Manfred Knebusch

Talk at the Quadratic Forms Conference at Kingston August 1976.

In this talk I want to discuss an application of the
theory displayed in my Kingston lectures "Symmetric bilinear

forms over algebraic varieties", cited here by [*], to the

Galois thHeory of schemes. I ‘shall use the terminology developed

in the lectures throughout.

Let us first review the basic notions and theorems of
Galois theory over schemes. The theorems and their proofs can
be found in [SGA] in a slightly different language. We work
with connected schemes which are, say, quasicompact and sepa-

rated. We do not impose noetherian conditions. A finite covering

of such a scheme X is a finite etale morphism f:Y - X with ¥
again a connected scheme. (I shortly say "covering" instead of
"connected covering".) This means the following. f is affine,
i.e. Y coincides up to canonical isomorphism with the spectrum
Spec 9 (cf. [EGA II, § 1]) of the quasicoherent 6y -algebra

¥ := f*Gy. Moreover % is a locally free GX -module, i.e. a



*
"vector bundle", and for every point _) x € X the fibre
U(x) = ﬂx/mx is a separable algebra over the field GX/mX,
and ¥(X) contains no idempotents except O and 1. The rank
of the vector bundle ¥ will be called the degree [Y:X] of

the finite covering.

Any projective system {Ya -» X, faB* of finite coverings
has a projective limit Y » X in the category of schemes over X,
cf. [EGA IV, § 8]. Indeed, we have an inductive system
iﬂa, Aae} of quasicoherent &y -algebras ¥  such that Y =
= Spec(ﬂa) and laszﬂa + ¥ corresponds with faB:Ya > YB' We
take for Y just the spectrum of the quasicoherent SX ~algebra

-

N := lim, U .

A1l AGB are automatically injective. Thus we can think of the

ﬂa as subsheaves of 8 and of ¥ as the union of the ﬂa.

Projective 1limits of finite coverings will be called

coverings of X. The following fact about coverings is very

useful.

Lemma 1, Assune Y » X and Z » X are coverings of X and a:Y = 2
is a morphism between these coverings, i.e. a morphism of

schemes such that the diagram

»*
) It suffices to know this for the closed points.



Y\:/>Z

commutes. Then a:Y -» 2 is again a covering.

We call a scheme X' simplvy connected if X' is connected

and does not admit any coverings except isomorphisms. A uni-

[avd ~
versal covering of X is a covering X - X with X simply con-

~
nected. It can be shown that a universal covering X - X always
exists.
Any two universal coverings of X are isomorphic.
This follows by use of the p%eceding Lemma
immediately from the following theorem, which moreover Jjusti-

fies the notion "universal covering".

Theorem 1, Let ©:Y » X be a covering and a:X' » X be a morphism
with X' simply connected. Then there exists at least one mor-
phism B:X' » Y such that o8 = a. If o is a finite covering
then precisely [Y:X] such morphisms B exist.
~
We now choose a fixed universal covering m:X - X and

~ o~
denote by G the group Aut(X‘X) of all automorphisms of X over X.

For every covering o:Y -» X the set MorX(X,Y) of morphisms

~
from X to Y over X is not empty according to the preceding



theorem. Since any two universal coverings of X are iso-

morphic, we obtain easily the following statement.

Corollary. For any covering Y of X the group G operates

o~/
transitively on the set MorX(X,Y) of all morphisms from

~
X to Y over X.

If these morphisms are finite coverings then they all

must have the same degree which we denote by fi:Y]. OCtherwise
P d
we put [X:Y] = o,

The sets Morx(i,Y) are in a natural way profinite spaces,

i.e. projective limits of discrete topological spaces with only
finitely many elements. Indeed, if Y -» X is the projective

limit of finite coverings Yu -» X, then Morx(i,Y) can be regarded
as the projective limit of the finite sets Morx(i,Ya). In par-

o~
ticular (Y = X) the group G is a profinite group in a natural

way. We call this profinite group the absolute Galois group of X.

G operated continuously on all the spaces MorX(X,Y). Thus

for every commutative triangle
X

\.

1 Y

|+

X

with © a covering the subgroup H := Aut(ilY) of G is closed in G.



Theorem 2., In this way we obtain a one-to-one correspondence
between the isomorphism classes of commutative triangles as
above and the closed sobgroups of G. This yields a one-to-one
correspondence between the isomorphism classes of coverings

of X and the conjugacy classes of closed subgroups of G.

