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We present a solution to the sign problem in dynamical randommatrix simulations of a two-matrix model

at nonzero chemical potential. The sign problem, caused by the complex fermion determinants, is solved by

gathering the matrices into subsets, whose sums of determinants are real and positive even though their

cardinality only grows linearlywith thematrix size. A detailed proof of this positivity theorem is given for an

arbitrary number of fermion flavors. We performed importance sampling Monte Carlo simulations to

compute the chiral condensate and the quark number density for varying chemical potential and volume.The

statistical errors on the results only show amild dependence on thematrix size and chemical potential, which

confirms the absence of sign problem in the subset method. This strongly contrasts with the exponential

growth of the statistical error in standard reweightingmethods, whichwas also analyzed quantitatively using

the subset method. Finally, we show how the method elegantly resolves the Silver Blaze puzzle in the

microscopic limit of the matrix model, where it is equivalent to QCD.
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I. INTRODUCTION

Our knowledge about QCD at finite baryon density
is scarce, mainly because dynamical simulations at non-
zero chemical potential are severely hindered by the sign
problem; see Ref. [1] for a review. The problem arises
because the fermion determinant becomes complex and
can no longer be included in the probabilistic weight
in importance sampling methods. At small chemical po-
tential the problem is mild and can be circumvented
with methods, like reweighting, Taylor expansions, and
analytic continuation from imaginary to real chemical
potential [1]. The cost of these methods typically grows
exponentially with the volume and the chemical potential,
such that they quickly become unusable. For some
specific models, tailor-made approaches were proposed
that weaken or sometimes even solve the sign problem
[2–6].

Because of the equivalence between QCD in the
"-regime and the microscopic limit of chiral random ma-
trix theory (RMT) [7–9], useful spectral information about
the Dirac operator in QCD can be gained from RMT, both
at zero and nonzero chemical potential. RMT models for
QCD at finite density where proposed by Stephanov [10]
and Osborn [11]. These models not only allow the compu-
tation of the densities of complex eigenvalues of the Dirac
operator [11–13], which were successfully verified in
quenched lattice simulations [14–16], but they also enable
the study of the average phase of the fermion determinant
[17–21], which characterizes the severity of the sign prob-
lem in dynamical simulations. Moreover, the relation be-
tween the strongly oscillating spectrum, the sign problem,
and the chiral condensate at nonzero chemical potential
was investigated, and a new mechanism was proposed to
explain chiral symmetry breaking at finite chemical poten-
tial, which fundamentally differs from the Banks-Casher

solution at zero chemical potential [22,23]. At the same
time this mechanism solves the Silver Blaze puzzle [24], as
subtle cancellations ensure that thermodynamic observ-
ables are independent of the chemical potential below the
nuclear matter threshold.
The aim of our work was to develop an importance

sampling Monte Carlo method to simulate the dynamical
partition function of random matrices, without using addi-
tional analytical input. One of the motivations is to learn
from numerical solutions to the sign problem in simpler
models to make progress in the solution of the sign problem
in QCD.
We herein give a detailed report of a subset solution to

the sign problem in dynamical simulations of the two-
matrix model of Osborn at nonzero chemical potential
[11], which we first proposed in an earlier letter [25]. The
principal feature of the method is the construction of sub-
sets of matrices that have real and positive weights, but
whose cardinality only grows linearly with the volume.
This positivity was stated in the initial letter and its proof
is given in full herein.
The positive weights allow the use of importance sam-

pling to construct a Markov chain of subsets, distributed
according to the random matrix partition function. These
subset samples were used to compute observables, like the
chiral condensate and the average quark number density.
The errors on the measurements clearly show that the new
method is free of the sign problem. This strongly contrasts
with the results of standard reweightingmethods, where the
exponential blowup of the errors clearly signals the exis-
tence of the sign problem and leads to the failure of these
methods.
Interestingly, the statistical error on the average reweight-

ing factors, which drives the sign problem in the reweight-
ing methods, is a quantity that can also be computed
using the subset method. This allowed for a quantitative
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determination of their exponential increase and for a com-
parison of various reweighting schemes.

We further illustrate that the subset method remains
efficient in the parameter region where large oscillations
in the Dirac spectrum are crucial to getting the correct
value for the chiral condensate [22,23]. Moreover, we show
how the subset method resolves the Silver Blaze puzzle in
the microscopic limit of the RMT model, where it is
equivalent to QCD in the "-regime.

Other approaches based on partial integrations or sum-
mations were considered in Refs. [26–30].

