B.).

i=q 171
Conversely we can prescribe over each ring Ai a space (Ei’Bi>
and fit these spaces together to a space (E,B) over A yhich han
the (Ei,Bi) as components. It is now easily checked that we

obtain in this way natural'isomorphisms

t ' t
L) = 1 L&), W) = 7
i= =

W(a.).
i=1 +

1

All this is intuitively obvious since the Spec(Ai) are the

finitely many connected components of Spec(4).

Justified by_this observation we assume since now always
without loss of generality that A is connected. Thus all pro-
Jective modules over A are free. Let H denote the hyperbolic
standard plane 2 8) over A. Every hyperbolic space over A is
of the shape H(AT) and thus an orthogonal sum r x H of r copies

of H. In particular

W(A) = L(A)/z[H].

The following proposition is now obvious.

Proposition 1. Two spaces E and F over 4 have the same image

in L(A) if and only if E ~ F and rkE = rkp.

Assume now 2 is a unit in A. Then all metabolic spaces are
hyperbolic (I,§ 3) and hence of the form + s H. Moreover the

cancellation law holds true over A, i,e.
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EL1G=2F 1 G=2>2E=~F

for any spaces E,F,G over A. A proof can be found in [R] or
[Kq]. Now recalling the Witt decomposition of spaces from I,

§ 3 (Prop.3) we meet the following situation.

Proposition 2. (2 € &%) Every space E over 4 has a decomposition

E?_‘EOLtXH

with EO anisotropic. The isomorphism class of EO and the number

t 2 O are uniquely determined by E.

We call Eo a kernel space of E. Proposition 2 has the

following consequence.

Corollary. Two spaces E and F over A are equivalent (E ~ F) if

and only if E and F heve isomorphic kernel Epaces.

In particular we see that for A a field of characteristic

# 2 our notion of Witt ring coincides with Witt's definition in

fwl.

Exercise. A vector x of a space E over our semilocal ring 4 is
called primitive if x is not contained in miE for any maximal
ideal m, of A. Show that E is anisotropic if and only if E

contains no primitive vector x with B(x,x) = G. (2 not necessavily

a unit of A4).
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! 2 The signed determinant.

Recall that A is a connected semilccal ring. Let ()

o)
denote the group A¥/A*< of "square classes" of Ai.

If E = (aij) and E' = (aij) are isomorphic spaces over 4,

then
ta
!, =

with some S in GL(n,A), cf. I § . Taking deterzinants w¢

obtain

2
det(aij) =b det(ai.)

J

with b a unit of A. We call the square class det(ai.)A*2 the

determinant det(E) of the space E, and we have shown that det(E)

is a well defined invariant of E.

Remark. In the same way we have determinants for free spaces

. ~
over an arbitrary scheme X with values in 6 (X)*/6(X)*“. For

<

determinants of other spaces see Chapter IV, §& 3.

For two spaces E,F over A we have

det(E L F) = det(E)det(F).
Thus our invariant yields a determinant map

det: K Bil(4) = L(4) - (&)

defined by

det ([E]-[F]) = det(E)aet(F).

Unfortunately det(H) = (-1)A*2. Thus det does not factor through
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W(A). We resort to a trick well known from the thecry over

fields. Let (Z/2Z).Q(L) denote the abelian group consisting of

the pairs (v,d) in &/2 Z) x ¢(4) with "twisted" multiplicaticn

| VaVo
(v484) (v5,d5) 1= (varvs, (=1) 7 “a,a,)).

We consider the nap

n§n-12 .

zw» (n mod 2, (-1) det z))

from L(4) to (&/2 Z)+4(4), with n denoting the rank of z. This

map is a group homomorphism and vanishes on H. Thus it induces

a map

(v,d): W(A) - (2/2Z).Q(4) z » (v(z),d(z)).
We call the second coﬁponent
a:W(a) -» q4a)

of this map the signed determinant. For E a space of rank n

over A we have by definition : |
n(n-1) 1
GU{ED = (1) ©  det(E).

Of course we denote this square class by a(E) for short. For

spaces Eﬂ’EZ over A we have

v(E,)v(E,)

G(4) can be regarded as the group of isomorphy classes

<a> of spaces of rank 1 over A with the tensor product as multi-

plication. We have a natural map <a> = {<a>} from @(4) to W(&).
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Since

a(fca>l) = <>

this map is injective. Henceforth we rezard (i) as a subrcotb
of W(A), i.e. we identify a square class <as> with the Witt
-class {<a>l. Now G(4) is a subgroup of the group of unite W(a)*

of the ring W(4).




§ 3 Orthogonal bases.

We denote the radical m, N ... N ~_ of 4 by v. Every
o0
space (E,B) over A yields by reduction modulo r a space
(E/rE,B) over A/r. Now z2ccording to the Chiness rerainder theoren

A/v can be identified with the direct product I A/Fi. Thus
i=1

(*) (E/rE’E) =

W =un

with Bi the reduction of B modulo ™.

Some well known theorems for spaces over fields cen be
transfered to spaces over 4/r according to this relation and

then to spaces over £,

Lemma 1. Let (E,B) be a space over A. Every orthogonal decompo-

sition

E/l'E:F-‘L-G-

of E/rE into free spaces F,C over A/r can be lifted to an

orthogonal decomposition

E=F , G,

.

Proof. Let §a,...,§£ be a basis of F over 4/r. We choose pre-

images Y,ye-+,5, of the §£ in E, and we define
F = Ay,] + ese + Ayro

The determinant of the matrix (B(yi,yj)) is a unit in 4 since it

is modulo r a unit in A/r. Thus Yqreee¥, is a free basis of F

over A, and the bilinear form BIF is nondegenerate. We obtain
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E=F , Ft,

We have F/rF = F, hence

F4/tFt = (M* = C.

Definition. A basis X4,...,x, of the space (E,B) over & is an

orthogonal basis if E is the orthogonal sum of the subspaces

Axnyee,hx . Notice that then all B(x;,%;) are units.

Proposition 1. Assume the space (E,B) contains for every maxi-

mal ideal m; a vecter z; with B(Zi’zi) not in ~.. Then (E,B) hnas

an orthogonal basis.

Proof. It suffices to find an orthogonal basis of E/rE, since

this basis can be lifted to an orthogonal basis of E according

to the preceding lemra. Recalling the decomposition (*) of

E/rE into spaces over the fields A/m.l above we see that if suf-

fices to prove the proposition over fields.

Thus we assume now thet A is a field. If x 1s a vector in

E with B(x,x) # O then

E= (&%) 1 E,

with E,1 = (Ax)l. Repeating this procedure we obtain a cecompc-

sition
E = qu“x cee L AXr L F
with B(x,x) = O for all x.in F. If A has characteristic # 2 this

implies F = O. Assume now that A has characteristic 2. For any

vector x # 0 of F there exists some y in F with B(x,y) = 1. Then
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Ax + Ay is the hyperbolic standard plane H = (3 g) , and

we have

Fo= (Ax + Ay) 4 Fq

with some subspace Fq. Repeating the procedure we learn that

F >~ % H with some t » O. (These spaces indeed do not reprecent

elerents 7 U.) We now obtain by induction on the rank of E that

E has an orthogonal basis if we verify that every space

._ c 1
G 1= <a> 1. 1 ())

with some a in A* has an orthogonal basis. Let z,x,y be a basisc

corresponding to the given presentation of G. Then

G, := A(z+x) + Ay

ie a subspace with matrix (? g , and we have

G = (2 8) L <b>

with some unit b. (Comparing the determinants of both

see <b> = <a>.) Moreover

G, = E(z+x) 1 (A(z+x))?* = <a> 1 <>
for some unit <c>. (Comparing determinants we see <c>
Thus

G = <ag,c,b>,

and G has an orthogonal basis.

spaces we

<“a> - )

[}

Corollary. If 2 is a unit in A then every space over A has an

orthogonal basis.
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This is evident from the arguments in the prcof just

completed.

Proposition 2. (cf.[W, Satz 7] for fields of Char. 7 2.)

Let ® and B8' be two orthogonal bases of & space E over 4.

i) There exists a finite sequence

| = R q, = 9!

L)
o L v
of orthogonal bases 3i of E connecting ® with £' such that

%i and $i+1 differ at most at four places.

ii) If all residue class fields A/mi contain at least % elements
then there exists such a sequence with %i and ?i+1 giffering

at most at 2 places.

The proof roughly runs as follows. We first verify the
proposition over fields. Then we can connect the baces ¥ and
®' of E/rE coming from B,R' by a sequence as gbove. We 1ift this
sequence to a sequence of orthogonal basis of E starting with ¥

and arriving at a basis 8" which is congruent tc ®' moc r.

alterations at each step at two or less places. For the cetails

cf. [KRW § 1]. The easier part (ii) is already contained in

[K,§ 5.5].
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§ 4  Generators and relations for W(A).

. -
We denote the group of square classes (&) = A*/i*® by C

and we regard G as a subset of W(&), cf. § 2.

Proposition 1. W(&) is additively generated by C.

Proof. Let E be a space over A. The space E 1 <1> certainly has

an orthoponal basis, cf. & 3, Prop.1. Thus

E L <1> = <b1> L eee L <bn>

with some units b,, and we have in W(&) the equation

{E] = <by> + ae. t <bn> + <=1>,

According to this proposition we have a surjective homo-

morphism from the integral group ring Z[G] to W(4),
$:Z[G] » W(a)

induced by the inclusion map from G to W(4)., If we consider &

square class <a> as an element of Z{G] we denote this square
class by [a]. The homcmorphism & maps [a] to <a>. Let § denote

the kernel of 3&.

Theorem 2. The ideal § is additively generated by the element

1] + [-1] and all elements

; [a;] : (b, ]
z = Y la:}j ~ ¥ b. !
i=1 Y i=1 7

with h = 4 and
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h h
I <ai> o l» <bi>'
i=1 i=1

If all the finitely many residue class fields &4/~. of A contain
at least 3 elements, then already the elements z of this tyne
with h = 2, together with [1] + [-1], suffice to generate ¢

additively.

Proof. Clearly all these elements lie in §. Let now z be a

given element of f. We have

z = [aq]'+ ceo + [ar] - [bq] — e. - fhsl

with some units ai’bj of A. Eventually replacing z by -z we

assume r > s. The spaces
E .= <aq,ooo,ar>, F = <b1,...’bs>

are Witt-equivalent. In particular r-s is an even nurber 2t.
Lccording to § 1 the spaces E and F 1 t x <1,-1> have the same

image in L(4) = K Bil(4). Thus there exists a space G with
ELG= Fr; t % <1,-1> 1 G,
Adding for safety the space <1> to G we may assumc that
G = <ar+1,...,an>

with some further units 3y Now introducing notations b-l =+ 1

for s < i € r and bi = a; for r < 1 € n we can write
E L G = <a1,ouo’an>,

Futx<1,-1 16 =<by,een,b >,

|



and we have

Z = t(r1] + [—1]) + g [ai] - T (bi]'
i=1 i=1

For any orthogonal basis % = ixq,...,xm} of a space T over 4
we introduce the element

[m] = ? [B(Xi,xi)]
i=1 -

of ZIG]. Using this notation we have
z = t([1] + [=1])+ 9] - [3']

for suitable orthogonal basis 8 and B' of E 1 G. As shown in

& 3 there exists a sequence

SO=‘8, gq,...,?m=fﬁ'

of orthogonal bases of E 1 G such that subzequent bases ¢iffer
at most at h places with h = 4 in general and h = 2 if & hac no
residue class fieldes containing cnly two elewente. We have

mn="

(2] - {1 = % (18,7 - [, )
i=0

i+1

and every summend [B,] - [#;,4] is a difference [2] - [#'] with

2,8' orthogonal bases of some space of rank h. This finishes

the proof of the theorem.
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§ 5 The prime ideals of W(A).

We have seen that W(A) is in a natursl way ircomorphic to
the quotient Z[Q(4)]/f of the group ring Z{«(4)] by a more or
less explicitely determined ideal f. Thus the prime ideals of
: W(4) correspond uniquely with those prime ideals of &l (a)]
which contain 8. We now shall determine all priue idesle of

§ ZTQ(A)] and then we shall look which of them contain .

Let G be an arbitrary group of exponent 2, i.e. with
i g5 = 1 for a¥l g in G. If P is a prime ideal of Z[G] then clesrly

g =+ 1 mod P for every g in G.- Thus Z[G]/P is isomorphic either

to Z or to a prime field FP with p elements. Since the rings Z

and Fp do not have automorphisms except the identity we obtain

Lemma 1. For P a prime ideal of Z[G) with P N Z = {0} there
exists a ﬁnique ring homomorphism e from Z[G] to Z which hes
the kernel P. Similarly for P a prime ideal of Z[G] with

ZNP = pZZ,‘ﬁ of course a pfime nurber, there exicts a unique

ring homomorphism ¢ from Z[G] to Fp>which has kernel P.

Thus we need only to describe these homomorphisms m and .

Every ring homomorphism from Z[G] to Z maps G into {+ 1). Thus

the restriction of ¢ to G is a character yx on G. Conversely every

il character x:G » {+ 1} extends in a unique way to a ring homomor-

phism ©:Z [G] » Z by the universal property of the group ring.

Since now we identify ¢ and y, i.e. we regard a cherscter of G

also as a ring homomorphism from Z{G] to Z.




Assume now that p is an odd prime. Then the gfoup {i 11

embeds 1into le and is the subgroup of all elements of F* of
order at most 2. Thus the restriction of a ring homomorphiem

from ZIG] to Fp yields again a character . This means that

1O

l

i

}

. . -~ , i

there exists a unigque homomorphism yx from Z[G] to Z such that ;
It

the diagram ;

Z(6] —X > 7 |
ﬂ_,\ /c |
Y tf ' i
m\ ‘ .
b

with K the canonical rep from Z onto IFP cormutes. it

-

Consider finally p = 2. Every homomorphism from ZlG] to
(F2 maps every g in G to 1. Thus there exists a unidue homomor- i
phism ﬂ:o from Z[C] to Fz. We obtain this homomorphism by composing

any character ¥:Z[G] »Z with the canonical map from Z onto [‘E‘2. i!

According to these simple observations Lerma 1 implies

Proposition 1. i) For every prime ideal P of Z[G] with

PNZ%Z = {0} there exists a unique character X of G such that F
ie the kernel P‘X of the ring homomorphism y from Z[G] onto Z.
ii) For every prime ideal M of Z[G] with N N Z = p Z, p an odd

prime, there exists a unique character y of G such that M coin-

cides with the se: : ‘

M i= Z + P
P X

consisting of all z in Z[G] with y(z) = mod p.

iii) There exists a unique prime ideal I’Io of Z[G] with
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Mo N% = 2Z. We have

-1
MO=X (2Z>=EZZ+PX

for every character x of G.

Clearly the PY are the minimal prime ideale of Z[G1 and

the ideals MX D and 1IN are the maximal ideals of &[G ].
]

We now denote by G the group (L} of square clarecer of our
connected semilocal ring 4 and consider the prime ldeals cf
Ww(a) = Z[G)/#. Recall that we denoted by I(&) the kernel of the
rank index -
V:W(A) - Fg.

From part (iii) of the just proved Proposition 1 we obtain

Proposition 2a. I(A) is the unique prime ideal of W(4) which

contains 2'1W(A)‘

Definition. A signature o of 4 is a ring homomcrphiecm from

~W(A) to Z.

We denote the kernel of a signature « by Pﬁ and we have

W(A)/Pc >~ %. Part (i) of Proposition 1 implies

Proposition 2b. For every prime ideal P of W(A), which cdoes

not contain p'ﬂW(A) for any prime number p, there existe a

unique signature o such that F = Po'

To analyse the prime ideals M of W(4) which contain p=7y(,)
i)
for p an odd prime we need the following informaticn about the

ideal ¢ which will be verified later.




Lemma 2. For every character y of G either y(f) = O or

x(f) = 2" Z with some n > 1 (actually n < 3).

From this lemma it is clear that if y(f) ¢ p & for our
odd prime p then %(f) = 0. Thus we obtain from part (ii) of
Proposition 1 the following:

Proposition 2c. ZLet p be an odd prime. Then for every prime

ideal M of W(4) with p'ﬂw(A) in M there exists a unique signature

~ of A such that M coincides with the set

M .= YA y
a,p P * P@

consisting of all z in W(&) with o(z)

M

moG DP.