The main point of our theory of real closures is that

under mild restrictions on X every signature oc of X yields an

element of order 2 of the Galois group G uniquely determined
by o up to conjugecy. Recall from [*] that the signatures of X

are by definition the ring homomorphisms from the Witt ring

W(X) to Z, and that in the case that X is the spectrum Spec(F)

of a field F tﬁese signatures correspond in a unique way with

the orderings of F [*, II § 7].

We consider pairs (X,o) consisting of a scheme X and a

signature ¢ of X. A morphism f:(X',¢') » (X,0) between pairs

is a morphism f:X' » X of schemes such that the triangle

W(X) ——— W)

\/

commutes. Notice that, if X and X' are spectra of fields F
and F', this means, that the corresponding homomorphism from

F to F' is compatible in the usual sense with the orderings

corresponding to ¢ and o'.



Given a morphism f:X' - X of schemes and signatures
o' on X' and ¢ on X we say that o' "extends" o with respect

to f, or that o is the "restriction" of «' with respect to f,

if f is a morphism from the pair (X',e¢') to (X,q).

Assume now that X is connected.

Definition 1, A covering of the pair (X,¢) is a morphism

w: (Y,v) » (X,0) such that the morphism of schemes eo:Y - X is a
covering in the sense explained above. A pair (S,p) is called

real closed if S is connected and every covering of (S,p) is

an isomorphism. A real closure of (X,0) is a covering

w:(S,p) » (X,0) with (S,p) real closed.

By use of Theorem 2 and Zorn's lemma we see easily that

real closures exist for every pair (X,e¢) with X connected.

Let now (X,0) be a pair with X connected and divisorial

(cf. [*,II1 § 1], e.g. X quasiprojective). Then the following

two theorems hold true:

Theorem 3, If a:(S,p) » (X,0) is a morphism with (S,p) real
closed and S divisorial and o:(Y,7) » (X,0) is a covering there
exists at least one morphism B from (S,p) to (Y,T) with ®e® = a.
In particular, if o and o both are real closures of (X,o)
then according to Lemma 1 the morphism 8 must be an isomorphism.

(Notice that coverings of divisorial schemes are again divi-



sorial.) Thus (X,c) has up to isomorphism only one real

closure.

Theorem 4 ("Fundamental theorem of algebra").

Let »:(S,p) » (X,0) be a real closure of (X,ns). Then [i:S] < 2.
If there exists a prime number p which is a unit in 6(X) *)
then [i:S] = 2. If 2 is a unit in 6(X) then moreover X is iso-
morphic over S to S[V-1], i.e. to the spectrum of the &y -

algebra 6y @ Oyi with 1% = -1,

Here is an example with i's S: Let X be the spectrum of
the ring Z. Then W(X) = %, cf. [MH, p. 90]. Thus X has a unique
signature g. On the other hand X is simply connected according
to Minkowski's theorem that every number field except € has a
discriminent different from + 1. Thus (X,0) is real closed

o~
and X = x-

Theorems % and 4 have been proved in [K,I] for X affine.
A proof for X divisorial can be performed on precisely the
same lines using chapter III of [*]. {In [K] real closures of
commutative rings with involutionAare studied. The real closures
defined above are there called "strict real closures".} We shall
reproduce below the proof of Theorem 3 since this proof has in-
teresting repercussions to the theory of Witt rings of divi-

sorial schemes.

*
‘> e.g. X admits a morphism to the spectrum of a field.
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Assume now that there exists a prime number p which is
a unit in 6(X). According to Theorems 3 and 4 we have a map §
from the set Sign X of signatures on X to the set of conjugacy
classes of elements of order 2 in G by attaching with a
signature ¢ of X the conjugacy class [a] of an element a of G
of order 2 such that the subgroup {1,a} of G determines a real
closure of G in the sense of Theorem 2. The following direction
for investigations about real closures seems to be reasonable.
Given a scheme X as above of some fixed type try to obtain
enough information about the coverings of X and their signatures
to decide the following two questions:

-

Question 1 Is & injective ?

Question 2. Is & surjective ?

It has been shown in [K, II § 7 and § 10] that both ques-
tions have an affirmative answer if X is the spectrum Spec A of
a connected semilocal ring A. It further has been shown in [K,
IT § 11] that Question 1 has an affirmative answer if X is an
affine smooth connected curve over the field R of real numbers.
Here the computation of the Witt rings of smooth real curves,
reproduced in [*, Chap. V § 4], gives the necessary information.
This computatioh has been generalized in [Kq, II § 10] to smooth
curves over real closed fields. (The generalization seems to be
non trivial.) The arguments in [K, II § 11] then yield an affirma-
tive answer to Question 1 for connected smooth curves over arbi-

trary fields. One of my students works on singular curves, and



very likely Question 1 has an affirmative answer also for

these curves.