This paper is composed as follows: In Sec. II we intro-
duce the random matrix model. In Sec. III we present the
subset method and give the positivity theorem, which
allows for its use in Monte Carlo simulations. In Sec. IV
we compare the numerical results for the chiral condensate
and the quark number density obtained with the subset
method and with standard reweighting methods, and ex-
plicitly compute the reweighting factors occurring in the
latter. In Sec. V we discuss some implications of the
positivity relation and show how the subset method resolves
the Silver Blaze puzzle in the microscopic limit of RMT.
Finally, we conclude in Sec. VI. In the Appendix we give a
proof of the positivity theorem, details on the numerical
implementation, an overview of reweighting, and some
analytical RMT formulas. We also show how the Silver
Blaze can be realized away from the microscopic limit.

II. RANDOM MATRIX MODEL

In the two-matrix model of Osborn [11] the complex
matrices�1 and�2 of dimension ðN þ �Þ � N are distrib-
uted according to the unquenched partition function

Z¼
Z
d�1d�2wð�1Þwð�2Þ

YNf

f¼1

detDð�1;�2;�;mfÞ; (1)

where the integration is performed over the real and imagi-
nary parts of all matrix entries. The weights consist of a
Gaussian part and a fermionic part originating from the Nf

dynamical quarks with masses mf. Each random matrix

has a Gaussian weight

wð�iÞ ¼ ð�N=�ÞNðNþ�Þ expð��N tr�y
i �iÞ; (2)

where � 2 Rþ, and we will adopt the convention � ¼ 1 to
conform with the standard discussions of this random
matrix model. An alternative choice for � will be briefly
discussed in Sec. V. Each fermion flavor contributes to the
partition function with the determinant of its Dirac opera-
tor, which in this two-matrix model is given by

Dð�1; �2;�;mÞ ¼ m i�1 þ��2

i�y
1 þ��y

2 m

� �
; (3)

for a fermion of mass m at chemical potential � (D has �
zero modes for m ¼ 0, where � � 0 without loss of gen-
erality). In the presence of a chemical potential the fermion
determinant becomes complex, such that the fermion

weights can no longer be included in the probability
distribution used in importance sampling Monte Carlo
simulations. Standard solution methods used to circumvent
this issue typically suffer from the sign problem, as the
work needed to make reliable measurements on the statis-
tical ensemble grows exponentially with the volume [1].

III. SUBSET METHOD

Below we present a method, first introduced in Ref. [25],
which avoids the sign problem in dynamical simulations of
random matrices. The main idea is to gather matrices into
subsets that have net real and positive weights in the
partition function (1).
The subsets are constructed as follows: For any configu-

ration � ¼ ð�1; �2Þ we consider a set of configurations

�ð�Þ ¼
�
�ð�; �nÞ: �n ¼ �n

Ns

^ n ¼ 0; . . . ; Ns � 1

�
; (4)

where �ð�; �nÞ ¼ ðc 1; c 2Þ are orthogonal rotations of
the seed configuration � defined as

c 1

c 2

 !
� cos� sin�

� sin� cos�

 !
�1

�2

 !
: (5)

The initial motivation leading to the construction of the
subsets using orthogonal rotations can be found in
Ref. [25]. The product wðc 1Þwðc 2Þ is independent of �
under the orthogonal rotation (5), such that all the configu-
rations in a subset � have the same Gaussian weight,
which we denote as Wð�Þ.
The random matrix partition function (1) can then be

rewritten as an equivalent integral over subsets � defined
in (4), such that

Z ¼
Z

d�Wð�Þ��ð�;mÞ; (6)

where the fermionic subset weight, for Nf degenerate

quarks of mass m, is given by the sum of complex deter-
minants,

��ð�;mÞ ¼ XNs�1

n¼0

detNfDð�n;�;mÞ; (7)

with �n � �ð�;�nÞ 2 �. The subset partition function
(6) is equivalent to the randommatrix partition function (1)
as each configuration � ¼ ð�1; �2Þ of the random matrix
ensemble can be used as seed of the corresponding subset
�ð�Þ, defined in Eq. (4), and the set of all subsets forms an
Ns-fold covering of the original random matrix ensemble.
The success of the method is based on the following

positivity theorem: For any� constructed according to (4),
and for arbitrary �< 1 and mass m, the fermionic subset
weight ��ð�;mÞ defined in (7), i.e., the sum of fermionic
determinants of theNs configurations�ð�;�nÞ, is real and
positive if Ns > NfN.
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This theorem immediately follows from the identity

��ð�;mÞ ¼ ð1��2ÞNfðNþ�=2Þ��

0
@0; mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1��2
p

1
A; (8)

which holds for any � and m if Ns > NfN and relates the

fermionic subsetweight at chemical potential� andmassm
to the subset weight at zero chemical potential and effective

mass m� ¼ m=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

p
. When looking at the right-hand

side of Eq. (8), we observe that for zero chemical potential
and mass m� 2 R the Dirac matrix generically has � real

eigenvalues m� and N complex conjugate pairs m� � {�

with � 2 Rþ, such that its determinant is positive. Hence,
this right-hand side is real and positive for�< 1, and so too
will be the subset weight ��ð�;mÞ on the left-hand side.
For �> 1 the effective mass becomes imaginary and the
subset weights are no longer guaranteed to be of definite
sign altogether. In the limitm ¼ 0 (and � ¼ 0 as the deter-
minant is zero otherwise) the relation becomes

��ð�; 0Þ ¼ ð1��2ÞNfN��ð0; 0Þ; (9)

for any �, which is the equation given in Ref. [25]. In that
first publication an inequality was given for the casem � 0,
which is now replaced by the general identity (8).