Thus the Po’ the Mc D’ and I(A) are all the prime ideals

b

of W(A). We call the ring A real (or formally real) if 4 has at
least one signature. Otherwise we call A non real. Our descrip-

tion of the prime ideals of W(4) implies the following

Corollary. Assume A is real. Then the Po are the minimal prinme
ideals of W(A). The ideals Mo . and I(A) are the maximal ideals
b

of W(A). Every Mc o contains a unique minimal prime ideal, and
k]

this is P_. The ideal I(A) contains all minimal prime ideals.

On the other hand we have

Proposition 3. The following are equivalent:

a) A is non real.

b) I(4) is the unique prime ideal of W(1).

c) 2%W(A) = O for some natural number n.
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Here the equivalence a) & b) is evident from cur analysics

of the prime ideals of W(4) in general. The implication c) = &)

is trivial since W(4) certainly does not admit homoworphisus to

Z if W(A) entirely consists of torsion elements. It rerains to

I(4) is the nilradical of W(4). In particular 2-dw<ﬂ) ie nil-

potent, hence 2n-4w(A) = O for some n. Thig irplies

We still have to prove Lemma 2 about the sets

oli(a) = C.

preceding § 4 the ideal # is additively generated by 11 + =]

and by the elementé

 [a]- 7 [b)
z = % a.| - ¥ |b:]
i=1  * i=1
with 4 4
>|»-<ai>~3 l <bi>'

1= 1="1

Oon [1] + [-1) every y has value O or 2. We claim that y has cn

a fixed element z as above a value O, + 4, or + 8. Then the Lemnma

will be evident.

Let s denote the number of square classes [ai] with

x([ai]) = -1 and t the number of square classes [bi] with

X([bi]) = =1. Then

y(z) (-s) + (4-8) + t - (4-t) = 2(t-2).

Now observe that the spaces <aq,a2,a5,a4> and <b,,",,P b,>

574

have the same determinant, since they are isomorphic.




Applying x we obtain (-1)° = (-1)t, hence t-s is even. This

implies
v(z) = 0 mod 4.

On the other hand clearly lx(z)l < 8. Thus indeed x(z)

O or

+ 4 or + 8.
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§ 6 Nilpotent and torsion elements.

If A is non real then we know already thet all elementc
of W(A) are torsion and in fact killed by a fixed power cf Z.

Moreover I(4) is the set of all nilpotent elenents.

. Since now we assume that A is real. Since the Pn are

precisely all niminal prime ideals of W(4) we have

Proposition 1. 4An element z of W(4) is nilpotent if and only

if a(z) = 0 for every signature o of A.

We now look at the torsion elements of W(A).

Proposition 2. An element z of W(4) is a torsion element if

and only if z is nilpotent.

Proof. Assume nz = O for some n > 1. Then certainly a(z) = C

for all signatures o of A, hence z is nilpotent.

Assume now that z is nilpotent. There exists a finite sub-
group H of Q(A) such that z is contained in the subring R of Ww(s)
generated by H. Now by Maschke's theoren the group ring 11l over
the field § of rational numbers is semisimple. The tensor product
(Y Rg R is a homomorphic image of §[H] and thus is again semi-
simple. The image 1 € z of z in § & R is nilpotent and therefore

must be zero. This implies nz = O for some natural number n.

Proposition 3. For every torsion element z of W(4) there exists

a 2-power o with 2z = 0.




Proof. Again z lies in the subring R of W(A) generated by

some finite subgroup H of Q(4). Let p be any odd prime. The
ring R/pR is a homomorphic image of the group ring FP[H]. By
Maschke's theorem R/pR is semisimple. By Proposition 2 the
element z is nilpotent. Thus the image of z in R/pR must be
zero. This means that there exists aﬁ element y of R with

z = py. Clearly y is again a torsion element. Thus we have
shown that the finite abelian group Rt consisting of the

torsion elementsin R is divisible by every odd prime p. There-

fore R

" must be 2-primary, and 2Tz =« O for some r.
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§ 7 4 closer look at signatures.

Let g be a signature of 4. Then o yilelcls a horonorphl s

.A* ___>> q(a) J.lﬁﬁ.‘él-) ii’_ 14

the first arrow denoting the canonical map fror &% to A*/A*g.
Cur signature o is completely determined by this horororphisr
from A* to {+ 1}, since W(4) is generated by W(4). We identify
henceforth a signature ¢ and the corresponding mep from A* to
{+ 1}, i.e. for any a in A* ye simply write o(a) instead of

o(i<a>t).

Proposition 1. If a mep o from B to {+ 11 ic a signature then

the following three propertics hold true:

(1) a(ab) = o(a)a(b) for a,b in i*;
(i1) o=

(1ii) If a,,

_’\;

«.,8, aTe units with

c(aﬂ) = o(ay) = «o0 = o(a,) = +1, then for any unit
2 2
b=2dja, t e ¥ Xrar

with some ~X; in A again a(d) = +1.

Here the properties (i) and (ii) are evident. To prove
property (iii) we consider the bilinear space <Bpyeesya,>. This

space contains a vector x with value B(x,x) = b. Thus
<aq,...,an> =<b> L G

with G the orthogonal complement of Ax in the whole space. Tra~




space G 1 <1> certainly ha:z an orthogonal bases, cf. Prop. 1
f § 3. Thus

<q,aq’...,ar> =2 <b’bq,.."b1‘>

with some units b . Computing the values of e on the classes

of these two spaces we obtain

r+1 = o(b) + o(bq) + oo + o(br).

Since all summands on the right hand side are + 1 they actually

must be + 1. In particular o(b) = +1.

Proposition 2. Assume A has no residue ciass fiélds,A/mi with

only two elements. Let o be a map from &* to {+ 4} fulfilling
the conditions (i) and (ii) in the precedlng Plopocltlon 1 and
the following condition weaker than (111)

(iii)' If a is a unit of A with o(a)

2 pza with A,u in A again o(b)

"

+1 then for any unit

b =2

n

+1. Then ¢ is a signature

of A,

Proof. By property (i) we have o(az)

+1 for every a in A%,
Thus o yields a character on G := Q(&4) which extends in a unique
way to a homomorphism

We have to show that o« vanishes on the ideal € described in & 4.
Clearly o vanishes on 1 + [-4] since og(-1) = =1. It remainé to

cshow o(z) = O for an element
2 = [a»]] + [32] -. [bq] - [bg]

with
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<a1,a2> =<b,,b~,.

172
Introducing the units a := a_q i= ﬁ_qb U —1h o
ntro g tt ' = a, a5, C = 8q by, c = 8, Dg, Ve
write _
z = [ag]([1]+Tal-Tc)-fct D).
We have
<1,a> = <c,c'>,
Thus

with some A,u in A. Moreover comparing deterwinants we see

that [c¢'] = [al(t], hence

z = [a,J([1)+[aD) ([1]-[c D).

If a(a) = -1 then clearly a(z) = 0. If ¢(a) = +1 then again

c(z) = 0 by condition (iii)'. Thus indeed () = O.

Ge€.Co

We now study signatures in the special cace that 4 is a
field. Let o be a signature of A. Let T denote the cet of all
a in &* with o(a) = +1, anc¢ let -P Genote the set (-1)P of

negatives of these elements. Since a(~1) = -1 the ret -F is

Just the set of all b in 4&* with o(b) = -1, and we have
PNn(-P) =g, Pu (-P) = &*,

Moreover exploiting the properties (i) and (iii) of signatures
(cf.Prop.1) we see that P is closed under addition and multi-

plication. Thus P is the set of positive elements of a total
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ordering a of A compatible with addition and multiplication.
Henceforth we refer to these orderings simply as "the orderings”

of the field A.

Let now an ordering o of A be given and define a map

oa:A*-»li_ﬂ}

as follows. For a in A* the value o(a) is +1 if and only if 2
is positive with respect to o. Observe that A has certainly
more than 2 elemente, since no field of positive characteristic
can be ordered. We can apply'Propositiony2“énd we check imme-
diately that %y is a signature of A. Thus we have arrived at

the following important theorem, found independently by Harrison

[H] 2nd Leicht-Lorenz [LL]:

Theorem 3. The orderings a of a field & correspond uniquely

with the signatures o of A& by the relation (a € A*)

a > O with respect to o = c(a) = +1.

Notice that for a bilinear space E over A the value.
nc(E) = ca(iE}) of the signature o, corresponding to an ordering
a is just the classicel "Sylvester-signature"'of E with respect

to a. Indeed, choosing a diagonalization

E = <a4,...,an>

we have

°a<E>

oa(aq) + eee + ca(an).
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Coming to the end of this chapter on local theory we

prove the following theorem [KRWhﬁ 41].

Theorem 4. Let A be a connected semilocal ring in which 2 ig =

unit. Let Bqyesesdn be units of A. Then for any uvnit b of & theo

following statements are equivalent:

a) For every signature ¢ of 4 with c(aq) = ee. = ”(ar> = +7
also o(b) = +1.
b) The unit b can be expressed in the form
i i
b= QE::jJ di 5 a,iq .o arl
o dE e i
with coefficients di . which are sume so squares of
q,.'.., I‘

elements in A.

Here the implication b) = a) is evident from Proposition 4.

To prove the implication a) = b) we consider the "Pfister spaces"

DI <1,ar>

F :=<1,a,

and
E := <1,-b> ® F

Our assumption a) implies o(E)

O for all signatures « of 4.
Thus the class of E in W(4) is nilpotent, hence torsion by & €,
and there exists some natural number m - actually a 2-power -

such that m x £ ~ O, 1) From this we obtain

nXxFn~mnmx<b> = F,

) m % E denotes the orthogonal sum of m copies of the space L.
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Since the spaces on both sides have the same rank, and since

cancellation holds true i1f 2 is a unif, we deduée that
m X F=mx<b>~F,

cf. § 1. Since F represents the element 1, i.e. B(x,x) = 1
for some x in F, the space m x F represents the element b. This
gives the desired expression for b with sums of m squares as

coefficients.

In the special case r = 1, a, = 1, our thecren cays that
the units of A which have value +1 under all signatures are
precisely the units which are sums of squares. This is a well
known theorem of Artin in the field case (4, Satz 1]. Our more

general theorem has been observed over fields by Pfister [P,

Satz 21].

Proposition 5. ILet A be an arbitrary semilocal ring. Then 4

is non real if and only if -1 is a sum of squares.

Indeed, if -1 is a sum of squares then A has no éignatures
as is already clear from the property (iii) of signatures in
Proposition 1. Assume now that A is norn real and in addition
that 2 is a unit. Then teking r = 1, a, = 1, b = -1 in Theoren 4
we see that -1 is a sum of squares. If 2 is not a unit a proof

that -1 is a sum of squares is contained in [¥.,,§ 1] by a method
[

involving quadratic forms.
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Guide to the literature: Local theory.

To § 1 If 2 is not a ﬁnit iﬁ the semiiocal ring & then the
cancellation theorem stated in § 1 remains true for quadratic
spaces, i.e. for free modules of finite rank equipped with 2 non
degenerate quadratic form [Kq]. For bilinear spaces only &
restricted - but nevertheless useful - cancellation thecremn
holds true, cf. [K,§ 6]. 4 surprisingly general theoren about
extensions of isometries in quadratic modulec over local rings,
containing_the first mentioned theorem (over local ringes) as =2
very special case, has been proved by M.Kneser, cf. Nachr.ikad.

Wiss. Gottingen Math. Phys. K1 II 1972, 105-203,

To § 3 ~ § 6: The material has been tsken frou the paper [LRW].
There a much more therough study of W(4) andé related 1inge has
been made than in owr lecture *), and also Witt »ingc of herni-~
tian forms are included. For a study of the reduced Witt rins

W(A)/Nil W(A) see § 4 of the paper [KRW, ].

To § 7: For further details and for "eignastures of semilocal
rings with involutions" cf. [Kqu] and [K,l. In Chapter V, & 1

of these lectures we shall add an important theoren to cur local

theory of signatures.

There exists an extension theory for signatures to certain

types of overrings of a semilocal ring. For this cf. § 3, § 4,

L5

* -
) cf. Appendix 3
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and § 8 of [K5] as well as a recent paper "Signatures on
Frobenius extensions” by mycself (to'appear in the beok "Number
thecry and Algebra" in honour of H.B.Mann, 4.E.Ross, and

0.Tazussky-Todd, to be published by Academic Press).

If you want to take a glance at other techniques, more

working with forms themselves, cee the paper "Annullatoren von

Pfisterformen iiber semilokalen Ringen" by R.Baeza and myself

(Math.Z. 140, 1974), and some of the literaturé cited there.

Roughly all those statements about bilinea: spaces over
fields of characteristic # 2, which in their proof do not
involve transcendenﬁal field extensions ("function field methods",
cf. e.g. Arason~Pfister, Invent.math. 12, 1971,or Lam's Kingston
lectures), can be transfered in some way to bilinear spaces over
semilocal rings with 2 a unit. If 2 is not a unit, bilinear
spaces are much less understood. The trouble is that then a

bilinear space usually has few automorphisms. For example an

anisotropic bilinear space over a field of characteristic 2 _
has no automorphisms at all except the identity. (Exercisel) éf
It sometimes seems to be useful to work both with bilinear and %
quadratic spaces. {A bilinear spacé can be multiplied with a

quadratic space yielding a quadratic space.} A thorough exposi-

tion of the "elementary theory" of quadratic spaces over semi- f
local rings has recently been given by R.Baeza in his Habilita- |
tionsschrift "Quadratische Formen iiber semilokalen Ringen" (Fach-
bereich Mathematik der Universitat, 66 Saarbriicken, West Germany,

to be published). Supplements to this treatise can be extracted
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from two papers of K.Mandelberg, "4 note on quacratic forms
over arbitrary semi-local rings" (Canad.Jd.lath. 27, 1975), and
"On the classification of quadratic forms over semi-local rings"

B (to appear).

i Of course this guide to the literature is incomplete. In
particular I only mentioned papers with a strong focus on the

general theory.
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Chapter III. The Prime Ideal Theoremn.

§ 1 Divisorial schemes.

Since now our scheme X is always tacitly assumed to be

separated. Then the intersection of any two affine open sub-

sets of X is again affine.

Let £ be a line bundle on X, i.e. a vector bundle of
rank one, and let f ¢ {(X) be a global section of <. For any
point x of X the "value" f(x) of f at x is defined as the image

of £ in the fibre £(x) = &X/m £ of & at x. We denote by X. the

f
set of all x in X with £(x) # 0. These open sets X, are impor-

tant to us, ®Tince the following eyten81on theorem for sectlonq
of quasicoherent sheaves - and in particular for sections of

vector bundles - holds true.

Extension theorem [EGA I § 9.3].

Assume X is quasicompact, i.e. X can be covered by finitely many
affine open subsets. Let 3 be a quasicoherent sheaf on X.
i) For every section u of ¥ over Xf there exists some n > O such

that the section f®n @ u of i o 'é 3 over Xf can be extended to

a section of,£®n

® F over X. _
ii) If v is a section of F over X with v Xf = O then there exists

. ® o S
some n > O such that the section £f™& ® v over & & ¥ Vanishes.

Definition. A special open set of X is an affine open set Z

for which there exists g global section f of some line bundle

£ on X with 2 = Xf. The scheme X is called divisorial if X is
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A (separated) quasicompact, and the special open sets are 2

basis of X.

The notion "divisorial scheme" has been intrcduced and
studied by M.Borelli in two papers [Bo],[Boq]. Divisorisal

schemes seem to be a natural category for K-theoretic enter-

prises, since the extension theorem cited above can there

widely be applied.

To prove that a scheme X is divisorial it suffices to show

that X can be covered by finitely many special open subsets. Even
a still weaker condition suffices, cf. [Bo, Th.3.3). In particu-

lar for any commutative ring A the projective n-space PE, i.e.

the homogeneous spectrum of the polynomial ring A[To,...,Tn]

with its standard grading, is divisorial. Here already the sets

Xf with f running through the global sections of the powers
6(n) = 6(1®* (n > 1) of the canonical line bundle 6(1) are a

basis of X.

Clearly every locally closed subscheme of a divisorial

scheme is again divisorial. In particular every quasiprojective
scheme, i.e. locally closed subscheme of a projective space PE,

is divisorial. More generally every factorial and in particular

every regular, quasicompact scheme is divisorial, cf. [Bo,
Th. 4.1], hence also every locally closed subscheme of such &
scheme. It is also easily verified that a fibre product of two

divisorial schemes over an arbitrary scheme is divisorial. Thus

the category of divisorial schemes is indeed very extensive.