In all the cases described above it turned out to be
true for a real closure (8,p) of (X,6) that p is the only
signature of S, which implies the affirmative answer to Ques-
tion 1. If 2 is a upit in 8(X) -~ automatically true in the
curve case - +then moreover W(S) -!Z, and thus the signature
g:W(X) »Z can be identified with the natural map from W(X)
to W(S).

To prove Theorem 3 we need a supplement to the theory
of Witt rings developed in [*]. Let ©:Y » X be a finite etale
morphism with X an arbitraryvscheme, and let (E,B) be a
(symmetric) bilinear bundle over Y. The direct image my(Gy) is
a finite etale &y -algebra ¥ and ox (E) is a locally free
%¥-module of finite type. Since ¥ is a locally free Sy-module
of finite type, this implies that ewE is a locally free Oy-
module of finite type, i.e. a vector bundle over X. Let
Tr_:9 » 8y denote the regular trace associated with o ([sGa,
expost I, § 4] or [EGA, IV § 18.2], which is a linear form on

the vector burdle ¥ over X. The bilinear form
B:E Xy E --)SY

yields an #~bilinear form
(o d
B:cp*ExX onE > ¥

as follows: If Z is an open subset of X then o (E) = E(m'qz)



AC

and %(2) = 6(y '2). Put

B, = B 1y E(o~'2) x E(p™12) » 6(o'2).
©

We now introduce the symmetric fobilinear form
~
g (B) :im TrwoB : oeE Xy oE » 0y,

and we call the bilinear bundle (qpu(E), ®x(B)) over X the

direct image oy (E,B) of the bilinear bundle (E,B) under o.

If B is non degenerate then o4 (B) is again non degenerate.
This follows easily from the fact that the symmetric GX-bilinear

form

B:®l %y o » Oy,

defined by

B (u,v) = ‘I‘rm(uv)

for sections u and v of ¥ over some open set Z, is non degen-
erate since % is finite etale [loc.cit.]. Thus we obtain a
map

o :Bil(Y) - Bil(X)

from the set Bil(Y) of isomorphism classes of bilinear spaces

over Y to Bil(X). This map oy clearly is compatible with ortho-

gonal sums and thus induces an additive map
o :K Bil(Y) =+ K Bil(X).

{We use for this map and similar ones again the notation O - |

Assume now E is a bilinear space over Y and V is a subbundle



M

of E. Then gV is a subbundle of eE. Indeed, oxE/muV is
canonically isomorphic to ox (E/V) 8ince o is an affine

morphism. It is easily checked that
(W) = o (VH).

In particuler if V is a lagrangian of E, i.e. V* = V, then
oV is a lagrangian of exE. From this observation we learn
that the map @y from K Bil(Y) to K Bil(X) induces additive
meps gy :L(Y) » L(X) and e :W(I) » W(X), which we call the
transfer maps corresponding to o

We shall make use of the transfer map e :W(Y) - W(X).
This map sends the Witt class {E} of a space E over Y to the
Witt class im*E}. We also have, as-always, the ring homomorphism
o :W(X) » W(Y) which makes W(Y) an algebra over W(X). The map
ox :W(Y) » W(X) is now linear with respect to W(X) by the

following lemms.

Lemma 2, If E is a bilinear bundle over X and F a bilinear
bundle over Y then there exists a natural isomorphism from

the bilinear bundle oy (e*(E) ® F) onto the bilinear bundle
E 2 oxF. |

Proof, Let Z be an affine open subset of X. Then m‘“z 1s an

affine open subset of Y, and

w(z) = 6(0 '2).
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We have

2 (* (B) ® F)(2) = ¢*(E)(97'2) oy 5yFe 2) =
- (B e gyU(D) oy zyF(s D).
On the other hrand
(E & owF)(2) = E(2) ®g(5)F (o 2).

Now it is easily checked that the natural isomorphism from
the first 6(Z)-module onto the sgcond one is isometric with

respect to the bilinear forms given on both modules.

The following base change lemma is also easily verfied.

Lemms 2%, Consider a cartesian square
]
Y e Yy X!

(] o'

Xé-rX'

€

of schemes with o finite etale, hence also o' finite etale.
Then for E a hilinear bundle over Y there exists a natural
isomorphism

oia'*E = o* e E.
Assume now that o:Y » X is a finite etale morphism and
that X is divisorial.