Note that for� ¼ 1 Eq. (9) yields ��ð1; 0Þ ¼ 0, i.e., the
sumof determinants exactly vanishes for� ¼ 1 andm ¼ 0.
This corresponds to maximal non-Hermiticity, where the
average phase factor and the partition function are exactly
zero, and the sign problem is maximal when using tradi-
tional solution methods. For nonzero mass, the limit of

Eq. (8) for � ! 1 is lim�!1��ð�;mÞ ¼ Nsm
Nfð2Nþ�Þ and

all the subsets in the partition function have identical
fermionic weights, even though their Gaussian weights
Wð�Þ will vary.

The detailed proofs of the identities (8) and (9) are given
in Appendix A.

The positivity implies that the subset weights
Wð�Þ��ð�;mÞ can be used to generate subsets of random
matrices using importance sampling methods like the
Metropolis algorithm. As Ns has to be larger than NfN

to ensure positivity, it will be set to its optimal, i.e., small-
est possible, value in the simulations, Ns ¼ NfN þ 1.

Using a sample of NMC subsets �k, k ¼ 1 . . .NMC, the
expectation value of an observableO in the RMTensemble
is approximated by the sample average

hOi � �O ¼ 1

NMC

XNMC

k¼1

hOi�k
; (10)

where the subset measurement is defined as

hOi� � 1

��

XNs�1

n¼0

detNfDð�nÞOð�nÞ; (11)

with�n 2 � and h1i� ¼ 1, and we omit the arguments �
and m from now on when no confusion is possible. The

subset measurement is a modified subset average, which
takes into account that the subsets are generated with a
fermionic weight ��, while the individual matrices ought
to be weighed by their respective Dirac determinants. In
the simulations reported below, the subset weights and
subset measurements were computed exhaustively, i.e.,
the determinants of all Ns configurations in the subset
were evaluated numerically and used in Eqs. (7) and (11).

IV. NUMERICAL RESULTS

A. Chiral condensate and quark number density

We applied the subset method to compute the chiral
condensate and the quark number density in the random
matrix ensemble, which are given by

� � 1

2N

@ logZ

@m
¼
�
1

2N
trD�1

�
; (12)

and

n � 1

2N

@ logZ

@�
¼
�
1

2N
tr

�
0 �2

�y
2 0

� �
D�1

	�
; (13)

respectively, following the derivation in Appendix B.
Using the block structure of the Dirac matrix (3) more

efficient formulas can be derived for the numerical evalu-
ation of the fermion determinant, the chiral condensate,
and the quark number density, which are are given in
Eqs. (B3), (B8), and (B10), respectively.
The simulations use the Metropolis algorithm to gener-

ate subsets � according to their statistical weights
Wð�Þ��. To compute the fermionic subset weights ��

the determinants of the Ns matrices in the subset are
evaluated numerically and accumulated. It is important to
emphasize that, even though the complex determinants
fluctuate strongly when the chemical potential and volume
increase, there is no sign problem in the computation of the
individual subset weights ��, as all Ns contributing deter-
minants are added and no statistical sampling is used. The
subset weights are computed in a numerical1 but determi-
nistic way.
The statistical sampling comes in when the successive

subsets are generated in the Markov chain. This happens as
follows: Start with a randomly chosen seed configuration
and construct the corresponding set �0 using Eq. (4).
Assume now that the Markov chain has reached a subset
�t at Monte Carlo time t, then randomly choose a con-
figuration in the current subset, generate a new configura-
tion by making a random step on each matrix entry,
construct the subset corresponding to this new seed con-
figuration, and apply an accept-reject step to the newly
proposed subset to generate the subset�tþ1. This stepping

1This contrasts with some other partial resummation/integra-
tion methods, where partial sums/integrals in the partition func-
tion are evaluated analytically, and only the integral over the
remaining degrees of freedom is sampled numerically.
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procedure is repeated until we have generated a large
enough sample to perform the desired measurement.

In our simulations, we generated NMC ¼ 100; 000 sub-
sets in each Markov chain, after equilibration was reached.
The expectation value of an observable is evaluated by
making a sample average of subset measurements, as
prescribed in Eqs. (10) and (11). Each individual subset
measurement is computed as a deterministic sum over Ns

contributions. The quantities that fluctuate statistically
during the Monte Carlo sampling are the subset measure-
ments (11). Successive measurements in the Markov chain
are correlated and the number of independent measure-
ments is smaller by a factor 2	, where 	 is the integrated
autocorrelation time. The statistical errors on the measure-
ments are determined using the standard error formula
corrected for these autocorrelations.