§ 2 Consequences of the Prime Ideal Theorem.

The central theorem of the present chapter is the

following beautiful

Prime Ideal Theorem. Let X be a divisorial scheme and let P

be a prime ideal of W(X). Then there exists some closed point
x of X such that P is the inverse image of a prime ideal & of
W(GX) under the homomorphism from W(X) to W(@X) induced by the

inclusion morphism from Spec(SX) to X.

Notice that this homomorphism W(X) - W(&x) just maps a

class {E} to the class EEX} of the stalk of E at x.

The Prime Ideal Theorem has been proved for X affine by
A.Dress [D]. In our proof for divisorial schemes we shéll follow
the ideas in [D] closely. The proof will be given in the later
sections of this chapter. We now point out some consequences ¢f

the Prime Ideal Theorem. We always assume tacitly that X is

divisorial.

Corollary. (Weak local global principle.)

Let z be an element of W(X) with image zero in W(GX) for every

n

closed point x of Z. Then z~ = O for some n > 1.

Indeed, let P be a prime ideal of W(X). Then by the Prime
Ideal Theorem there exists a closed point x of X and a prime
ideal § of W(GX) lying over P. Since z has image zero in W(Gx)

this element lies in P. Thus z lies in all prime ideals of W(X)

and nust be nilpotent.
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Remark. The analogous statement for the ring K(X) is well
known. We have K(GX) = Z for every x in X, and the natural
map from K(X) to K(GX) is the local rank at x. 4n element z
if K(X) of rank zero everywhere is known to be nilpotent. In-
deed, a stronger statement holds true if X is quasiprojective
and has finite dimension d [Ma, Theorem ©.11: The (¢+1)-th
power of the ideal
E(X) = ker(K(X) » T K(6,))

X

-

with x runming through the closed points of X is zero. To
obtain a similar result for W(X) still some "semilocal diffi-

culties" have to be surmounted, cf. § 8.

From our study of the prime ideals of the Witt rings
W(GX) in Chapter II we obtain some insight into the spectrum

of w(X) by use of the Prime Ideal Theoren.

Definition. A signature o of X is a ring homomorphism from

W(X) to Z.

The kernel of o is a prime ideal Po with W(X)/Po = Z, and
clearly in this way the signatures correspond uniquely with the
prime ideals P of W(X) such that W(X)/P is isomorphic to Z,

since the ring Z has no automorphisms except the identity.

his in the local theory we call X real (or formally real)

if X has signatures, and we call X non real if X has no signa-

tures.
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Theorem 2. Assume X is real and connected.

a) The kernel I(X) of the rank homomorphism from W(X) to Z/2 Z

is the unique prime ideal P of W(X) with 2+1 )€ P.

WX
b) The prime ideals P, with ¢ a signature are precisely all
prime ideals P of W(X) with p'1W(X)¥ P for all prime numbers

R- They correspond uniquely with the signatures of X.

c) Let P be a prime ideal of W(X) with p-ﬂw(X)E P for some odd
prime number p. Then there exists a signature o of X such

that P coincides with the maximal ideal

Mo,p = {2z € W(X)lc(z) €EpZl =pZ + Pc'

Notice that a) and b) are precisely the same -statements
'as obtained in the local theory in II, § 5 Prop.2 part a) and b),
but that part ¢) of the present theorem is weaker then the corre-

sponding part c¢) of that proposition.

Proof. a) Let P be a prime ideal containing 2°1W(X)‘ Let x be a

point of X and Q a prime ideal of W(Qx) lying over P. Then Q con-
tains 2+1y(e - According to II, § 5 we have Q = 1(6_), and P is

the kernel of the map

W(x) > W(s ) x z/2 zZ,

with v the rank function (I,§ 7) on W(SX). Thie map is the rank

function on X since X is connected, hénce P=I().

b) Let now P be a prime ideal of W(X) hot containing p-ﬂw(X> for

any prime number p. Then Z embeds into the ring W(X)/P. Let again

Q be a prime ideal of W(Gx) for some point x of X lying over P.
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Then Z also embeds into w(GX)/Q. According to Chapter II, § 5
there exists a unique signature 1 of GX with kernel §. Thus T

is the kernel of the signature
o:W(X) ~» W(GX) - 7.

As already mentioned above different signatures of X have

different kernels.

c) The proof runs in the same way as the proof for part b).

Our proof of part b) applied to a prime ideal P aleo

shows the following -

Corollary 1. .Let d be a signature of X. Then there exists a

closed point x of X and a signature T of 6 such that o coin-

cides with the composite map

vw(x) > W(s_) I > 7.

According to Theorem 2 the minimal prime ideals of W(X)
are precisely the kernels Pc of the signatures « of X. We thus

obtain

Corollary 2. Assume X is connected and real. in element z of

W(X) is nilpotent if and only if o(z) = C for every signature

o of X. In particular all torsion elements of W(X) are nilpotent.

This_corollary 1s considerably weaker then the results
obtained in the local theory in II § 6. In fact there exist
affine schemes X such that W(X) contains nilpotent elements which

are not torsion. Also elements of odd torsion can ocour in W(X).
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Let for example A be the ring of continuous F-valued functions
on a compact Hausdorff space S. Then W(A) ig known to be iso-
morphic to the Grothendieck ring KO(S) of topclogical real
vector bundles on S, cf. [MH, p.106]. KO(S) contains already
for S the 4-sphere nilpotent elements which are not torsion, cf.
[Hu, Chap.15, § 12.3]. There also exist compact spaces S such
that KO(S) contains p-torsion elements for an arbitrary pre-

scribed odd prime number p, e.g. suitable lens spaces me].

Passing from A to an appropriate finitely generated sub-
ring of A we see that there exist noetherian affine schemes
with Witt rings containing non torsion nilpotent elements or

non zero p-torsion elements for p an arbitrary odd prime number.

On the other hand, if X is non réal we reet precisely the

same situation as in the local theory.

Theorem 3. Let X be connected. The following statements are

equivalent:

a) X is non real
b) I(X) is the only-prime ideal of W(X).

c) 2PW(X) for some n = 1.

The proof of the implications b) = ¢) and c¢) = a) runs as
in the local theory, cf. II § 5. We are left to show a) = b).
Let P be a prime ideal of W(X), and let Q be a prime ideal of
W(Gx) lying over P for some point x of X. The ring Sx cannot
have any signatures since they would yield signatures of X. Thuz

according to the local theory Q = I(@x). Since X is connected

this implies P = I(X).
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In the case of affine schemes we have the following

criterion for non reality.

Proposition 4. A commutative ring A is non real if and only

if -1 is a sum of squares in A.

Proof. If -1 is a sum of squares in A then -1 is aglso a sum
of squares in every local ring Gx of X = Spec(4). Thus all these
local rings do not have signatures, cf. II § 7 Prop. 5. This in-

plies that A has no signatures by Corollary 1 above.

Assume now fhat A is non real. For every maximal ideal =~
of A the local ring Am is again non real, hence -1 is 2 sum of

squares in Am by Chapter II, § 7. This yields an equation

. 2 _ 2 2
-f= = Bq * eee + B

in A with elements BqreeesBy of A and f in Asm, the number n
depehding on m. We choose for every maximal ideal ~ such an
equation. The ideal generated by the elements f with r running
through all maximal ideals must be the whole of 4. Thus we have

in A an equation

together with equations
n(i)
2. % g 2.
i 321 ij

Multiplying the presentation of -f§ as sum of cquares with hf

we assume in addition h1,= eee = h =1, We have the identity

1,2 .2 o
2 (f/l tooot fI‘> = 1+ E’(f1+52f2 taoot Crfr)
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with ¢ = <€2,...,€r) running through all (r-1)-tuples with
entries eg; = £ 1 which are different from (1,...,1). Thus
_r=1, 02 2 \ 2
-1 = 2 (“‘"f/] o oo™ fr) + : (.f,]+£2f2 +o¢'+ Erfr> .

Inserting the expressions for the elements -¢§ above we obtain

a presentation of -1 as sum of squares in A.
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§ 3 Bilinear complexes

Our proof of the Prime Ideal Theorem will depend on sone

machinery involving "bilinear complexes".

*
Definition. A bilinear complex ) over a scheme X is a triple

(E,3,B) consisting of a graded vector bundle

E= & E,
ieZ

with only finitely many components Ei # 0 of course, a non

degenerate symmetric bilinear form

B:EX.XE-»G,

and an endomorphism

3:E o E

of the vector bundle E with a(Ei) c E; 4 for all i, such that
the following three_properties hold true:

a) 3.3 = 03

b) 3 is selfadjoint with respect to B, i.e. B(du,v) = B(u,av)
for sections u,v over an arbitrary open csubset Z of X3

c) B(Ei o Ej) =0 fori+ j#0, i.e. B is homogenous of degree

zero if we regard 6 as a graded vector bundle concentrated at

the zero tern.

By condition ¢) the bilinear form B induces a duality

between Ei and E_i, and we have the following orthogonal de-

*) We say "bilinear complex" instead of "symmetric bilinear
complex" for short.
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composition of the bilinear space (E,B):

o0
E=E 1 ] (g e E_.).

1="]
Every summand Ei e E-i’ i > 1, is isomorphic to the hyperbolic

space H(E;).

As usual we denote the restriction Ei - Ei+1 of 3 by ai'

There is another way to look at bilinear complexes. Let (E*, o%)

denote the dual corplex of the complex (E,3), defined as follows:

(E*); is the dual E*. of the vector bundle E_; and 3% is the
transpose (a_i_,])t of d_, 4% E 4~ E_;. The non degenerate
symmetric bilinear form B corresponds to an isomorphism o from
E to the dual bundle E* with o = wt. Condition (c¢) means that o
is homogeneous'of degree zero, and condition (b) means

d*om = @od. Thus (b) and (c) together just mean that o is a

morphism in the category of complexes of vector bundles.

Let us look at this isomorphism :E - E* of complexes more
closely. Assume Ei = 0 for 1 > n > 0, hence also for i < -n. We

have a commutative diagram (A) with o_; = (mi)t,




(&)

= Wl\_ wo
P-n O n+1 o,
2
A < ! l
1 . . .v
0+ —p—> B, —> ... > B ——> B
n-1 g _
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Now observe that this diagram (4) is essentially deter—~
mined by the maps 0; with i < O and the selfadjoint igormorphism
mO:EO _ Eg. Indeed, starting from these maps we define a new

bilinear complex (E',3',B') in the following way:

: Ei i<0
Bi 1<0
. .o t S - \
(82)  (31:E! = El ) =4 (3_n%  i-o0
t .
(a—l—']) i1 >0 3
0 , i+j 7 0
(B3) (B’ E Eé) 1= natural pairing ity = 0, i # 0
v BIEO 5 E, i=j=0.

-

To check that we have obtained an honest bilinear complex notice
that the isomorphism @':E' - E'* associated with B' is homo-

geneous of degree zero with components

id i#0
(B4) mi = { mo i=o.

From (B2) and (B4) we obtain immediately that ©'ed' = 3'*.m'
[ : - I s ol = ¥
and 3! ,09; = O for i # -1, The equation 3503, = 0 follous

from the commutativity of the central square in the diagram (4).

e

We now have an isomorphism

a: (E,3,B) == (E',3',B")

between bilinear complexes in the obvious sense with components

. ' 3
o;:E; > E{ defined by
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as is easily verified.

Proposition. i) The restriction of a bilinear complex (E,?,B)
to the sequence

] 3

—~— - _/‘
(C) O0=E —==>E ,+...-E, > E

O

gives a bijection from the set of isomorphism classes of bi-
linear complexes to the set of isomorphism classes of sequences
(C) with vector bundlest_n, E_,qse++,E_4 and e bilinear space

Eo fulfilling the following two conditions:

(D1)  3;,4°3; = O for -n < ig«=-2, if n > 2, i.e. (C) i= a

"half-complex";

(D2) B_q(E_q) is a totally isotropic ®-submodule of E_.

ii) The complex (E,3) is exact if and only if 3_,(E_,) is a

lagrangian of E  and (C) is exact.

Thus exact bilinear complexes correspond uniquely with
metabolic spaces equipped with a finite resolution of scome

lagrangian by vector bundles.

To prove part (i) of this proposition all that remains
to be done is the following. Start with a sequence (C) having
the property (D1). Let ¢ :E  ——> E* be the isomorphism associ-

ated with the bilinear form Bo pregiven on Eo. Define a triple

(E',3',B') by (B1)-(B%) and show that (E',3',B') is a bilinear
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complex if and only if (D2) is fulfilled.

The map ¢@':E' » E'* associated with the symmetric bi-

linear form B' is given by (B4). The equation
m'od' = 3"™aen!
follows from (B2) and (B4). The equation

' 1
0i41°%1 = ©

follows for i # -1 from (D1) and (B2). Thus we only have to

analyze the meaning of

' ' -
30631, = O,

-

Let V denote the image 3_,(E_,) of 3!, and W denote the kernel
of

t
' — o .
ao - (6—1) mo'Eo i Etﬂ'

These are quasicoherent ®-submodules of‘EO. An element u in

some stalk EoX lies in WX if and only if for every v in E—ﬂx

t
<v,a_qomo(u)> = Bo(a_qv,u) = O.

Thus W = V%, and we see that aéo811 = 0 means V ¢ V*. Moreover

the complex (E',d') is exact at Eé'if and only if V = V4.

Assume now that the half complex (C) is exact. Then we
have an exact sequence

(O I E_h - E_“n_’_ﬁl D eee E_q 2V 20

¥*
of vector bundles ). The dual sequence

*
) Also V is now a vector bundle!
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Q- VX o th - Et2 D ee. O Ein > 0

is again exact. Thus (E',3') is exact at all places E; with
i #0,1. If V is a lagrangian of E_ then in addition (E',3")
is exact at Eé. Moreover then o induces an isomorphism from

EO/V onto V*, and we see that (E',3') is also exact at Ej.

Assume finally that (E',3') is exact. Then the cokernel
EO/V of 3!, 1is mapped isomorphically onto the kernel V¥ of 3.
Thus V is a subbundle of Eo. As we have seen above V' = V. Thus
V is a lagrangian of EO and the proof of our proposition is

complete.

We call a bilinear complex (E,3,B) an n-complex, if E, =0

for i > n.
Example. The exact bilinear 1-complexes are up to isomorphismn
of the form
at
d 00‘_\0 .
0O 2V ——> EO —_— V% 5 0
where EO is a bilinear metabolic space with associated homomor-
phism o :E - Ez, and d is the inclusion map of some lsgranglan
V of E  into Ed. The bilinear form on E_, @ E,=Ve V* ie of

course the natural hyperbolic form.

For bilinear complexes (E',3',B') and (E",3",B") over X

there exists an orthogonal sum

(El’al’Bl) L (E",B",B") c= (E'CDE", é'mé", B',LB").

We also have a temsor product




-199-

(EI,aI’BI) o (E",B",B") = (E,B,B)

defined as follows: E is the tensor product E' # E" of the
vector bundles E' and E" with the grading

E = & E} ®EY

i+j=k * J
B := B' » B";

d 1= 3' # id + a' 2 3"

with o' denoting the involution of_E' associated with the
grading, i.e.

a'(u) = (-1)iu

-

for u a section of E! over some open set. (E,9) is the usual
tensor product of the complexes (E',d') and (E",3"). Denoting
by o':E' 4 E'*, o":E" o E"*,

0:E' @ E" 5 (E' ®» E")* = E'* & E"*

the homomorphisms associated with the bilinear forms B',B" and

B, we have o = @' ® 0", and the equation deetn = med is easily

verified.
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§ 4 Euler characteristics.

Let (E,3,B) be a bilinear complex over X, denoted in

the sequel by E for short. We define the Euler charascteristic

w(E) of E as the following element of the Witt-Grothendieck

ring L(X):

ool + T (DT [BED],

i=1

Here of course B0 is the restriction B/Eo. Let ET denote the

direct sum of the vector bundles Ei with i even and E denote

-

the direct sum of the E; with i odd. The bilinear space (E,B)

has the orthogonal decomposition
(E,B) = (E,B") . (7,B7)

with BY the restriction of B to E~. A second description of the

Euler characteristic is given by
x(E) = [E*,B"] - [E7,B7].

For two bilinear complexes E and I we have

y(E + F) y(E) + x(E),

X(E ® F) y(E) X(F).