Lemma 4, Let ¢ be a signature on X and assume that there exists

an element z of W(Y) with o(mez) # O. Then there exists a sig-
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nature vt on Y which extends ¢.

Proof, Let P denote the kernel of the homomorphism g:W(X) - Z.
According to [*, Chap.III] P is a minimal prime ideal of W(X).

For every w in W(X) with o* (w) = O we have
weon(z) = ox(g*(w)ez) =0

according to Lemma 2. Applying o we learn that o(w) = O. Thus
P contains the kernel of the ring homomorphism d%:W(X) -» W(Y).
By general commutative algebra this implies that there existé
a minimal prime ideal Q of W(Y) lying over P with respect to .

We have an injection

‘% = WX)/P - W(Y)/Q.

Thus by the prime ideal theory in [*, Chap. III] there exists
a unique signature T of Y with kernel Q. It is immediately veri-

fied that r extends o with respect to o.

Let ¢ be a fixed signature on X and let Sign(e,0) denote
the set of all signatures of Y which extend ¢ with respect to o.
Our proof of Theorem 3 will drop out from a study of "transfer

formulas" for g.

Definition 2. A transfer formula for ¢ and o is a map

n:Sign(w,0) -» Z such that n(r) = O for finitely many T in

Sign(w,s) and

o (2) = ¥ n(r)r(2)
Tlo
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for all z in W(Y). Here the sum is taken over all r in
Sign(e,s) with the convention that the sum is zéro of

Sign(yp,0) is empty.

Remark. We shall see below that actually Sign(ew,s) is

always a finite set.

Lemma 5, For given ¢ and ¢ there exists at most one transfer

formula.

Proof Assume n and n' are different transfer formulas for

© and . We choose some T_ in Sign(w,0) with n(To) # n'(To).
Let M denote the finite set consisting of all r in Sign(e,o)
such that n(r) # 0 or n'(r) # O. For every 7 in M let P(r)
denote the kernel of T:W(Y) - Z. Since all these P(r) are
minimal prime ideals of W(Y) [loc.cit.] the intersection of
all P(r) with 7 in M, 1 # Té, is not contained in P(r ). Thus
we can find some z in W(Y) with .(2) # 0, but 7(z) = O for
all other v in M. Now evaluating goeus (z) using both transfer

formulas n and n' we arrive at the contradiction

n(r )7 (z) = n' (v )7 (2.

Theorem 5,(i) For given ¢ and ¢ there always exists a transfer
formula n. (ii) In this formula n(t) > O for every t in S(m,0).
In particular Sign(ep,0) is finite. (iii) If a:(S,p) » (X,0) is
a morphism with (S,p) real closed and S divisorial then for
any T in Sign(ew,g) the number n(t) is the cardinality of the
set of all morphisms from (S,p) to (Y,r) over (¥X,cq).
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Remark. For every pair (X,g) with X divisorial there exists
a morphism o as above. Indeed, by [*, Chap. V, § 1] we can find
such a morphism with S the spectrum of a real closed field. If

X is connected then of course we can choose a as a real closure

of (X,0).

To prove Theorem 5 we consider the situation described
in part (iii) of this theorem. According to Lemma 3 we have a

commutative diagram

W) —5 > w(y > S)

O o'x
LN

.. W) —& > W(s)
Thus for z in W(Y)
oo (2) = poa®orpe(2z) = poplea'(z).

Now Y xy S is the disjoint union of finitely many connected

schemes Zﬂ""’zt' Let g;:2; » Y » S denote the inclusion
morphism from Zi to Y g S and let

ay = 0-'°Sia P = (O"Si

be the components of a' and @' corresponding to Z; (1 € i < t).

The mi:Zi -+ 5 are finite coverings. We have

ct

! 1% = o . O . 0 e =
poioQ ’(Z) = I, ooy, g; a ‘(z)

1

t _
- T peogeal ().



Ab

Let i be a fixed index in [1,t]. If [Zi:S] > 1 then p can-
not extend to Z;, since (S,p) is real closed. Thus by Lemma 4
the corresponding summand peew;,ea;* (z) is zero. If [2;:8] = 1

)-1

then o, = (&; , as 1s easily verified, and we obtain

?ypn0t(2) = B1(2)

with Bi i= aiomzq. Now these Bi are precisely all morphisms

from S to Y over X. Thus
Goeope (2) = §p°B*(Z)

with B running through the finitely many morphisms from S to Y
over X. For every such B the signature p«B* of Y clearly ex-
tends o. We now define for t in Sign(w,0) the natural number
n(r) as the number of all B with peB* = r. Clearly n(r) = O
except for finitely many T, and as wé have Jjust seen

goe(z) = £ n(r)r(z)
tlo

for every z in W(Y). Keeping Lemma 5 in mind the assertions

(i) and (iii) of Theorem 5 are proved.