To compare the subset methodwith standard reweighting
methods, described in Appendix C, the simulations were
repeated using quenched, phase-quenched, �-quenched,
and sign-quenched reweighting, which are all expected to
suffer from the sign problem [21]. In reweighting methods,
observables are computed using the ratio (C2), where both
numerator and denominator decrease exponentially with
increasing volume. The exponential increase of the work
comes from the need to compute these exponentially small
numbers from a statistical sampling of largely canceling
contributions. The reweighting factors, i.e., the denomina-
tors in Eq. (C2), will be discussed further in Sec. IVC.
For the simulations with reweighting methods, we used
NMC � Ns random matrices in the Markov chains, such
that the total number of generated matrices is the same as

in the subset method. For the sake of clarity, we only show
the results of phase-quenched reweighting in the figures
below, as its results are representative for the various re-
weighting schemes.
We performed simulations with one dynamical fer-

mion, i.e., Nf¼1, of mass m¼0:1=2N and matrix sizes

N¼2;...;34. The mass was chosen to be small with respect
to the magnitude of the smallest eigenvalue, to ensure that
dynamical effects are important.
We measured the chiral condensate given by Eq. (12).

These results were first presented in Ref. [25]. In Fig. 1 the
condensate is shown as a function of the chemical potential
for matrices with sizes N ¼ 2, 4, 8. We compare the results
obtained using the subset method with those from phase-
quenched reweighting and with the analytical results of
Eq. (D3). The data, displayed in the top row, show that the
reweighting method fails for smaller and smaller �2 as the
matrix size increases, due to the sign problem. This
strongly contrasts with the results of the subset method
that are reliable up to much larger values of �2 and agree
with the analytical predictions.
The corresponding relative statistical errors are shown in

the bottom row. At very small �, when the sign problem is
not yet tangible, the error on the condensate is somewhat
smaller for the reweighting method than for the subset
method. This is easily explained by noting that at � ¼ 0
the determinants are all real and positive, such that
importance sampling can be performed on the random
matrices themselves. Sampling the partition function using
subsets is then evidently somewhat less efficient. This
feature persists for small, nonzero �, but very quickly
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FIG. 1 (color online). Chiral condensate � (top row) as a function of the chemical potential �2 for the subset method and the phase-
quenched reweighting method for N ¼ 2, 4, 8. The solid line shows the exact analytical result of Eq. (D3). The reweighting method
fails for ever smaller�2 when N grows (some data points are negative and are left out of the semilog plots). The corresponding relative
statistical error " is shown in the bottom row. The error for the reweighting method grows very rapidly and should only be trusted as
long as the method works (see top row).

JACQUES BLOCH PHYSICAL REVIEW D 86, 074505 (2012)

074505-4



the exponential growth of the error in the reweighting
method, caused by the sign problem, makes the method
unusable. At some value of � the error estimate becomes
meaningless, as the reweighting method completely fails.
However, for the subset method, the relative accuracy of
the measurements is nearly independent of the chemical
potential, which confirms the absence of a sign problem
and underscores the usefulness of the method.

We also studied how the relative statistical error on the
chiral condensate varies as a function of the matrix size N
for fixed values of �2, and we show this N dependence in
Fig. 2 for various values of�2. For a fixed number of subsets
the error in the subset method (top panel) increases approxi-

mately as
ffiffiffiffi
N

p
and is independent of � (the latter was

already observed in Fig. 1). If we fix the number ofmatrices,
rather than the number of subsets, the error will increase

with an additional factor
ffiffiffiffi
N

p
(as the subset size itself grows

with N þ 1), such that the overall relative error will grow
approximately linearly with N. Conversely, to achieve a
constant error the number of subsets would have to grow
proportionally to N, i.e., the total number of matrices
should approximately grow as N2. The bottom plot
shows the same quantity for phase-quenched reweighting

(on a semilog scale). We observe that the error grows
exponentially with N until the reweighting method fails
and the error is no longer reliable. Note that for both
methods the additional cost for the numerical computation
of the determinants is proportional to N3.
Using the same Monte Carlo algorithm we also com-