The first equation is obvious. The second equation can be
proved as follows. The bilinear spaces (E # ¥)X have decompo-
sitions

(E e F)*¥

E' 9 F* L E = F7,

EY @ F L E o 8.

(E o F)”




-201-

Thus

w(E= F) = [E* # F*] 4 [E” 8 F"] - [E* » F7] - [E” 2 FF)
= (TE'] - [E7]) ([F*] - [¥7]).

Theorem. If the bilinear complex E is exact then x(E) = 0.

Froof. This holds true for 41-complexes by the very definition
of L(X). Let now E be an exact n-complex with n > 2, and let V
denote the image of ¢_4- Then V is a Lagrangian of E,+ Thus in

L(X) |
(1) (5,] = [B(W)].

We have an exact sequence

This sequence yields short exact sequences
0 - Z(Ei) - Ei - Z(Ei+’]) -0
(-n+1 € i € -1) with Z(Ei) the kernel of 3; and

Z(E_p,q) = E_, Z(E) = V.

-n+ -n’

We see successively that all Z(Ei) are vector bundles (an ar-

gument already used in § 3), and we have in K(X) for

-n+1 € i < -1

(] = [2(E;)] + [3(E, )]

1+1

Teking the alternating sum of these [Ei] we obtain in K(X)

nh™Mp

CEDER F-I I '3

l‘

i
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Applying the hyperbolid map

H:X(X) » LX)

we obtain in L(X) the equation

1-1
(-1 [B(E_))]

1
[wil NI
o

[E(V)]

1 EED].

1

el AN T}

= O,

From (1) and (2) we deduce ¥ (E)




——
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§ 5 Proof of the prime ideal theorem, part I.

If € is an element of L(X) and Z is an open subset of X

let EIZ denote the image of € under the "restriction map" from

L(X) to L(Z) induced by the inclusion morphism Z » X. A similar

notation will be used for the restriction of elements of W(X) to

open subsets of X. The following lemma will be very helpful to us.

Fundamental Lemma. Let X be quarcsicompect and Z be a special

open subset (cf. § 1) of X. Let & be an element of L(X) with
g'Z = 0. Then there exists a bilinear complex E over X such that

v(E) = € and the restriction E|Z of E to Z is exact.

Notice.that cénversely for every bilinear complex E over

X which is exact over Z we have

¥(B)| 2 = x(E|2) = 0

according to § 4.

This fundamental lemma will be proved in the next section.
We now take its truth for granted and deduce fror it the Prime
Ideal Theorem stated in § 2. We first recall a well known lemma

about complexes of vector bundles.

Lemma 1. Let E' and E" be finite complexes of vector bundles’
over an arbitrary scheme X. Assume E' is exact. Then also

E' 2 E" is exact.

. l
Proof. It suffices to check the exactness of E' @ E" on affine ﬁ

open subsets. Thus we assume from the beginning that X itself is
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”] . .
i affine. We write the complex E' as an exact seguence
|

zﬂﬁ 3! 3!

ee2 020 aB =B E B B 500 e

Let Zi denote the kernel of ai. This is a subbundle of E: (cf.

proof of the theorem in § 4). Since X is affine there exict
decomposition

" ' 1
E.l = Z.l 2 F.l

for r € i € s, and we see that E' is the girect sum of "elemen-

tary complexes”

ess 20 0 - Fi = Zi+1 50 20 > ... .

Thus there exists an endomorphism D':E' = E' of the vector

bundle E', homogeneous of degree -1, such that
a‘D‘ + D'a' = idE[ .

Let d denote the boundary map of E' & E", i.e.

(e %
]

a' Q\ idE" + “' o a"
with o' the involution of E' ccrresponding to the grading. Then
(D' &‘ idE")a + a(D' ?\ idE") = idE' < Ell

T

since d'a' + a'd' = O. Thus E' & E" is exact.

Theorem 1. Assume the scheme X is covered by special open sub-

sets Zq,..Q,Zn. Let €,,...,8, be elements of L(X) with €,]Z; = o

for 1 €« i « n. Then
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Proof. According to the fundamental lemma there exist bi-
linear complexes Eq""’En over X such that Ei has the Euler

charecteristic §i and 1s exact over Zi’ We have

X(E/] &'00‘? En) = g,] o0 e Eno

By the preceding lemma Eq Reee® En is exact on each open sub-
set Z., since Ei is exact on Z; » Thus 31 Peee® En is exact on

the'whole of X, and By oo &, = 0.

We now can prove the prime ideal theorem for L(X) in-

stead of W(X).

Theorem 2. Let X be a divisorial scheme and P be a prime ideal

of L(X). Then there exists a closed point x of X and a prime
ideal Q of L(Gx) such that P is the preimage of & under the
restriction map from L(X) to L(GX).

Proof. i) It suffices to show that there exists a closed point
x of X such that P contains the kernel A of the restriction map

r from L(X) to L(QX). Indeed, then we have a natural factoriza-

tion

L(X) > L(&X)

T

o/
L(X)/A

and a prime ideal P of L(X)/A with a-q(PU = P. The ring L(@X) is
generated by the classes of the spaces of rank one over @X, cf.
II & 4. For every such class g we have g2 - 1 = O. Thus L(GX) is

integral over Z. A fortiori R is an integral ring howomorphicm.
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By a well known theorem of Cohen-Seidenberg there exists a

prime ideal Q of L(@X) with B—q(Q) = P, hence r"q(Q) = P.

ii) Suppose P does not contain the kernel of the restriction
map from L(X) to L(Gx) for any closed point x of X. We choose
for every closed point x of X an element f(x) of L(X) which

has image zero in L(@X) but does not lie in P.

We verify that there exists an open neighbourhood Z(x)
of x in X such that already the restriction E(x)lZ(x) is zero.
Indeed, E(x) = [Eq] - [E2] with bilinear spaces E,,%,5 over a.
There exists a free space G = (aij> over 6 such that the spaces
Ep, + G and sz 1 G over 6 are isomorphic. We have an affine

open neighbourhood U(x) of x such that

with_some_bij € 6(U(x)), bij = bii’ and such that the determinant

of the symmetric matrix (bij) is a unit in 6(U(x)). Introducing
the space

G := (bi,j)

over U(x) we have some isomorphism of spaces over SX
l:(E,] L G)X —_— (E2 L G)X.
This isomorphism A\ can be extended to an isomorphism
u: (B, 1 ®)]2(x) == (B, 1 6)]2(x)

over some open neighbourhood Z(x) of x in U(x). Clearly

e(x)| z2(x) = O.
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Since X is divisorial we may assume that all Z(x) are
special open sets. The complement of the union of all Z(x) in
X 1s a closed subset Y. But every non empty closed subset of
X contains closed points (since every non zero conmutative ring

has maximal ideals). Thus Y = ¢, i.e. X is covered by the Z(x).

Since X is quasicompact we have
X = 2(x) U eeo U 2(x))

for suitable closed points XqsesesXye Now the preceding Theorem 1

yields

§(x,|) cone €(xn) = 0,

This is the desired contradiction since none of the §(xi) lies

in P. N
We finally deduce the prime ideal theorem for W(X) from
the now proved prime ideal theorem for L(X). Let P be a prime
ideal of W(X). Let P denote the preimage of P in L(X). By our
Theorem 2 there exists a closed point x of X and a prime ideal
a of L(GX) lying over %. Ndw'§ contains the class of the free
space (3 8) over X. Thus‘a contains the class of the space
(2 g) .overAGX. This implies that‘a is the inverse image of

a prime ideal Q of W(6 ), since
o 1
o = 20000 4(5 1)

cf. II, § 1. The natural commutative diagram




shows that Q lies over the original prime ideal P of W(X).

N N
= N >

N N

— =

o A A
[an]
[qV]
[}

N N

>4 >

N/ g

= =
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§ 6 Proof of the fundamental lemma.

Assume Z is a special open set Xf with £ a global section
of a line bundle £ on a quasicompact scheme X. Assume further €
is an element of L(X) with €|Z = O, We have to find a bilinear
complex E on X which is exact on 2 and has the Euler character-

istik E.

We shall use the following standard notation. For an inte-
gral number n we denote by £ the temsor product & ®Dofn
copies of & over 6 if n > O, the trivial bundle & if n = 0, and
the dual bundle of £ (-n) if n < O. For sections n in £F(W) |

and v in SS(W} over some open set W of X we have an cbvious pro-

duct uv lying in £r+s(W).

Step 1. Our first goal is to write £ as a difference fﬁqﬁ - [Eg]

with E2 metabolic and E1|Z = E2 Z. We start with any presentation

3 = rFq] = [sza

with bilinear spaces F,l,F2 over X, Replacing Fq and F2 by

*
Fpou (-F2) and Fpa ('FZ) ) we assume that F, is split metabolic.
We then have [FZJ = [H(UO)] with some vector bundle UO over X.

Since gIZ = 0 and Z is affine we have

(1 Fol2 16" = H(@U)|2z 16

* ' |
) 1f F, has the bilinear form B, then (-F,) means the vector

bundle F2 equipped with the bilinear form -B?.
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for some space G' over Z. The main problem now is to replace

G' by the restriction G‘Z of some space G over X. We have
G' v (-G') = M(G").

We choose a vector bundle U" on Z such, that the vector bundle

G' » U" is free, which is possible since Z is affine. Then
(2) M(G') 1 H(U") = M(U',B")

for some free bilinear bundle (U',8') over Z. We assume U' is
the direct sum n X GZ of n copies of GZ choosing some fixed
trivialization of U'. Let (aij) denote the symmetric matrix of

B' with respect to the standard basis of n x 6, with coefficients

a!. in 6(Z). By the extension theorem stated in § 1 there exists

13

1
. . 2m _ \
a natural number m and sections 35 in LX), 855 = B34 such
that
_ el _y
aij Z=f aij‘
. 2!11 t : 2m 1 .
Here we simply wrote f a instead of (le) a We now

_ i3°
establish a symmetric bilinear form B on the vector bundle

U:=nx&™@

over X. Let

u = (uq,...,un), vV = (vq,...,vn)

be sections in U(W) for some open set W in X. {ui,vj € £TH(W) .

Put

B(u,v) := ¥ (a.. ./ Wuv..
| s alJ] UV

We then have an isomorphism of spaces
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(3) ﬂ!:M(U,B)IZ N M(U',8")

defined as follows. M(U,B)lz has the underlying vector bundle
(Uet)|z=("2) e U o (&7 2) = ur*,

and M(U',B') has the underlying vector bundle U' e U'*. Let u

and u* be sections of U and U* respectively over some open set

Wec 2. Put

v(u) 1= £lu, ¢(u*) = £ Mg*,

It is then easily checked that ¢ is an isomorphisem from M(U,B)IZ
onto M(U',8'). For example for sections u,v in U(W), W c Z, the
compatibility with the bilinear forms is verified as follows.
Let Ugseessly and Vorseee,V, denote the coordinates of u and v
in £T7(W).
' n m - ¥ 2nm
B'(fTu,fv) = R a5 f uyvy
1,4 _
= ¥ a;.u.v, = B(u,v)
j_j lail J 9 9

since W is contained in Z, and thus

a..|W = f2m !

iJ aij w‘.

Introducing the spaces

E, += Fp 1 M(U,8)5 E, := H(U) 1 M(U,B)

we have

€ = rEq] = [E2]'

Moreover by (1), (2), and (3)
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E |z = Bz,
and finally clearly E2 hasc thevLagrangian
V:=U*4‘U*.
OA

In particular

e = [E,] - [BO)].

Step 2. We now want to construct the bilinear complex with
the properties stated in the fundamental lemma. Lctually this

complex will consist of only three terms. Choosing an isomorphism

from E2 Z onto E1'Z and restricting this to V|Z we obtain an in-
Jjection

!
047|282 g |z

1

whose image is a Lagrangian of Eq. Let 31 denote the bilinear

form on E,| and w:Eq - Eﬁ the associated linear nap. By our con-

siderations in § % we know that

0 - V|z 25 E,|z (e (o] ) >-v*]z -0

is an exact complex. We further know fronm § 3 how to establish

a bilinear form B' on this complex such that we obtain g bilinecr
complex: regard quZ as the zero term of oup corplex, hence V!Z
as the (-1) -term and V*,Z as the (+1) -term. We then define B'
as the orthogonal sum of the form Bqlz on E1,Z and the hyperbolic

standard form on (V = V*)IZ.

Starting from this bilinear complex we want to establish

a similar bilinear complex over X. We regard o'

as a global sec-
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tion of the vector bundle Hom(V,Eq) over Z. By the extension
theorem, part (i), stated in § 1, there exists a natural number

r and a global section o of F e Hom(V,Eq) such that

o|2 = (£]2)T » o',

Now we have an obvious isomorphism between b= Hom(V,Eq) and
Hom(£™T » V,Eq), and we regard ¢ via this isomorphism ar a global
section of the second bundle, i.e. &s a linear map from T e
to E,. The restriction a‘Z is then determined by the following

commutative triangle

(€T e |z HES E,|2 |

We briefly write

aIZ = g'-ff

to describe this factorization of alZ2. We want to compute the

restriction of the transposed map

at:E’% - ¥ e v+

to Z. Notice for this that our map from (£TF - V)lZ to VlZ in
the triangle above is the tensor product of the map

£7T) 7 i

> 6|2z

and the identity on V‘Z. The transpose of the first map is the




map

I‘ 2%
olz L5 Ty

and the transpose of the identity on V!Z io the identity on

. V*1 Z. Thus we have the commutative triangle

oz, o, V*)]z

AN

(atem»a)lz = fr'(a')to(wlz)oa"fr =0

and we obtgin

Again by the extension theorem, this time part (ii), there exists
some s > O such that the global section

2s

£fe° & (atomoa)

of

£28 g Hom(s™ % @ vV, & o y*)

vanishes. This vector bundle is canonically icsomorphic to
Hom(£™2 o v, ub o V*)

3

with h := r+s. The global section of this gecont vector bundle

corresponding to the global section above is
fs'atomoa-fs,

which hence also vanishes. Now we introduce the linear map



S

~h °f

B:&

> £ oy Lo E,.

Ae above we sec thal the transpose of B is

4

C e pS
% S ¥ o ¢ L gB 6 g,

Thue we have

Bto(‘OoE = fS'CLtoCDoa'fS =0

?

and we can write down the complex

t . :
T : 058y B E, B oo, ohoyx O.

This complex is exact on Z. Indeed, on Z multiplication with

a power of the global section f of £ is an isomorphiswm. Thus we
easily establish an isomorphism between T|Z and the complex

over Z' introduced above. We turn T into a bilinear complex

- with zero term E1 - by choosing as bilinear form the ortho-
gonal sum of the pregiven bilinear form on E,1 and the hyperbolic

standard form on the direct sum of the other two terms. Then
x(T) = [E,] - [BE@ER & v)],

which is not quite what we want. Let Vf

0,: (SR e V) e P o V) 4 @R e V) ~ (&R o W)

denote the linear map associated with the hyperbolic stadard

form on this direct sum)i.e.
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Let further y denote the msp

.h
v M oD o yres m(ER 0 )

with the second arrow denoting the inclusion map. Then yt is
the map
.ph
HER o ) — > R ey L v
with the first arrow'denoting the canonical projection. Thus

we see that

y'e®
T :0 - V¢ Yo BB ev) — 25 v L ¢

is a complex which is exact on Z. We turn To into a bilinear

complex in the same way as we did twice above. Then
%(T) = [BER = v)1 - [8(V)).

The bilinear complex T TO is exact on Z and has the Euler

characteristic E.
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* & 7 An example : Projective spaces.

A major step ir our nrcof- of the Prime Ideal Theorem has
been Theorem 1 in § 5. Starting from this theorem the proof of
the Prime Ideal Theorem was easy. But Theorem 1 gives in many
cases a more precise information about Witt ringe than the Prine
Ideal Theorem does. This will be illustrated in the present and

the next section.

We shall make use of the following inportant theorem of

Karoubi without giving the proof here.

Theorem 1. [Kr, II p.139]

Let A Dbe a cemmutati;e ring in which 2 is a unit, aﬁd let
Aftq,...,tn] denote the polynomial ring in n 2> 1 variables ti
over A. The natural map from W(4) to W(A[tq,...,tn]) is bijec-

tive.