Let now 7 denote a fixed signature in Sign(o,s) and
choose some morphism BO:(S,p) - (Y,To) with (S,p) real closed
(cf. the remark above). Applying assertion (iii) of Theorem 5

to the morphism o := 9B  we see n(TO) > O. Thus also assertion

(ii) is proved.

We now deduce Theorem 3 from Theorem 5. Let (X,g) be a

pair with X a connected divisorial scheme, and let a:(S,p) -» (X,0)
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be a morphism with S divisorial and (S,p) real closed. Let
further o:(¥,r) » (X,0) be a covering. We consider the set

M of isomorphism classes of commutative diagrams

(Y,~)
Z/
. (z,%) o
. . N ¥
Y R %
(8,p) —> X,0)
a
with ¢ and hence ¥ & covering. If D and
(Y,7)
i X//
(Z/‘)Kq) (v
Pq Y N
\ Y
(S,O > (X,G)

a

are two such diagrams, then we say that Dq dominates D if
there exists a morphism X:(Z,,x,) - (Z,%) such that Aex, = X
and Aey, = Y. Since XA is an epimorphism this morphism A\ then
is uniquelj determined by D and Dq. Moreover we have

© = Yox = dohoxy = ¥, 0%,

hence tod = &1.

By this relation "D1 dominates D" our set T becomes

partially ordered. It is easily seen that this ordering is



A

inductive. Thus by Zorn's lemma there exists a maximal dia-

gram
(¥,1)
X
D : ¢
) (Z,x) ©
2 L
Y \\\\\\\
v

(8,p) >X,0)
a

Suppose ¥ is not an isomorphism. Then we can find a commutative

triangle

Y,
A

with A a finite covering of degree > 1. Let k, denote the

Za

A
Z
signature Toy} on Z,. Then Kjod* = Tox* = k. Thus we have a

commutative triangle

(Z4564)

Y

Al (Y,1)

(z:'n)L/X

By Theorem 5, applied to the covering l:(Zq,Kq) + (Z,k) and the
morphism y:(S,p) » (Z,x), there exists a morphism

v4:(8,0) » (Z,,k,;) with Xey, = y. We now have the commutative
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diagram

D, : (Z,5%4) 0
A
Y \"1
v
(8,69 —— (X,0)

with ¥, := ¥ehe This diagram Dq dominates D and is not iso-
morphic to D, in contradiction to the maximality of D. Thus

x must be an isomorphism. With B := x-qoy we have the commuta-
tive triangle

(Y,v)

A4
(S,p)———~a——> (X,0)

as wanted. Theorem 3 is proved.

For another proof of Theorem 3 in the special case that
also o is a covering see the paper [D] of A.Dress. In this
paper an axiomatic proof in the frame work of "Green functors"

is given.

The main tool in our proof of Theorem 3 are the transfer
maps ¢, for finite etale morphisms o®. It would be desirable to
have a good definition of the transfer map o, for more general

proper morphisms o. Up to now no such definition exisss. There
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seems to be no hope for such a definition for the functor W,

but reasonable maps ¢ might exist for the functor L.

Theorem 5 is valuable beside its use to prove Theorem 3.
Let @o:Y » X be a finite etale morphism, let ¢ be a signature
on X, and assume that X is divisorial. Inserting z = 1 into the
transfer formula we obtain
ol (1)) = £ n(r).
. Tlo
o(me (1)) is mere concretely the value of ¢ on the bilinear
space (¥,8) with B the bilinear form induced by Trm as described

above. By an spplication of the corollary in [*, Chap. V, § 1]

it is easily verified that

oo (1)) < [Y:X].

Thus ¢ has at most [Y:X] extensions to Y.

If we have enough information about the "multiplicities”
n(r) Theorem 5 yields a quantitative extension theory for signa-
tures with respect to finite etale morphisms. It has been shown
in [K,II § 8] that if X is the spectrum of a semilocal ring then
all multiplicities n(1) = 1. This implies for a:(S,p) » (X,0) a
real closure that S has no automorphisms over X except the iden~

tity - a well known fact in the field case - since p is the only

signature of S.

If X is a curve over P then n(r) may attain arbitrary large

values, cf. [K, II § 11].
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