puted the quark number density given by Eq. (13). The
variation of the number density and its relative statistical
error as a function of the chemical potential are shown in
Fig. 3. The data in the top row confirm that the reweighting
method badly suffers from the sign problem as � and N
increase, while the subset method very nicely reproduces
the analytical predictions of Eq. (D4). In the bottom row
we observe that, for the reweighting method, the magni-
tude and variation of the error are very similar to that on the
chiral condensate and clearly signify a sign problem.
However, for the subset method, the behavior of the statis-
tical error not only confirms the absence of a sign problem,
but we observe that the relative error is much smaller than
in the case of the chiral condensate. Moreover, even at
small � the error of the subset method is three orders of
magnitude smaller than for the reweighting method, which
is a very different behavior than for the chiral condensate.
This surprising feature is due to the small variance of the
quark number density over the Markov chain. This small
variance can be understood from the results derived later in
Sec. VB, where we show that the subset measurement (11)
of the number density in this matrix model consists of a
constant term, which is identical for all subsets, and a
smaller term proportional to the chiral condensate; see
Eq. (27). The first term does not contribute to the variance,
such that the error on the number density is solely driven by
the error on the latter, which explains why it is so small.
From this we conclude that the quark number density in
this model is especially well sampled by the importance
sampling of subsets. The existence of subsets with large
constant contribution to the quark number density is an
interesting feature that could point to a possible search
direction in other theories suffering from the sign problem.
We also measured the quark number density as a func-

tion of the matrix size N using the subset method and show
the relative error on these measurements in Fig. 4, for a
fixed number of sampled subsets. Here again, we only
observe a mild dependence of the error on the matrix
size, which confirms that there is no sign problem in the
subset method.

B. Spectral decomposition of the chiral condensate

The spectral decomposition of the chiral condensate at
nonzero chemical potential is quite remarkable, and the
ability of the subset method to cope with this intricacy and
reproduce the correct results is yet another test for its
viability.
For this investigation we computed the variation of the

chiral condensate as a function of the quark mass for a
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FIG. 2 (color online). Relative error " on the chiral condensate
versus matrix size N for various values of chemical potential
�2 ¼ 0:1, 0.2, 0.3, 0.4, 0.5. The top plot shows the results of the
subset method, for a fixed number of subsets. The full curve
"ðNÞ / ffiffiffiffi

N
p

serves to guide the eye. As a comparison, the bottom
plot shows the relative error for phase-quenched reweighting on a
semilog plot (the color coding for�2 is the same as in the top plot).
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fixed chemical potential, both in the dynamical case
(Nf ¼ 1), using the subset method, and in the quenched

case. The results are shown in Fig. 5. As was shown in
Refs. [22,23] the unquenched chiral condensate has a very
different spectral decomposition depending whether the
quark mass is outside or inside the cloud of complex eigen-
values of theDirac operator, which has awidth of about 2�2

[13]. In Fig. 6 we show typical spectral densities of the
Dirac operator as the mass moves from outside to inside the
eigenvalue spectrum. When the mass is outside this cloud,
the dynamical spectrum of the Dirac operator is almost
identical to that of the quenched case (see left panel of
Fig. 6) and the dynamical chiral condensate should be
very close to its quenched value. This is confirmed in
Fig. 5, where we observe that both curves fall together

when m * 2�2. When the quark mass enters the cloud of
eigenvalues the quenched chiral condensate steadily drops
to zero. However, as can be seen in Fig. 5, the dynamical
chiral condensate does not follow this trend and remains
large all the way down to microscopically small masses.
This peculiar behaviorwas explained inRef. [23] by thevery
large oscillations that emerge in the unquenched eigenvalue
spectrum at z ¼ �m when the mass enters the cloud of
eigenvalues; see the spectral densities plotted in Fig. 6.
Subtle cancellations in these large spectral fluctuations com-
pensate for the decline in the quenched contribution such
that the dynamical chiral condensate remains largewhen the
quark mass is inside the cloud of eigenvalues.
Although these cancellations were computed analyti-

cally in Ref. [23], it seemed unlikely that the dynamical

-30

-25

-20

-15

-10

-5

 0

 5

 0  0.2  0.4  0.6  0.8  1

n

µ2

N=2

subsets
pq-rew

exact
-30

-25

-20

-15

-10

-5

 0

 5

 0  0.2  0.4  0.6  0.8  1

n

µ2

N=4

subsets
pq-rew

exact
-30

-25

-20

-15

-10

-5

 0

 5

 0  0.2  0.4  0.6  0.8  1

n

µ2

N=8

subsets
pq-rew

exact

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0  0.2  0.4  0.6  0.8  1

ε

µ2

N=2

subsets
pq-rew

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0  0.2  0.4  0.6  0.8  1

ε

µ2

N=4

subsets
pq-rew

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0  0.2  0.4  0.6  0.8  1

ε

µ2

N=8

subsets
pq-rew

FIG. 3 (color online). Quark number density n (top row) as a function of the chemical potential �2 for the subset method and the
phase-quenched reweighting method for N ¼ 2, 4, 8. The solid line shows the analytical result of Eq. (D4). Again, the reweighting
method fails for ever smaller �2 when N grows. The corresponding relative statistical error " is shown in the bottom row. The error for
the reweighting method grows very rapidly and should only be trusted as long as the method works (see top row).
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chiral condensate could be determined to a good accuracy
through numerical simulations, at least not in the region
where the cancellations are important, as this is exactly
where simulations are hampered by the sign problem [22].
Nevertheless, Fig. 5 clearly shows that the subset method is
able to compute the chiral condensate accurately, even
in this critical parameter region. The figure illustrates
how the unquenched and quenched chiral condensates
move apart when the mass enters the cloud of eigenvalues:
The dynamical condensate remains large even though the
quenched value steadily decreases. The efficiency of the
subset method remains unaffected when the mass enters
the cloud of eigenvalues and large spectral fluctuations are
crucial to the determination of the chiral condensate. A
similar mechanism relating the spectral oscillations of the
baryon number Dirac operator to the quark number density
was recently uncovered [31].