Let now X be the projective n-space Pﬁ over some commuta-
tive ring A, i.e. the homogenous spectrum of the polynomizl
ring ArTo""’Tn] in n+1 variables Ti with its standard grading.-
X is covered by the affine open sets

TO‘ Tn
Z; = Spec AlTT";"Tfj
-1 i

consisting of the homogeneous prime ideals of A[To,...,Tn] which

do not contain T,. Clearly Zi is the special open set Xp, coming

i
from the global section Ti of the canonical line bundle 6(1) on X.

We denote the structure morphism from X to Spec 4 by f. We

further introduce the ideal % of W(X) consisting of all E in W(X)
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with E Zi =0 for O €1 € n.

Starting from Karoubi's theorem we prove

Theorem 2. i) The mep £* from W(4) to W(X) is injective. If 2

is a unit in A
W(X) = £*W(4) & .

ii) If 2 is a unit in 4 and 4 is regular then o+ g,
Proof. i) The intersection

W:=Zﬂz,‘ﬂ...ﬂz
. n

can be identified in an obvious way with the spectrum of the

-1 -1 .o q

o ,...,Tn,Tn ]o consisting of the elements of degree

v . . . -1 -1 ‘ ;

zero in the locallzatlon A[To, o reees DT ] of A[To,...,Tn]. Ve

ring A[TO,T

introduce the closed immersion

o:Spec(d) » W

~1
0

to A over the base ring A which maps all Tiqu to 1. Let s denote

the composition of ¢ with the inclusion morphism from W to X and

-/!_-,:

n O

corresponding to the ring epimorphism from AFTO,T yeosyT T

s; the composition of ¢ with the inclusion morphism from W to Z.,
O <1 «<n. Then s is a section of the structure rrorphism

f:X » Spec A and s,

i is a section of the restriction f].:Zi - Spec 4

of f, i.e. we have

fos = id, fjes; =1id (0 <i «n).

From the first equation we obtain that f* is injective and

W(X) = £*U(A) @ Ker(s*).
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Since for F in W(X)

s*(g) = s§(§|zi)

clearly ® is contained in Ker(s*). But by Karoubi's theoren
cited above the maps f¥ : W(Aa) = W(Zi) are bijective provided

2 is a unit in A. Thus also the maps sg are bijective, and we
obtain that % coincides with the kernel cf s*. Actually the
kernel of every restriction map W(X) - W(Zi) coincides with the

kernel of s*.

ii) Assume now that A is regular. We choose n+1 elements
Nor*=*Mp in ® and we want to show that their product is zero.
Let E.l be a space over X representing g Since nilZi = U we

have an isomorphism
(*) | (Eilzi) + H(UY) = H(UY)

with some vector bundles Ui,Ug over Z,. Since A is regular the
natural map from K(4) to K(Zi) is bijective according to a
theorem of Grothendieck, cf.[BHS]. Thus there exist a natural

number m and vector bundles vi,wi over Spec(A) such that

' ~ ¥
U; +mx6, = £2 (V)

1
—-—

(V)] 3,

n
Ui imx @Zl

=~ f?(wi) f*(wi)}zi.

Adding in (*) at both sides m copies of the free space (9 gj)

over Zi we obtain

(B; » f%(H(Vi))Izi =~ ffH(wi)|zi.

Introducing the elements

P
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. * " ;
£y = [Ei] + f [H(Vi)] f [H(wi)1
of L(X) we have giIZi = 0 for i €i «n, hence by § 5 Theorer 7

E ev oo g O.

-0

n

Teking images in W(X) we obtain

'ﬂo * s 00 ‘nn=oo

Remark. If A is not regular but still 2 is 2 unit in A we have
the weaker statement

~- 2n+1 mn+1 - C

according to the following general lemma.

Lemma. Let X be a scheme which is covered by special open sets

= O,

i

Zyyeeoslye Let Nqseeeyn, be elements of W(X) with n;| 2

Then
n
2‘”1 o-.o.'nn=00

Let Ei’be a space over X representing n;. We have isomcrphisms

EiIZ L K(UL,BY) = M(U,,8,)

with some bilinear bundles (Ui,B{) and (Ui,ﬁi) over Z,. Adding
a suitable space H(UE) over Zi on both sides we may assume that

Ui is free. We now find by the method displayed in § € (step I

-of the proof) bilinear bundles (Vi’Yi) over X with
M(VS,v5)] 24 = M(UlLp ).

Replacing E; by E; . M(Vi,yi)wé may assume
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E. |2, = MU,,e.).

The right hand side is isomorphic to M(U;,-R;), cf. I § 3

Prop. 1. The map

. s .17 ~ %
id o (-id) : U, € U? —> U, » Ut

is an isomorphisu from M(Ui,—si) to - ﬂ(Ui,Bi). Thus

‘ e -k
E 2 = (B2,

and we obtain

(2 Ei)|Zi - M(Ei)lzi.

According to § 5 Theorem 1 we have in L(X) the relation

-

[ e B

/‘

1

Taking images in W(X) we obtain, as wanted,

2nn,] eecoee nn=0.

It is tempting to conjecture in view of Karoubi's theorem

that actually ® = O, even if A is not regular. If & is a field

I showed many years ago for n = 1 that indeed ® = O [K,Th.13.2.2]. ;{
There the characteristic of the field was allowed to be 2. Thns i

it is not clear wkether the assumption that 2 is a unit in 4 is

necessary.
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* § 8 A semilocal-global principle.

If X is a noetherian scheme of finite dimension & then,
n
as mentioned in § 2, the kernel K(X) of the natural mep
E(X) » T K@)
. X T

with x running through all closed points of X is nilpotent with
(oY
2(x)4+71 © ¢,

It would be interesting to have a similar result about the
~ ——

kernel W(X) of the analogous map

W(X) > 1 W(s_).

X

. X .
We prove in this section such a statement with the Gx replaced
by certain semilocal rings GS. We first give a description of

these semilocal rings.

Let S be a finite non empty set consisting of closed points
of some scheme X. We assume that S has an affine open neighbour-
hood. We define‘GS as the inductive limit of the rings 6(U) with

U running through all open neighbourhoods of &,

6g := 13% e (U).
For every point s in S the natural map
6(U) » Gs/rs = k(s)

yields aring homomorphism from 65 to k(s). his howomorphicw is
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surjective since for U an affine neighbourhood of S the map

from 6(U) to k(s) is surjective. We denote the kernel of this
epimorphism from 84 to k(e) by p . It is a maximal ideal of Og.
We claim that the p_ are already all maximal ideals of Og and

therefore @S is semilocal.

To prove this it suffices to show that an element o of %
which does not lie in any of the ideals P is a unit of GS’ Let

£ € 6(U) be a representative of . Then the open set V := U

contains S. The function £{V is a unit of (V). Thus m is indeed

a unit of QS‘

We assume since now that X is quasiprojective. Then every

finite set S of closed points of X has an affine open neighbour-
hood. More precisely we meet the following situation. X is

embedded as an open subset into a scheme Y which has a line bundle
£ such that no point of Y is a common zero of all global sections
of £ and such that the natural morphism from Y to the homogeneous a

spectrum of the graded ring
ov . . ®- ‘
R= & Ry, R, i= & (D,
i=P

is an isomorphism. Let S be a finite non empty set of closed

points in X, and let T denote the set of all homogeneous eleuents
f of R of positive degree with f(s) # O for every s in S, i.e.
S contained in Yf. The open sets Yf are known to be affine. Thus

they are special open subsets of Y.

Lemma 1. The special open sets Yf with f running through T are

a fundamental system of neighbourhoods of S. We have a natural Bl
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isomorphism
-1 ~
(T R)o —> 6g
from the ring of elements of degree zero in =R to GS.
Proof. The last assertion is evident if the first one 1ic

. (Yf') - IE - l
- .'O

according to the extension thecrem in III § 1. Let & coneist of
the points Xqyees X, ard let U be a pregiven open neighbourhood

of S in Y. There exist elements hq""’hn of T such that
x; €Y, cU (1< i <n).

Raising the h; %o suitable powers we assume that all h; have the

same degree d. There exist homogeneous elements EqyevesBy OF R

such that ' I
gi(xi) # 0, gj(xi) =0 for j# i.

Again we may assume that the g; all have the same degree e.
Consider the element

f = g,lh,\ + see + gnhn
of degree d+e. We have Yf c U since for any point x of Y with

f(x) # O at least one of the sections h, does not vanish at x.

Moreover f(x;) # O for 1 €i <n. Gur lemma ic proved.

s

=~ ~
We now study the kernels L(X) and W(X) of the natural wape

L(X) » T L6, W(X) » 1 W),
‘ ‘ g S S S




with S running through all finite non empty sets of closed

points in X.

Let M(X) denote the set of all closed points in X
equipped with its topology as a subspace of the topological
space X. We assume that X is quasiprojective and M(X) is a
noetherian space, i.e. every descending chain of closed subsets
of M(X) has finite léngth. Then every closed subset of M(X) has
a unique decomposition into irreducible components. We furthex

assure that M(X) has finite Gimension d. This means that for

chains of irreducible closed subsets of M(X) the supremun of the

lengths is the finite number d.
Theorem. ([D]) for X affine).

Teo™ Z 0 ana w7 - 0.
We first verify the claim about:g(x). Let € ,...,E; be

given elements of:f(X). We choose a finite set SO consisting of

one point on each irreducible component of M(X). Since Eo hés

image zero in L(8g ) there exists an open neighbourhood U, of

S, in X»with~§O’Uoo=,O, cf. step (ii) in the proof of § 5

Theorem 2. By the preceding Lemma 1 we may assume that UO is a

special open set. Let Xq denote the complement of UO in X and

let M(Xq) denote the set of closed points in X,. Then M(Xq) is

a closed subset of M(X) which has dimension at most d-1 or is

empty. If M(Xq) is not empty we choose a finite set 81 consisting

of one point on each irreducible component of H(Xq). Then we

find a special open neighbourhood U1 of S1 in X with quUq = O,




-226-

il

%w, and we define X2 as the complement of UO u U, in X Repeating
IM % this procedure we obtain a descending chain of closed sets

il

i

with r €4, M(X.,,) = #, and special open sets U_,U;,...,L,.

bl
\» such that

X\(Uo U eoo U Ui) = Xi+1

and gi Ui =0 for O € i € r. Since any non empty closcc cubset

|

r
[

’1 | of X contains closed points the set X _, must be empty. Thus
% UO,...,Uf cover the whole of X. By our chief tool & 5 Theoren “
Il -
ik i .

ﬂ | the product € ....E. 1S zero, hence
i
Ul i ' gooooogd. = O.

M¢% |

| ~
'y i The claim about W(X) now follows from

~ ~
Lemma 2. The natural map from L(X) to W(X) is surjective.

Proof. Let E be a space over X whose Witt class {E} lies in
o~ . .
W({X). Then the rank of E is a locally constant function on X
|, taking even values. Thus rkE = 2m with m a locally constant func-

5#yf tion taking values in non negative integers. The element
|

| N

of L(X) is a lifting of |E] and lies in'f(X) accoréing to II £ 1

AR
'F w Prop.1.

%Hk - This completes tg; proof of our theorem. To obtain o scimilawx

' ‘ a3 o~
i result for the kernels~L(X) and W(X) of the natural maps
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L(X) » M L(6), W) » 1 W)
X

with x running through all closed points of X it would be
sufficient to prove for A a semilocal ring with the maximal
ideals Mayeeesy™y @ statement
o a
[Ker(L(A) » T L(Am N1¥ =0
i=1 i
with some universal constant a. For the functor K the analogous

kernel clearly is zero and no problem arises.
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Chapter IV Spaces of rank one

§ 1 The group of square classes G(X).

Let X be an arbitrary scheme.

Definition. A square class of X is the isomorphism class of a

bilinear space (£,B) of rank one over X.

Let Q(X) denote the set of square clacses of X. Cbviously
QX) is a eemmutafkve semigroup under tensor multiplication with
unit element <1> = (®,m), m denoting the rultiplication
® %6 -6 on 6. {We often use the same notation for ¢ space and
its isomorphisn class for short.} hctually (X) is even a Eroup

of exponent 2. Indeed, let (£,B) be a bilinear space of rank one.

Then B induces a linear map
lb:f.&_)i-)@,

and ¥ is an isomorphism from the space (£ # £, B » B) tc tle
space (6,m). This can be easily verified on the stalks using

the fact that every stalk £X is a free SX-module of rank one.

The isomorphism classes <a> of free spaces of rank one,
a in 6(X)*, clearly form a subgroup of Q(X) which can be identi-
fied with G(X)*/G(X)*z. Denoting as usual by Pic(X) the group
of isomorphism'classes'of line bundles on %, we have a "forget'-

homomorphisnm

v:Q(X) 5 Pic(X)
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into the subgroup of elements of order « 2 of Pic(X), which

maps the isomorphism class of a space (£,B) to the isomorphism

class of £.

Proposition. The sequence

1 = G(X)*/@(X)*z - 4(X) -—V-->2 Pic(X) > 1
is exact.

This statement is already evident up to the surjectivity
of v. Let £ be a line bundle on X such that & 2 & is isomorphic

to 6. We choose an isomorphicm

o 2 8 26,

o corresponds by the definition of the tensor procuct to a
bilinear form

B:&XXJ:»@..
B is automatically symmetric since & isAlocally free of rank one.
Moreover it is immediately checked on the stalks that B is non

degenerate. This proves the surjectivity of v.
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§ 2 Construction of spaces of rank one.

We now assume that X is irreducible and reduced. Let F
be the generic point of X. Then
GE = 1im 6(2)
~ -
Z
with 2 running through all non empty open subsets of X, since
all these sets contain E. Moreover for Z' < Z the restriction
map from 6(2) to 6(Z') is injective. Tﬁus all 6(Z) inject into
6. and we simply,regard 6. as the union of the 6(Z), replacing
e&ery S(ij by its image ié SE. Clearly GE is a field F, the
"function field" of X, cf. [EGA,I § 71. Qe call the elements T

"of F the rational functions on X, and we say thet a function 7

is defined on Z if f € 6(Z).

Assume now we are given an element f in F¥, a covering

X = UZOL of X by open sets Za with a running through an arbitraory

a .
index set, and we are given for every ZOL an equation

in F with Eq in ®(Za)* and B in F. Then we define on each Zﬂ
a bilinear space (£a,BG) as follows. For an open set W < 2 we
put

£, (W) 1= g5 6(W)

which is an 6(W)-submodule of F. If W' ¢ W then -L'G(W) c £c('w"),

and we define the restriction map from sc(w) to £a(W') as the

inclusion map. We thus obtain on 6, -mocule £ - Clearly & is
o . ﬂ
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a free GZ -module of rank one with basis element qu

a.
We define the bilinear form B® on £a as follows: If u,v are

€ S“(ZG).

sections in SQ(W), Wec 2z, then

o . :
B*(u,v) := fuv = sn(gau)(gav)’ |
i.e. BY is the unique symmetric bilinear form on & with

BO. (3‘—1

-1
aa’gc')zﬁﬂ

o

Since €q is a unit B® is non degenerate.

If we base our construction on another eguation

with the same f and of course again s& a unit in S(Zq) then we
obtain precisely the same sheaf Sa and the same bilinear form

B®. In particular, if Z N Zg is not empty then
(sa,Ba)}zan Zg = (xB,BB)|za n Zg
since both spaces over Za n ZB come from equations

2

2
f = Eaga, f = EBgB

with e, ,e0 units of G(Za n Zﬁ) and the same f. Thus all (SG,Ba)

fit together and yield a bilinear space (£,B) on X. We have
(SE’Bg) = <f>,

We denote this bilinear space (£,B) by £(f). From our construc-

tion of £(£f) it is clear that £(f) does not depend on the chosen.

covering iZa} and the equations f = sagi. We only have to be
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shure that for f at least one such covering and set of
equations exists. This happens if and only if for every

closed point x of X there exists an equation f = exgg with €y

in F* in 6%,
and €y n 6%

Proposition. Let f € F¥., Then we have an open covering iZO}
2
o

of X and équations f = éag in F* with every £, @ Unit of ®<Za>
if and only if <f> lies in the image of the natural map from
Q(X) to G(F). In this case £(f) is up to isomorphism the unique
bilinear space £ of rank one over X with £, = <f>. Thus the

natural map from Q(X) to Q(F) is injective.

Proof. It suffices to show that if (£,B) is a bilinear space
of rank one over X and (S,B)E > <f> then f admits a covering
iZal of X with equations as above, and (£,B) is isomorphic to

£(f).