C. Reweighting factors

Another quantity that is accessible to the subset method
is the average reweighting factor occurring in the denomi-
nator of the reweighting formula (C2). These reweighting
factors are important quantities in the study of the sign
problem in reweighting methods as they decrease expo-
nentially with increasing volume and chemical potential,
and give rise to the exponentially growing error on the
measurements.

The average reweighting factor for a target ensemble
with complex weight w simulated in an auxiliary ensemble
w0 is given by the expectation value hw=w0iw0

, see

Appendix C. The direct computation of this expectation
value in the auxiliary ensemble is obviously plagued by the
sign problem, as it is precisely at the origin of the problem.
However, this expectation value can be rewritten as

r �
�
w

w0

�
w0

¼
R
dxwðxÞR
dxw0ðxÞ ¼

��
w0

w

�
w

	�1
; (14)

which means that the reweighting factor in the auxiliary
ensemble can be computed as an inverse expectation
value in the unquenched ensemble. Although this cannot
be evaluated with standard methods, as the unquenched

ensemble has complex weights, it can easily be done using
the subset method.
The unquenched expectation value r�1 is then computed

as the sample average (10) of subset measurements (11)
of the inverse reweighting factor given by (assuming
that the auxiliary weight only modifies the fermionic part
of the action)

�
w0

w

�
�
¼ 1

��ð�;mÞ
XNs�1

n¼0

w0ð�nÞ: (15)

As the auxiliary weights w0 are real and positive, so are the
subset measurements (15). Hence, the sample averages
(10) do not involve any cancellations and the average
reweighting factor (14) can be efficiently determined by
the subset method without encountering a sign problem,
even though its value becomes exponentially small as the
volume increases.
This enables us to compute and compare the reweighting

factors for various reweighting schemes, which are sum-
marized in Table I and briefly described below:
(i) quenched: the configurations are generated by direct

sampling of the Gaussian weights; the average re-
weighting factor is the average fermion determinant
in the quenched ensemble;

(ii) phase-quenched: the auxiliary ensemble is gener-
ated using the magnitude of the complex determi-
nants; the average reweighting factor is the average
phase in that ensemble;

(iii) �-quenched or Glasgow scheme: the auxiliary en-
semble is generated at zero chemical potential; the
average reweighting factor is the average ratio of
the determinants at � and � ¼ 0 in that ensemble;

(iv) sign-quenched: the configurations are generated
according to the absolute value of the real part of
the determinant; the average reweighting factor is
the average sign of this real part in that ensemble.
This reweighting scheme minimizes the relative
variance of the reweighting factors [32]; see also
Refs. [21,33].

The aim of this measurement was to compute the re-
weighting factors for these four different schemes using the
subset method, as described in Eqs. (10) and (15), in order

FIG. 6 (color online). Spectral density 
ðxþ {yÞ of the Dirac operator for m ¼ 1:2, 0.4, 0.1 (from left to right) with �2 ¼ 0:6 and
N ¼ 16, computed using the formulas from Ref. [23]. For clarity, the height of the large oscillations was truncated in the figure.
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to verify and compare their exponential decrease when the
chemical potential and volume are increased.

First, we verified the accuracy of the method for two-
flavor (Nf ¼ 2) phase-quenched reweighting by compar-

ing the numerical data for the average reweighting factor
with the analytical predictions given in Appendix D 2. The
reweighting factor was computed using the subset method,
as explained above, and also directly in the auxiliary
ensemble. The agreement between the numerical and ana-
lytical data is illustrated in Fig. 7. The very rapid decrease
of the average phase factor is perfectly reproduced by the
simulation data of the subset method, while the direct
measurement in the phase-quenched ensemble fails be-
cause of the sign problem.