This is easy. For every open Z in X the restriction map
from £(2) to £§ is injeétive and we regard £, as the union of
a11"£(Z) as we did above for 6. Let (F,BO) bé the free space <f>
over F, i.e. the vector space F over F, equipped with the bi-

linear form Bo(u,v) = fuv. We choose an isomorphism of spaces
x:(xg,Bg) i (F,BO).

Let {Zal be an open covering of X such that £lZOL is free with

basis element s € £(Z_ ) for every a. We introduce the elements

= x(sar1

&6,

of ¥*, and the units:
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€ *7 B(Sa’sa>'
We then have
eq = Bo(M(s )M (s)) = 1672,
hence
f = sagi.

Thus we can construct the space £(f). Clearly ) maps the sub-

set £(Za) of £. bijectively onto the subset S(f)(Za) =
- )
6

= g, (Za) of ¥ and is isometric with respect to the bilinear

forms. Thus A induces an isomorphism from (£,B) onto £(f).
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§ 3 Determinants

Spaces of rank one come up in a natural way ac the highect
non vanishing exterior powers of arbitrary bilincar spaces. Thus
let us first define exterior powers. For every vector hundle E

he
over X and r > O we have a vector bundle AE which for Z an

affine open set has the section module
r T
(AE)(2) := AE(Z)

where the right hand side means the r-th exterior power of the
projective 6(Z)-module E(Z). For any open set Z and sectionse
Uqyee-su, in E(Z) we then have a well defined product

T
Uy A eee Au, in (AE)(Z). There exists a natural isomorphicm
T . T
K 1 AE¥ ——> (AE)* |

characterized by the following property. If Ujqyese,yl, are

sections in E(Z) and uﬁ,...,u; sections in E¥(Z) for somec open

set Z then

* *¥Y)> _ *
<uy AeeoA ur,lc(u,| Aeeoh ur)> = det(<ui,uj>),| €i, 5 <r

T r
We identify AE* and (AE)* by this canonical isomorphism K.

Let now B be a symmetric bilinear form on E and m:E - X

the associated linear map. Then & induces a linear map

Ir r r
A(o): AE » AE*

r

which is again selfadjoint. Let AB denote the symmetric bilinear
T r r

form on AE associated with Aw. If B is non depgenerate then Am is
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r : r T
an isomorphism, hence AB is non degenerate. We call (AE,AB)
the r-th exterior power of the bilinear bundle (E,B). For

SeCtions Ugyeseylyy Voseee,V, of E over some open cset Z we

clearly have the formula
T
(AB)(uﬂ AewsAlUpy V4 AcedA vr) = det(B(ui,vj)).

o o
The exterior power (AE,AB) is for all spaces (E,B) defined as

the space <1> = (6,n).

One easily verifies for two bilinear modules E and F over

X (ef.JK,§ 2]).

Proposition 1. The -natural map
&

i r-i- T
(AE) & ( AF) > A(E 1 F)
1=

which maps a section (u, A...Au;) < (v& AeeoAV., ) onto the

i 'y > e 0 . A.Q.
section Uy A A us A vq AV

_ is an iscmorphicsm of bi-

linear bundles.

Now we define the determinant det E of a bilinear space E

. ’ n
of rank n as the isomorphism class of the exterior power AE. This

makes sense also if X is not connected, since then X is a disjoint

union of open subschemes with n a constant on each of these sub-
n

schemes. AE is a space of rank one, hence det(E) is a square class, |f

and we have obtained a function

"det" : Bil(X) - Q(X).
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As a special case of the proposition above we have the

formula
det(E | F) = det(E) det(¥).

Thus we obtain from this determinant function a grouvp homomoi-—

phism :
det': ¥ Bil(X) - ¢(X).

We want to show that this homomorphism vanishes on the element
[E] - [H(V)] for E a metabolic space and V a Lagrangian of E.

Then we know that "det' yields a group homomorphism

det : LX) » ).

Proposition 2. If E is a metabolic space of rank 2m then det(E) =

= <(=1)5>,

From this proposition it will be clear that the homouor-

phisms det' vanishes on the elements [E] - [E(V) ] above.

Proof. Let V be a Lagrangian of E. We have a natural isomorpnisi
of vector bundles

‘ m m ~ 2n
a : AV 2 A(E/V) —> A E

which for sections v,,«..,v  of V(Z) and inages E},...,um of
sections u ... u, € E(Z) in (E/V)(Z) maps

Vg AesoA V) ® Uy Aceeh gm B0 V4 AcelA VA Uy AdeoA U Notice
that this map is well defined, since the section

Va AoV A u,1 Aeooh U, does not depend on the choice of pre-

images u; of E&.v{If Z is not affine then not every section of

~——

e



-237-

(E/V)(Z) has necessarily a preimage in E(Z), but this does not
bother us, since the affine open sets are enough to define a
homomorphism of vector bundles.} Now B gives a perfect duality
between the vector bundles V and E/V since V = VY. Thur we have

via B an isomorphism

m (1]
B (AV)* == A(E/V).

_ m
For the line bundle £ := AV we obtain an isomorphism

: . ~ b
0o (1 2 R):L » &% 5> 2R,
On the other hand we have the usual canonical isomorphism

2 X I %

which for sections e € £(Z), e* € £*(2) maps e © e* onto <e,e*>.

I now claim that
X = 6o(1® 8oy
- m
is an isomorphism of the space <(-1)™> onto the space AZ. It

suffices to check this locally. Let x be a point of X. We chocse

a decomposition
E =V GBU
X X X

and bases Viygees,V Of Vx’ Ujseseyu of UX such that

B(vi,uj) = & .. Let vﬁ,...,v; denote the basis of V*¥ which is

J
dual to Viseee, Ve Then Y(v1 A'f Ap ® vﬁ AveoA v;) = 1, Further-

more

B(VE Aeeun ) = Eq AeeoA Em,

hence




ao (1 » B)(v1 AeoosA V

ANeooa AV AU AeoeAN L
m I

m 1

®R * eee * =
RVE AceAVE) = v 4

Let us denote this element by e. That ¥ is icometric on the stalke

over x means that

2m
(A B)(e,e) = (-1,

This is indeed true:

2m
(A B)(e,e) = det

We thus have established a determinant homomcrphisn

det: L(X) » qX),

and we have

detH(V)] =<(-1)">

for V a vector bundle of rank m. By th usual trick (cf.II,§ 2)

we obtain a well defined signed determinant

d:W(X) » QX)

defining - n(m-1)
A(E) := <(=1) 2 > det E

for E a bilinear space of rank n. For spaces E and F over X we

have
d(E 1+ F) = a(E)a(F)

if at least one of the spaces has even rank. But we have

A(E L F) = <-1> d(E)a(r)

if both spaces have odd rank.
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n

§ 4 The units of W(X).

If £ is a bilinear space of rank one then d(£) = £. Thus
the natural map £ - {£} frem Q(X) to W(X) is injective. Since

now we regard Q(X) as a subset of W(X). Then ((X) is a subgroup

of the group W(X)* of units of W(X).

Theorem 1. For every element z of W(X)* we have

2 = a(z)(1en)

with u a nilpotent element. Thus W(X)* is generated by the sub-

groups G(X) and 1 + Nil W(X).
Proof. Define u by'the equation
a(z)z = 1 + u.

We have to show o(u) = O for every signature ¢ on X. This means,

we have to show

*) o(z) = ¢(a(z))

Now there exists a closed point x on X and a factorisation of ¢
through a signature T of Gx. Thus it suffices to verify the
equation (*) for z a unit of W(A), A a local ring, and ¢ a

signature of A. Write

zZ = <a1> S <an>

with units a; of 4. Since 0(z) is a unit of Z we have o(z) = ¢
with & = +1 or -1. In particular n is an odd number 2k+1. Let s

denote the number of a; with c(ai) = =1. Then we have
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n(n-1)

o(a(z)) = (1) (-1 = -k,
On the other hand
e = 0(z) = n-2s = 1+2(k-5).
Now observe that e=1

This yields

o(z) = (-1DF = 5(a(2)).

Definition, A square class £ is totally positive if o(£) = +1

for every signature o of X.

We denote the group of all totally positive square classes

of X by Q' (X).

Proposition 2.

QF(X) = QX) n (1 + Nil WX)).

}Indeed, a square class £ is positive definite if and only

if all signatures vanish on £-1, which means that £-1 is nilpotent.

Here is an application of Theorem 1.

Proposition 3. For every nilpotent element u of W(X) the signed

~ determinant d(u) is totally positive.

Proof. We apply'the theorem to the unit 1+u. Since u has even

rank we have d(1+u) = d(u). Thus

K +u=4() + v
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with v again nilpotent. From thies equation we obtain

L]
[
@
H
S

)
]
=
ol

-
u

(%]

™ "\'7'

~(d(u)) = 1 for ever




-242-

Chapter V Algebraic scheues over P.

§ 1 Factorization of local signatures.

Let & be a connected semilocal ring and ~:W(L) 5> Z a
signature of A. For p a prime ideal of A we denonte by £(v) the

quotient field of A/p. We want to find a fectorization

W(4) Lz

*) \\§y U//;

WCA(P))

-

with a suitable prime ideal p of A and some sipnature T of the
field A(x). Here of course W(A) » W(A(r)) is the homomorphi sm

induced by the natural map from & to A(r).

There is an obvious condition to fulfill for any candidate

p. Let G(o) denote the set of all sums

s = l,?a,1 + eee + lgar

of arbitrary length r with units ay of A anad elements li of A
such that |

o(ay) = «ov = c(ar)~; 1

and

lqA + eae + krA = A,

@(e) is a multiplicative subset of A. Suppose we have a

factorization (*) 2s above. Then I claim that » does not neel
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«(e). Indeed, assume an element s as above lies in p. Then
denoting the images of elements of A4 in 4(r) by bare we obtain

in A(p) the equation
s Do X
* . i P -
(* ) lqt/l + oo e + rdr = (J

and not all X& are zero since the Xi generate A. The square
class <§&> of A(r) is the image of the square clase <a;> of

under the map from W(4) to W(A(»)). Thus

T(Ei) = c('é'i) = 1.

This means that all E} are positive under the ordering of 4£(p)

corresponding to 7, and the equation (**) ic a contradiction.

-

Thus it iec natural to look for the maximal ideals p of 4
which do not meet the multiplicative get Q(n), since such icdegle

are automatically prime. Let -&(~) denote the set of all elementc

-s with s in Qo).
Lemma 1. The sets (o) and -G(s) are disjoint.

Proof. Suppose we have a relation

Nl 2 2 2

with units ai’bj such that

o(ay) = ... = o(a,) = o) = «oo = 0(b) = 1
and '

)\1A + .o.+ XI‘A = Oo

(We actually co not need that the u; generate 4 too.) Then the
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(I space <a1,...,ar, bq,...,bs> over a has the primitive isotropic

vector (Aq,...,lr, uq,...,us). Thus (ef.II & 1)

<a1,...,a

I‘, b,]’o..,bs>a—-‘n .LG

with M some metabolic plane 3‘ 8) and some space G. Adding Tor

L

safety <1> we may write

<1,a1,o.-,a b,l,-a-,bs>9-'M ,L<C,‘,...,C

T’ r+c=-1"

with some unite c;, cf.II § 3. Applying ¢ we obtain

r+ST1 = c(cq) + ees + '(Cr+s—4>'

But such an equation is impossible since the risht hend cide Lz

less than r+s+1 swmands + 1.

Now a little miracle comes up with the following leuwma.

Lemma 2., The complement of the set &(e) W (~&(¢)) in 4 ic =

prime ideal p.

The proof- of this lemma can be found in [KB,I Appendix BT,

We call this prime ideal p the associated prime ideal of the

signature o.

The ring 4/p is the disjoint union of the images % and -3
of Q(s) and -Q(o) and the set {O}. The set T is closed under

addition and multiplication. Thus there exists a unique total

ordering on A/p, compatible with addition and multiplication, such
that § is the set of positive elements of this ordering. This

ordering has a unique extension to an ordering of the quotient
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field A(p). The positive elements of A(p) are the fractions
25~ with a and b in §(o).

Let wbdenote the signature of A(p) corresponding to this

ordering. Then o is indeed the composite
W(h) » WA(p)) L %

as is easily checked on the square classes in W(4). It is also

clear that t is the unique signature on A(p) with this property.

Indeed, for any such signature on A(p) all elements of G nust be’

positive under the corresponding ordering.

Thus we have obtained the following factorization theorem,
first observed by Kanzaki and Kitamura [KK] (in the case 4 local

and 2 invertible).

Factorization-theorem. Given a signature = on A there exists a
unique signature T on the residue class field A(p) of the

associated prime ideal p of o such that the diagram

W(A)

\ /o

W(a(p))

commutes. P contains every other prime ideal of A for which

such a factorization is possible. i

Using Corollary 1 in III § 2 we deduce from this factoriza-

tion theorem immediately a less precise factorization theorem
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over schemes.

Corollary. Let X be a divisorial scheme and ¢ a cignature on
X. Then there exists a point y on X and a signature T on the

field k(y) = @y/my such that the diagram

WEx) —L— 1z

N/

Wk (y))

. commutes.

-

Here of course W(X) » W(k(y)) is the functorial homomor-
phism induced by the inclusion morphism from Spec k(y) to X.
This homomorphism maps the Witt class of a space E over X to

the Witt class of the fibre

E(y) = Ey/myEy‘
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§ 2 Signatures and real points.

Assume now that X is an algebraic scheme [EGA,I & 6.4]
over the field P of real numbers. Then for any open set Z of X
the ring 6(Z) is an "-algebra and for open sets Z' © Z the
restriction mep from 6(Z) to 6(Z') is an p-algebfa homoworphism.
loreover X is covered by finitely rany affine open subsets

Z4y+++y2y such that every F-algebra G(Zi) is finitely generated.

It may be helpful to look again at Example 2 in Chapter I,
§ 1. The schemes considered there are precisely the reduced

affine and projective algebraic schemes over ©.

- For x~a closed point of X the residue class field
k(x) = Gx/mX 1s an algebraic extension of P, hence we have
either k(x) = R or k(x) is isomorphic to the P-algebra C. The

closed points x with k(x) = P are called the real points of X

and the other closed points are called the complex points.

We denote the set of real points of X by v. Let Z be an
open subset of X and f an element of 6(Z). Then f yields an
R-valued function

f:Znyasp

defined by

f(x) := image of £ in k(x).

We equip the set y with the coarsest topology such that y n 2
is open for every open subset Z of X and f is continuous for

every £ in 6(Z) with respect to the usual topology on . For a

bt e o e, cewnnie
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discussion of this topology the reader may consult [S, p.309 rf].

An important theorem of Whitney (cf.lM, Appendix 41) states

that the topological space y has only finitelv rany connected

components. We denote these components by Yqseees Yy and put

r = 0 if y is empty.

The Witt ring W(R) is isomorphic to Z. Thus every real
point x of X yields a signature
, TX:W(X>‘4 Wk(x)) —> Z.

-

Here the first arrow is the natural homomorphisw induced by the
inclusion morphism from Spec(k(x)) to X. The second arrow is the
unique isomorphism from W(k(x)) to Z. & more explicit description
of Ty is as follows: Let E be a bilinear space over X. We choose

some diagonalization of the stalk Ey, which is a space over GX,

E=<f,,ee.,f 2>

1 n

with units £, of 6_. The value of T, at the Witt class {El is

]

T (B) = if'l sign f. (x)

with sign fi(x) denoting the sign + 1 of the real number fi(x) # 0.

Lemma. For any bilinear space E over X the Z-valued function

X b TX(E) on y is locally constant.

Proof. Let E be a fixed bilinear space over X and x be a fixed

point on y. There exists an open neighbourhood Z of x in X and

units f,,...,f) in GﬁZ);sqgh that
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E{Z = <f1""’fn>’

The set W consisting of all points y in 2 n y with cign fi(y) =
= sign f.(x) for 1 € i <n is an open neighbourhood of x in v
on which our function y w Ty(E) is constant.

As a consequence of this lemma we have Ty =T, for any

points x and y on the same component Yie Thus we define signa-

tures TaseeesTy of X by Tio= Ty with x arbitrary in Y;e Our main

result now is the following

Theorem 7. Let X be a divisorial algebraic scheme over F. Then

Tqse++,T, are the only signatures of X. In particular ¥ is non

real if and only if Q is empty.
Remark. I do not know whether always Ty 4 Tj for i # j.