In general, the average reweighting factors in the various
reweighting schemes cannot be computed analytically.
However, the subset method allows us to access these
quantities numerically to good accuracy. We computed
the average reweighting factors (14) for the four schemes
listed in Table I for one flavor (Nf ¼ 1) and compare the

results in Fig. 8.
These data allow us to pinpoint the onset of the sign

problem in the phase-quenched reweighting scheme by
first locating the � values where the reweighting method
breaks down for the chiral condensate and quark number
density in Figs. 1 and 3, and then reading off the corre-
sponding reweighting factors for these � values in Fig. 8.
We find that the breakdown of the reweighting method, due
to the sign problem, occurs when the average reweighting
factor drops below � 0:01.
When comparing the four schemes in Fig. 8, we observe

that the Glasgow scheme has a somewhat larger reweight-
ing factor than the other schemes. Although this could
naively be interpreted as hinting at a weaker sign problem,
it is in reality only due to the fact that the magnitude of the
determinants increases with increasing �, such that the
values w=w0 sampled in the Glasgow scheme are larger in
magnitude than those in the other schemes. However, the
sign problem is not actually caused by the size of the
reweighting factor, but by its relative error, as it is the latter
that propagates to every observable through Eq. (C2). The
reweighting factor itself is only an indicator for the sign

TABLE I. We list the four reweighting schemes studied in this
paper. The auxiliary weights w0 are products of the Gaussian
weights and a fermionic part, given in the second column. The
corresponding reweighting factor for each configuration is given
in the third column. The fermion determinant is written as
detD ¼ Re{’.

Reweighting

scheme

Fermionic part

of w0

Reweighting

factor

quenched 1 detNfDð�Þ
phase-quenched RNf expð{Nf’Þ
�-quenched detNfDð0Þ detNfDð�Þ=detNfDð0Þ
sign-quenched jRedetNfDð�Þj sgnRedetNfDð�Þ
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FIG. 7 (color online). Average two-fermion phase he2{�ipq versus chemical potential in the Nf ¼ 2 phase-quenched ensemble for
m ¼ 0:1=2N and N ¼ 2, 4, 8. The results of the subset method (blue bullets) agree with the exact result of Eq. (D6) (solid line), while
the direct measurement in the phase-quenched ensemble (red squares) clearly suffers from the sign problem.
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problem, because an exponentially small value tells us that
huge cancellations must take place. To describe the expo-
nential problem quantitatively one has to compute the
relative error "r on the average reweighting factor,

"r ¼
ffiffiffiffiffiffiffiffiffiffi
2	

NMC

s
�r

r
; (16)

where

�2
r ¼

�ðRewÞ2
w2

0

�
w0

� r2; (17)

is the variance of the reweighting factor in the auxiliary
ensemble. The variance involves the second moment of
(the real part of) the reweighting factor, which can either
be computed directly in the auxiliary ensemble, without
encountering a sign problem, or can be computed using the
subset method after rewriting it as

M2 �
�ðRewÞ2

w2
0

�
w0

¼ r

�
Rew

w0

�
Rew

: (18)

In Fig. 9 we show the standard deviation �r on the re-
weighting factor for the four reweighting schemes, where
the second momentM2 is either computed using the subset
method or directly in the auxiliary ensemble (the reweight-
ing factor r is always computed with the subset method).
We observe that the standard deviation is computed more
accurately when M2 is directly calculated in the auxiliary
ensemble, except for the �-quenched ensemble where the
subset method is much more accurate. Note that the latter
ensemble is the only one where the standard deviation on
the reweighting factor substantially grows with increasing
chemical potential and volume.
We nowmerge the results of Figs. 8 and 9 to compute the

relative standard deviation �r=r, which is proportional to
the standard error "r of Eq. (16). In Fig. 10 we compare
�r=r for the four different reweighting schemes. The
exponential problem becomes immediately clear, as the
explosive growth of �r=r with increasing � and N has to
be compensated in simulations by sampling an exponen-
tially large number of configurations to reach an acceptable
accuracy for these reweighting schemes. The figure shows
that, as expected, sign-quenched reweighting is doing
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slightly better than the other schemes [32], even though it
is closely followed by the phase-quenched scheme. For
practical purposes the differences are, however, not really
relevant as all reweighting schemes encounter the sign
problem very early on. It is also interesting to note that
the quenched reweighting scheme is not really outper-
formed, as we can generate uncorrelated random matrices
by direct sampling of the Gaussian weights (this is specific
to random matrices, as the matrix entries are distributed
independently). For the other schemes we use the
Metropolis algorithm to generate the configurations in
the auxiliary ensemble such that autocorrelations have to
be taken into account. The somewhat larger relative vari-
ance in the quenched scheme can then be compensated by
the larger number of independent configurations generated
for the same amount of work. On the other hand, the study
shows that the Glasgow scheme performs worse than the
other schemes.

The quantitative analysis in this section confirmed that
the sign problem is strong in all four reweighting schemes,
and reliable numerical results can much better be obtained
with the subset method, as seen in Sec. IVA.