For the proof of this theorem it suffices to show:
(*) Let « be a given signature of X and let Eqreesy B, be finitely
many elements of W(X). Then there exists some index k,

1 <« k <«r, such that
G(gi) = Tk(gi)

simultaneously for 1 € i < n.

Indeed, suppose ¢ is different from all the signatures Tie

Then choose for every i, 1 € i € r, an element €, with

o(e.) 7 7;(€;). For this set Eqre+,E, the assertion (*) would

be wrong.
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We now start the proof of (¥*). ic explained in & 1 there

exists a factorization

WH) —S2—>

Z
—1
\ /
(o
~

W(F)

with F the residue class field k(y) at some point y of X and
W(X) -» W(F) the natural homomorphism, napping 2 Witt class

£ = {E}] to the class {E(y)! of the fivre E(y) at y. We denote
this fibre class here by,§|F.

Let Y be the closure {yl of y in X. VWe equip Y with the
unique structure sheaf ®Y such that Y becomes a reduced closed
subscheme of X. This subscheme is irreducible with generic point

y and has the function field F.

We now choose a non empty affine open subset Z of ¥ which
does not contain any singular points. This is possible since the
singular set of Y is known to be closed [EGA,IV 6.12.61. The P-
algebra A :;’GY(Z) is finitely generated [EGA,I & 6.3] and has no
zero divisors. F is the quotient field of A. We choose diagonali-
zations

e |F = <r £, >

i/"..'.’ i .
nl

over F with functions fij

corresponding to the signature ¢ above. By a well known speciali-

in AM{O}. We introduce on F the ordering

zation theorem of Artin and Lang there exists a place \:F » P Y o

over P which does not map any member of a fixed set of generators




-251-

of A to « and moreover maps every fij
of the same sign as fij has with respect to our ordering on F,

to an element in ™\{0}

cf.lL, Theorem 8] and for a proof using quadratic form techniques
r}:&5 ] -

Let a denote the restriction of A to 4., This is a homomor—
phism from A to P over P. The kernel of a is a maximal ideal of

A which corresponds to a point x in Z N y. We have a(f) = £(x)

for every f in A. By our choice of a we obtain for every fiJ

~ .
o(fij) = sign fij(x),

hence n

[N
LLae Mot
RN

Our point x lies on a component Yic* We want to show that
7. (E;) coincides with c(gi) for 1 € i € m. We have a natural

factorization of 7, as follows:
Tk:W(X) - W(GY,X) > Wk(x)) — %.

Let p denote the composite of the second and the third arrow.

p 1s a signature of 6y «* Now observe that all fij lie in &
3

Y,x
and that the space <fij""’fini> over QY,X has the same image in

W(F) as the element §.|@ y i.e. the natural image of E. in
il Y,x i

W(GY,X)‘ This implies in W(SY’X) an equation

%* % -
) gi|°Y,x = {<fiﬂ”"’fini>§ o

with mn nilpoten?)according to the following theorem due to
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Craven-Rosenberg-Ware [CRW].

Theorem 2. Let 4 be a regular local ring and I the quotient
field of A. Every element in the kernel of the natural nap from

W(4) to W(F) is nilpotent.

This theorem will be proved in the next section. 4pplying

p to the equation (**) we obtain

n n.

i ' i
r p(f..) = T sign fii(x).

T (E:) =
k*-=i 1 1j =1

J

Thus indeed Tk(gi) = o(gi) for 1 €« i « .
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§ 3 Froof of the theorem of Craven-Rosenberg-Wéré.

This is Theorem 2 at the end of the preceding section.

To prove it we need the following tool.

Theoremn [K6, § 3],
Given a place A:F - k U« from a field F to a field k there
exists a unique additive map Ay from the Witt ring W(F) to W(k)

such that A (Ka>) = <a(a)> for any element a of F with A(a) # 0, e,

and Ay (Ka>) = 0 if A(ac?) = 0 or e for every ¢ in F.

In other terms, if a square class <a> = aF*2 of F contains
a unit b of the valuation ring of A then the element <a> of W(4)

1s mapped to <A(b)>. Ctherwise <a> is mapped to zero.

For the proof of this theorem we recall from IT § 4 that

there exists a natural epimorphism
¢ : Z[G] —>> W(F)

with G the group of square classes of F, and that we determined
in II § 4 Theorem 2 a set of generators of the kernel & of & as

: *
an additive group. ) Now define an additive map

A 2 Z[G] - W(k)

by prescribing the image A(g) of a square class g = aF* 2 as

follows: If g contains an element b with A(b) # 0, put

¥*
) Our theorem is trivial for F a finite field. Thus the

generators of length 4 suffice.
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A(g) = <x(b)>. Otherwiese put A(g) = 0. It is only an exercise
to verify that A vanishes on the generators of f. For the details

cf. [K6,p.289 f]. This gives the proof of the theorem.

The map Ax is usually not a ring homomorphism but it is

multiplicative on certain subrings of W(F).

Lemma 1. Let A be a semilocal subring of F on which X\ does not
take the value « (i.e. A is contained in the valuaticn ring of

A). Let u:A » k be the ring homomorphism obtained from X by

restriction to A. The tfiangle

| AV,
Wik)
with k the natural map from W(4) to W(F) commutes.

Proof. It suffices to check the comnutativity on the square
classes <a> of A(a € &*), since they generate W(4). Since a is

a unit of A we have A(é) = u(a) # O hence indeed
(o K) (<2>) = M (<a>p) = <A(a)> = g (<a>).

Remark. Lemma 1 remains true for arbitrary subrings 4 of F but

we do not need this.

The possibility to use these maps Ay for a proof of the

theoremvof Craven-Rosenberg-Ware now comes from the following

fact:




Lemma 2. Let A be a regular local ring with quotient field F

and residue class field 4/= = k. There exists a place.

A:F - k U« which extends the natural epimorphism from 4 to k.
The proof is easy, cf. TK6,p.285].

After these preliminaries our proof of the theorem of

Craven-Rosenberg-Ware can be done. Let A be a regular local

ring with quotient field F, and let € be an element of W(A) with

image E|F = 0 in W(F). We have to show that € is nilpotent. This
is clear if A is non real, since E has even rank. We assume since

now that A is real.

Suppose E is not nilpotent. Then there exists a signature
o on A with o{€) # 0, cf. II § 6. According to our factorization
theorem in § 1 there exists a prime ideal r of A and a signature
v of the residue class field B := Ap/pAb of the localization
B := Ab such that the triangle

W(A) ——> W(E)
;\\\ ///:
<
: Z

with canonical map from W(A) to W(E) commutes. Thus we have

¢(FIE) # O for the image EIE'Of £ in W(B).

On the other hand, since B is again regular, there exists L 

by Lemma 2 a place A:F » B | « which extends the natural map

B » B. Applying Lemma 1 to the subring B of F and the element
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€| B we obtain.
e|B = L (elF) = 0.

This contradicts the fact that T(i]fD # O, and the thecrem of

Craven-Rosenberg~-Ware is proved.

Remark. Using the weak local global principle in III § 2 it
is now clear that for any regular commutative ring A with
quotient field F the kernel of the natural rap from W(4) to

W(F) contains only nilpotent elements [CRW].

It s an opeﬁvquestign whether for A a regular loczl ring
the natural map from W(4) to W(F) isiactually injective. We
shall see invthe next section that this is true if dim 4 = 1,
i.e. A is a discrete valuation ring, and more generally if 4

is any valuation ring.
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§ 4 Curves over P.

We first consider a regular connected curve X over an
arbitrary ground field k. This means X is an algebraic irre-

ducible scheme over k of dimension 1 all whose points have

regular local rings. Thus the local ring QE at the generic point

E of X is a field F, the function field of X, and the local rings

GX at the points x # &, i.e. the closed points x of X, are

discrete valuation rings. For Z an open set we regard as usual
(cf. IV,§ 2) 6(2) as a subring of F. For Z affine 6(Z) is a

Dedekind domain.

-

We also-regard the local rings GX at the closed points x

of X as subrings of F. For f an element in F* we can speak at
every point x # € of the order ordxf of f, which means the value

of f under the normed valuation ordX:F* - Z associated with @y

Life is easy over curves since we have the following

Theorem 1. Let E be a space over X with EE metabolic. Then E

itself is metabolic.

Proof. TFor every open set Z we regard the 6(Z)mmodule E(Z) as a

subset of the vectorspace EE over F. This is possible since X is

irreducible. Let W be a Lagrangian of E,. We then obtain an 6-

submodule V of E by defining

V(Z) := W n E(2) | H

. !
for every open set Z. Now fix some affine open set Z . The G(ZO)— ?‘
i
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module E(ZO)/V(ZO) is finitely generated and torsion free.
Since G(ZO) is Dedekind this implies that E(ZO)/V(ZO) ie pro-

jective. Thus we have a splitting

E(Z,) ='V(Zo) e P

with P some Q(Zo)-submoldule of E(Zo). Define on Z_ an 6, -sub-

o
module U of ElZO by

U(Z) := E(Z2) n P

for Z open in Zo‘ Then E!ZO is the direct sum of V ZO and U.
Since ZO h§§ been an arbitrary affine open subset of X we now
know that V is a subbundle of E. The bilinear form of E is
totaiiy isotropic on V, since all sections of V are contained

in W. Moreover V_ = W, hence

g

2 rank V = 2 rank W = rk E.

Thus V is a Lagrangian subbundle of E.

Corollary. The natural map from W(X) to W(F) is injective.

Proof. Let E be a space over X such that EE ~ OU. Then EE is
metabolic. This is well known if the field ¥ has characteristic
# 2 (cf.11,§ 1), but is also true if char(¥) = 2, cf.[FH,p.58]

or [K,§ 8.2]. Thus E is metabolic, and a fortiori E ~ O.

It should be mentioned that in our proof we never used the
assumption that a ground field k is present. We only needed that
X is irreducible and that for affine open subsets Z of X the rings

6(Z) are Dedekind domains. More generally it suffices to know that
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the 6(Z) are Priifer domains, since the Prifer domains are
precisely the rings without zero divisors over which every
finitely gencrated torsion free module is projective, cf.[CE,

p.ﬂBB]. In particular we have in the affine case the following

result.

Remark. For every Priifer domain A - in particular for a valuation

ring ~ the natural map from W(4) to the Witt ring W(F) of the

quotient field ¥ of A ic injective.

Assume now that our base field is R, and let v, 5.-+,Y,
denote the components of the set y of real ﬁoints of X. (We
allow y to be empty. Then r = 0.) X may be regarded as an open
set of a complete regular connected curve ¥, as is well known.
This allows us to visualize the Yi- Indeed the set f of real
points of Y is a compact ¢ -manifold of dimension 1, cf. [S,p.89],
hence a disjoint union of "circles" in the C”-sense. We obtain
X from Y by omitting finitely many points, hence also y from £

by omitting finitely many points. Here is a picture wherc B

consists of three components 81’ﬁ2’35’ and y consists of five

components. |

Y=
1 [34 XL__../SQ\{)(:‘}




~-260~

We shall use Witt's classification of bilinear forms
over the function field F in his fundamental papsr [W]. For
every real point x of X we denote by XX the canonical place
assoclated with the valuation ring s

)\X:F—)(@x/mx)UOV:PUm.
As explained in the preceding § 3, A, yields an sdditive map

(xx)* : WE) » WP) => Z.

Theorem 2. [W, Satz 23].

Let Eq and E2 be bilinear spaces over F with same determinant,
same rank index, and (XX)*(EQ) = (XX}*(Eg) for almoet all x in vy.

Then E,1 ~ Eg.

{Actually Witt proves a much stronger theorem [W,Satz 22]
dealing with isotropy instead of equivalence.} Now let TaseeesTy
denote the signatures of X corresponding to YqreeesYpo For E a

space over X and x a pbint of y; we have
* ‘ =

) E = (R,
Indeed, choose a diagonalisation

E, = <fqyee0,f>

over 6_, all f; in G§. This is possible since 2 is a unit in 6_.
Then by definition of r. and (XX)* both sides of (¥) coincide
with

T sign f.(x)
i=1 -

Since W(X) injects into W(F) we obtain from Witt's classification
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theorem

Theorem 2': Let z, and z, be elements of W(X) with d(zq) =
= d(zz), v(zq) = v(zz), and Ti(zq) = Ti(zz) for 1 < i « r.

Then Zg = Zpe

o

Assume now f i1s an element of F* which has even orcder
everywhere on X. Then except zeros and poles f has on each vy;
a constant sign €5 = & 1, since at a point of sign change f

would have odd order. Witt proved the following

Theorem 3. ([Wq], cf. also [G])

Given on each y. a sign g. = + 1 there exists a function f which
i i -

has even order everywhere on X and sign E; On Yy for 1 <1 <r.

-

Actually Witt only shows the existence of such functions
which have even order everywhere on y. But it is easy tc chansge
his functions by multiplication with é suitable sum of two
squares into functions which in addition have even order everywhere

on X, cf.[K4,I Prop.2.4].

We choose for every i, 1 € i « r a function £ # O which
has even order everywhere on X, sign -1 on y; and sign +1 on all
other Y Let Si denote the square class £(fi) constructed in IV,

§ 2. We clearly have

N
H
*

We now can give a very explicit description of W(X). For
convenience we describe the ideal I(X) of spaces of even rank,

which means nearly the same, since W(X) = Z<1> + I(X). Let It(X)
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denote the torsion part of I(X),

Theoren 4.

T
i) IX) = It(X) e g Z(1-£.).
. i
1=
.. o\ & . .
ii) It(x) =‘2It(X) = 0,
It(X>(1—£i) =C for1<ic<r,
(1_£i>(1-£j) = 2513(1-31) for 1 <1, j €r.

iii) The map £ - 1-£ from the group § (X) of totally positive
square classes (cf.IV,§ 4) to I(X) is an additive iscoror-

phism from §'(X) onto I,.(x).

Proof. Let z be an element of I(X). Then all signatures Ti(Z>

are even numbers 2ni. Write

r
™) 7 = 151 n: (1-£5) + u

with some other element u. Then Ti(u) = 0 for 1 < i < r, hence u
is nilpotent. Since I(X) injects into I(F) and the nilpotent
elements of I(F) are torsioﬁ (I1,§ 6), we see that u lies in
It(X)° Moreover (¥) is clearly the unique possible equation with
last term u inAIt(X). This proves assertion (i). The seccnd
assertion is now verified checking every equation by the basic
invariants d,V,Tq,..-,Tr. If £ is a totally positive square clacs,
then 1-£ is nilpotent (a general fact, cf.IV,§ 4), and thus by
the same argument as above 1-£ lies in It(X) (actually again a
general fact, cf. Appendix 3). If £' is a second totally positive

square class then by use of the basic invariants we check that

,' 5
"$4
W




(1=£) + (1-£') = 1 - £8°',

Thus our map from & (¥X) to It(X) is indeed additive. It remains

to be shown that thic map is onto. Let u be an element gf It(x).
As has been proved in IV,§ 4 the square clasc d(u) is totally
positive. The elements u and 1-d(u) have the same basic invariants

and thus are equal. This finishes the proof.

Starting from the exact sequence for G(X) in IV,§ 1 it is
easy to show that the group Q(X) is finite, cf. [K4,I § 2].
Clearly ¢"(X) has index 2% in Q(X). One would like to know the
precise order of G (X). The answer is known in the cace that X

is complete, c¢f.[A1,Th.5.9] and (X,,II Th.10.12]:

-

Theorem 5. I1f Y is not empty then § (X) has order 2% with g the

genus of X. If y is empty then Q'(X) has the order 2g+1, provided

P 1s the precise field of constants of X, i.e. F does not contain

=

Our computation of W(X) can be generalized to the case that

the base field k is real closed, cf. § 10 of [k,,II].

Exercise. Assume the base field k is an algebraic closed field
of arbitrary characteristic. Show that I(X)2 = 0 and that the map
£ » 1 - £ gives an isomorphism of abelian groups from &(X) onto

I(X). Show that W(X) consists of 22g+1 elements.

Hint. Use the fact that an element of W(F) is determined by rank

index and determinant, since every space of rank 3 over F is iso-

tropic.

~

i
i
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* Appendix 1. Level and height of a non resl commutative Ting.

The level s(4) of a commutative ring 4 ig defined as the
least natural number s such that -1 can be written as a sum of
s squares in A. If -1 is not a sum of squares in 4 we put
s(4) = ©, The height h(4) of 4 is defined as the least natural
number h with heW(4) = 0, i.e. with h X <1> ~ 0 over 4. If W(&)
is not a torsion group we put h(4) = <. We have seen in III § 2
that

*) s(A) < ® » n(4) < .

-

We called‘%hé rihgs A with h(4) < « non real. We have also seen
in III § 8 that the height of a non real ring is always a
2-power. In this appendix we prove in the case that 2 is a unit
in A inequalities involving s(4) and h(4) which improve the

purely qualitative result (*).

We make use of three theorems not proved in these lec-
tures but well known. We assume that the space max(4) of maximal

ideals of A is noetherian and has finite dimension d. All

occuring modules are assumed to be finitely generated.

Theorem 1. (J.P.Serre, cf. [B,Prop.10.1])

If U is a projective A-module of rank » d+1 then U has a decon-

position U = A @ U',

Theorem 2, (A.Roy [R])

Assume Eq,Ee,E are bilinear spaces over A with
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Lssume further that Eq has a hyperbolic subspace H(U) with U
projective of rank > d+1, and that 2 is a unit in 4. Then

Eq > E2.

Theorem 3. (Baeza [Ba,p.125)) *)

If 4 = 0, i.e. A is semilocal, and 2 is a unit in A then

n(a) = 2s(4).

Remark. If A is semilocal but 2 is not a unit in A the fol-

lowing is known: Let h(4) = 2% < «, Then s(4) is one of the

t-1  ot=1_

four numbers 2~ ', 2 1, Zt, 2t-1, cf. [K2,§ 3] and [Baq].

-

Assume now ¢ > O and let & denote the natural number
with

201 <a < 28,
Our first statement is the following

Theoren 4. If 2 is a unit in A then

s(£) < Max(n(a),28*),
Proof. ©Put
Max(n(4a),2%*1) = 2P,
Then 2% x <1> ~ 0 over A and 2@ < 2%. We have in L(&)
*) The proof of this theorem in [Ba] can be greatly simplified

by use of § 2 of the paper "Annullatoren von Pfisterformen",
Math.Z.140 (1974) by Baeza and myself.

i
i
i
I
i,
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il (2" x <1>] = [H(V)]

with some projective A-module U of rank 2% > 4. Using

Theorem 2 we obtain

J;: o« <1> = H(U).

According to Theorem 1 the space H(U) has a subspace isomorphic

to

1 0O

Thus -1 is a sum of 2% squares in A, g.e.d.

We now give a bound from above for h(4) in termes of s(&).
Slightly more generally we consider a quasiprbjective scheme X
such that the ring A := 6(X) of global functions on X has finite
level. Then of course all local rings GX have finite levels and
thus X is non real. Let h(X) denote the height of X, i.e. the
smallest natural number h with h*W(X) = 0. We know from IITI, § 2
thatbh(X)»is a 2-power. We assume that the space M(X) of closcd

points of X is noetherian and of finite dimension d.

Theorem 5. If 2 is a unit in A4 := 6(X) then

h(X) < (2s(4))3*7.

Proof. We use the contents of III,§ 8. Let
o= ¢ s(a) < 2%

- For every finite set S-of gldsed points in X the level of the

. 1 e,
R TR RS

e ———————— e ]
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semilocal ring 8¢ is bounded from above by s(4), hence by

o= according to Theorem 3. By the same theorem

2 % <> ~ 0 over GS
for every set S as above. According to III,§ 8 thie implies
2r(d+’1)

x <1> ~ 0  over X,

hence

n(a) < 25C+ 1) o (og(a)) 9+,

A4 similar result can be proved for 2 not a unit by use

of the remark above on the levels of arbitrary semilocal rings.
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*

Appendix 2. The prime ideals of L(X).

Let X be a connected divisorial scheme. We proved in
Chapter III the prime ideal theorem not only for W(X) but also
for L(X) (cf. III § 5, Th.2). In fact we proved it for IL(X)
first. Thus it is possible to determine the prime ideals of L(X)
in the same way as we did for W(X) in III § 2. Notice that for
L(X) we are always in the "real case", since the rank homomor-
phism

rk : I(X) - Z

-

always exists. We denote the kernel of the rank homomorphism
by L(X)°. We further denote for a signature ¢ of X the induced

homomorphism from L(X) to Z by 7,

TL(X) » WX 2> gz

Theoremn.

~r

i)  The homomorphisms & and the rank homomorphism are precisely

all homomorphisms from the ring L(X) to %.

ii) For every prime ideal P of L(X) with P n % = {0} there

exists a unique homomorphism ¢ from L(X) to Z such that

P coincides with the kernel Pm of o.

iii) For every prime ideal M of L(X) with M NZ = p %, p an odd
prime number, there exists a homomorphism o from L(X) to

Z such that M coincides with

-1
M o= Z = P
D o (p )A

o + p Z.




iv) The prime ideal

Moo= L(X)° + 2 3,

consisting of all elements of even rank, is the unique

prime ideal M of L(X) with M N Z = 2 Z.

Proof. Let P be a prime ideal of L(X). By the prime ideal
theorem there exists a closed point x of X such that'L(GX) has
a prime ideal Q lying over P.
Assume first P does not contain the space S 8) oner X,
X
o) 1)

1 0/g
X

Then Q does not contain the space over Gx' For every

space E over QX we have

E&(g 3@ zH(E)a(rkE)x(El) 8)@

x X

Thus

3 ( (rké)[(o "]

for every € in L(Gx). If Q NZ = {0} then we learn from this

equation that € lies in Q if and only if rke = 0. If QNZ =pZ,

P an arbitrary prime number, then we learn that E lies in Q if
and only if rkE is divisible by p. Thus P is either the ideal P
or the ideal o (p Z) with © the rank homomorphism.

Assume now that P contains the space 3 8 . Then Q
X
contains the space 2 8 » and according to Chapter II, § 1
6

X

the ideal § is the inverse image of a prime ideal T of wis,).
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Let T denote the preimage of Q@ in W(X). Then P is the pre-
image of the prime ideal F of W(X) in L(X).

Now our theorem immediately follows from the descrip-

tion of the prime ideals of W(X) in § 2 of Chapter III.

Corollary. An element E of L(X) is nilpotent if and only if

tk€ = O and ¥(E) = O for every signature ~ of X.

Example. Let E be a metabolic space over X of rank 2m. Then

the element |
=) - = [(§ 3)]

of L(X) is nilpotent.
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* Appendix 3., Abstract Witt rings.

Let R be a commutative ring with R # 0. Assume there is

given a ring epimorphism
$:Z[G] —>> R

with G a group of exponent 2. Let & denote the kernel of 5.

Definition. R is called an abstract Witt fing with respect to
$ if for every character Y:Z[G] » Z (cf. II § 5) either
(&) = 0 or x(® is a power ED(X)% with n(yx) > 0.

If R is an abstract Witt ring with respect to & then
actually all occuring exponents n(x) are > 1. Indeed, if X4 ()
is not contained in 2 Z for some character X4 then x(8) = Z
for every character y, since ¥x(z) = xq(z) mod 2 for all z in
Z[G]. According to the prime ideal theory of Z[G] (cf. II § 5
Prop.1) this implies # = Z[G] which is impossible.

Notice that our definition of abstract Witt rings-is an
axiomatization of Lemma 2 in II § 5. In this section we devel-
oped the prime ideal for the Witt ring W(A) of a semilocal ring
A using only the presentation of W(4) as a homomorphic image of

the group ring Z[Q(A)] in II § 4 and this lemma. Thus the prime

ideal theory for W(A) in II § 5 can be transfered to the present

more axiomatic setting, and we obtain the following theorem.

Theorem 1. Assume R is an abstract Witt ring with respect to 3.

Let ﬁ6 denote the image é(MO) of the unique prime ideal M, of
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Z{G] with z[G]/Mo =Z/2%Z (cf. II § 5 Prop.1).

a) ﬁ; is the unique prime ideal of R which contains 2'4R.

b) For any prime ideal P of R which does not contain P g
for ény prime number p there exists a unique homomorphism

g:R » Z such that P coincides with the kernel Pn of ».

c) Let p be an odd prime. Then for any prime ideal M of R
containing p°1g there exists a unique homomorphism q:R - Z
such that M coincides with the ideal

- M :=pE+P
o,P o]

consisting of all z in R with o(z) = O mod p.

We also have an obvious analogue of Proposition 3 in II

§ 5 ("non real" abstract Witt rings).

Moreoﬁerrthe results about torsion and nilpotent elements
in II § 6 can be transfered to abstract Witt rings, since they
are éntirély based on the prime ideal theory in II § 5. A more
thorough investigation,‘done in [KRW ], yields the following

characterizations of abstract Witt rings.

Theorem 2. [Kth, § 3]

The following are equivalent.

i) R is an abstract Witt ring with respect to &

i) ® € M_ and all zero divisors of R lie in "ﬁo.

1ii) A1l torsion elements of R are 2-primary.
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iv) All torsion elements of R are nilpotent.
v) If P is a prime ideal of R containing p*lp for some odd

prime number p then P is not a minimal prime ideal.

In connection with condition (iv) we mention that a priori
all nilpotent elements of R are torsion elements as a consequence

of Maschke's theorem, cf. the proof of Prop.2 in II § 6.

Notice that the condition (iii), (iv) and (v) in Theorem 2
do not depend on the given epimorphism &. Thus we learn that if
5':%Z[G'] —>> R is a second epimorphism with G' again of ex-
ponent 2 then R is an abstract Witt ring with respect to ¥ if
and only if R-is an abstract Witt ring with respect to 3'.
Consequently we call since how a commutative ring R an abstract
Witt ring if there exists an epimorphism 3:2[G] —>> R with G
of exponent 2 and if the equivalent conditions (i) - (v) in
Theorem 2 are fulfilled. The existence of an epimorphism & means

that R is generated by the set of all x in R with x2 = 1.

The theory of abstract Witt rings is a comfortable
languagérto ﬁave a unified description of various phenomena in
rings which are relatives of the classical Witt rings. For some
examples see [KRW ,§ 1]; W.Scharlau "Quadratische Formen und
Galois-Cohomologie", Invent.Math. 4 (1967); A.A.Belskii, "Coho-
mological Witt rings", Izv.Akad.Nauk SSSR Ser.Math.32 (1968),
1147-1161 = Math.USSR Izv. 2 (1968), 1101 - 1115. 1 mention here

still another example relevant to our global theory.

e A




-274-

For X an arbitrary scheme we denote by W'(X) the sub-
ring of W(X) generated by the set Q(X) of square classes, which
we consider as in IV § 4 a subset of W(X). Recall that Q(X) is

a group of exponent 2.

Theorem 3. If X is divisorial then W'(X) is an abstract Witt

ring.

Proof. We verify condition (v) in Theorem 2. Suppose P is a

minimal prime ideal of W'(X) containing p'1W(X) for some odd
primé number p. By general commutative algebra the overring W(X)

of W'(X) contains a minimal prime ideal Q with
QN W) =P,

- But we have seen in III § 2 that no minimal prime ideal of W(X)

contains p-ﬂw(i). Thus an ideal P as above cannot exist.

Here is an application of our theory.

Corollary. Let & be a totally positive square class of X (cf.

IV § 4). Then we have in W(X) an equation
with some n = O.

Indeed, 1-8 is a nilpotent element of the abstract Witt

ring W'(X) and hence a 2-torsion element.
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Guide to the literature: Global theory.

We leave aside the classical arithmetic theoxy (pilinear
rodules over rings of algebralc numbers and over rings of alge-
braic functions in one variable over finite fields). We also il

do not deal with the many papers written in recent years about ol

- ' . . |
quaaratic and hermitvian forms over integral group rings of L
finite groups, since we regard this area a new province of the mﬁ
arithmetic theory. We then can safely say that the global theory

of bilinear spaces as well as of quadratic spaces (not studied

adequately meager literature. |

-

. . 1!

in our lectures) still is in the state of infancy with an 'l
0

f

There exists a cancellation theorem for quadratic spaces |

over commutative rings with a noetherian maximal spectrum of

finite dimension (and also certain rings with involution), due
to A.Bak, which is an analogue of Serre's well known cancella-
tion theorem for projective modules, and which generallzes the
theorem of A.Roy used in Appendix 1. For this cancellation
theorem see Chapter IV of the article "Unitary algebraic
K-theory" by H.Bass in volume III of the proceedings cf the

Battelle conference on algebraic K-theory 1972 (Springer Lecture |

Notes vol. %43). Chapter III of the same article contains a

M.Karoubi has developed in [Kr] two localization seguences

|

N
unitary Mayer-Vietoris sequence and other useful exact sequences. 41
for Grothendieck-Witt and Witt groups of quadratic spaces oVer ﬁ
|

1

commutative rings (more generally rings with involution). Accord-
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ing to this theory for example the Witt ring

| ; -1 -
} W(A[X,‘,X,] ,...,X

1 . . .
Xy 1) of the Laurent ring in n variables X4

over a regular commutative ring A with 2 inveriitle is a free
W(A)-module with the square classes <X1>""’<Xn> as bagis, cf.
[Er II], Th.3.11. More recently W.Pardon has written s useful

i paper on localization sequences: "The exact sequence of a local-

‘ﬂgﬁ ization for Witt groups" (to appear, preprint Columbia Univ.).

In the papers cited up to now beside the Grothendieck-
Witt groups LO(A) and the Witt groups W (4) of quadratic spaces

over 4 also groups_Lq(A) and Wq(A) play an important role (in

the article of Bass also certain L2 -groups, there called KU2).
M.Karoubi, C.T.C.Wall, A.S.MiSfenko, A.Renicki, and others have
developed over rings with involution theories of groups Li(A),
Wi(A) for quadratic spaces (Karoubi, Wall, Renicki) and bilinear
spaces (Miggénko, Ranicki) with arbitrary positive and in sone
papers negative indices i. The articles of Karoubi, Wall, and
Ranicki in volume III of the Battelle conference on algebraic
K-theory, cited'above, and a recent paper of Ranicki "The
algebraic theory of surgery" (to appear, preprint Univ. Cambridge)
give a good impression of the state of art in this area. Since
few explicit computations for commutative rings of dimension > 2
have been done on the basis of any of these theories it is not
yet clear how useful they are to obtain information about our
vWitt riqgs W(4), even if 2 is invertible. But the existence of
reasonable exact sequences connecting our rings W(A) and L(4)

with these higher Witt groups and L-groups is encouraging.
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Concerning the theory of bilinear spaces on a complete
algebraic scheme X over a field k of characteristic # 2 there
exists a very readable paper "GQuadratische Formen in additiven
Kategorien" by H.G.Quebbemann, R.Scharlau, W.Scharlau, and
M.Schulte (to appear, preprint Univ. Mﬁnster).*) From this
axiomatic paper it follows that over these schenes X the Krull-
Schmidt theorem holds true for bilinearAspaces and hence also
the cancellation law. Moreover a rather explicit description of
the bilinear spaces over X can be extracted from the paper. In
the case that k is algebraicelly ciosed thié description boils
down to an old theorem of Grothendieck stating that eny two non
degenerate symmetric bilinear forms Qn a given vector bundle
over X are isomorphic, cf. Ai.Grothendieck, "Sur la classification
des fibres holomorphes sur la sphére de Riemann" p.13%0 (&mer. J.

Math. 79, 1957).

For X a smooth connected curve over a field kX with function

field F there exists an exact sequence

0 5 W(X) » WE) == & W(k(x))
X

with ¥ running through all closed points of X, cf. [K,§ 13 ]

and for X affine [MH,Chap.IV § 3]. This sequence demonstrates
the importance of our global Witt rings W(X) for the theory of
W(F) if F is a function field in one varisble. For x complete
the cokernel of 3 has been explicitly computed ié k is algebraé

ically closed (easy), if k is real closed (K,,IT § 11], and if

*) W.Scharlau gave a talk on this material at the conference.
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k is finite (an exercise using the arguments in the paper
"Quadratische Formen und quadratische Reziprozititsgesetze
ﬁbef algebraischen Zahlkorpern" by W.Scharlau and myself,
Math.Z. 121, 1971). For X affine and characteristic ;' 2
Karoubi has given a general description of the cokernel of 3,
cf. Theorem 2.8 in [Kr II]. 4 general "sum formula" about the
image of 3 for X complete can be found in the paper "Ein
Residuensatz fiir symmetrische Bilinearformen" by w.D;Geyer,

G.Harder, W.Scharlau and myself (Invent.math.11, 1970).
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