D. Remark on the markov chain construction

In our simulations we computed the fermionic subset
weights ��ð�;mÞ by evaluating and adding up the Ns

complex determinants at nonzero �. As an alternative,
the Markov chain of subsets can be constructed by using
the analytic formula (8) to compute the sampling weights
��ð�;mÞ from ��ð0; m�Þ. In this case one evaluates and

sums up the fermionic determinants at� ¼ 0 and effective

mass m� ¼ m=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

p
and multiplies the sum with the

suppression factor ð1��2ÞNfðNþ�=2Þ. This sum only in-
volves positive real numbers such that no cancellations
take place. The exponential smallness of the weights at
large � and N comes entirely from the suppression factor,
which is computed explicitly. As this factor is common to
all subsets, it will drop out when taking ratios of proba-
bilities in the Metropolis algorithm, such that it plays no
role when generating the relevant subsets of the ensemble.
This implies that the relevant subsets at chemical potential
� and mass m are the same as those at � ¼ 0, albeit at a

different, effective mass m�. Moreover, the relevant sub-

sets are independent of � in the massless case.
Note that this only concerns the Markov chain construc-

tion. The subset measurements (11) still require the deter-
minants at the simulated � and m, such that the simulation
time will increase when using this alternative way to con-
struct the Markov chain, as the Ns determinants have to be
computed both at zero and nonzero chemical potential
(the latter can be restricted to the independent subsets in
the Markov chain if the autocorrelation times are known).

V. DISCUSSION

A. Thermodynamic observables

In this section we will see that Eq. (8) allows us to
derive some interesting relations for the thermodynamical
observables.
For this, we first observe that the relation (8) for the

subset weights percolates straightforwardly to the partition
function, such that

ZNf
ð�;mÞ ¼ ð1��2ÞNfðNþ�=2ÞZNf

ð0;m�Þ: (19)

This relation agrees with the analytical expression for the
partition functions derived using the method of orthogonal
polynomials [23,34].
Using Eq. (19) one can relate the chiral condensate

at � � 0 and � ¼ 0. The chiral condensate for Nf ¼ 1

is defined as

�ð�;mÞ � 1

2N

@

@m
logZ1ð�;mÞ; (20)

and using Eq. (19) this can be rewritten as

�ð�;mÞ ¼ 1

2N

@

@m
logZ1ð0;m�Þ

¼ 1

2N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

p @

@m�

logZ1ð0;m�Þ ¼
�ð0;m�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

p ;

(21)

where we also used the chain rule and the definition of the
effective mass m�. This relation agrees with the analytical

formula (D3) for the chiral condensate.
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A similar derivation can be performed for the average
quark number density defined as (for Nf ¼ 1)

nð�;mÞ ¼ 1

2N

@

@�
logZ1ð�;mÞ: (22)

This can be rewritten using Eq. (19) as

nð�;mÞ ¼ �
�
1þ �

2N

�
�

1��2
þ 1

2N

@

@�
logZ1ð0;m�Þ

¼ � �

1��2

�
1þ �

2N
�m�

2N

@

@m�

logZ1ð0;m�Þ
	

¼ � �

1��2

�
1þ �

2N
�m��ð0;m�Þ

	

¼ � �

1��2

�
1þ �

2N
�m�ð�;mÞ

	
; (23)

where we also used the definition ofm�, the chain rule, and

Eqs. (20) and (21). The quark number density can thus be
written as a sum of its massless value and a correction term
proportional to the quark condensate. This agrees with the
analytical formula (D4) for the number density.

An interesting point is that the relations between the
thermodynamic quantities at nonzero and zero chemical
potential can also be derived at the subset level. For this,
we note that for a thermodynamic observable hOi ¼
@ logZ=@q, with q a fermionic parameter, Eq. (6) yields

hOi ¼ 1

Z

Z
d�Wð�Þ @

@q
��ð�;mÞ

¼ 1

Z

Z
d�Wð�Þ��ð�;mÞ @

@q
log��ð�;mÞ: (24)

When the subsets are generated according to the sampling
weights Wð�Þ��, the subset measurements (11), needed
to compute the sample average Eq. (10), are now being
given by

hOi� ¼ @

@q
log��ð�;mÞ: (25)

We apply this formula to compute the individual subset
contributions to the chiral condensate (for Nf ¼ 1), and

find

��ð�;mÞ ¼ 1

2N

@

@m
log��ð�;mÞ ¼ ��ð0;m�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1��2
p ; (26)

where the derivation is analogous to that of Eq. (21).
Similarly we find that the contributions of the individual
subsets to the quark number density (for Nf ¼ 1) are

given by

n�ð�;mÞ ¼ 1

2N

@

@�
log��ð�;mÞ

¼ � �

1��2

�
1þ �

2N
�m��ð�;mÞ

	
; (27)

where we followed the same steps as in Eq. (23). The
subset relation (27) is important in the analysis of the
statistical error in Fig. 3. All subsets give a large common
contribution to the number density, which leads to a small
relative variance of the quark number density. Moreover,
for m ¼ 0 all subsets give the same contribution to n, and
the error on the measurement vanishes for the subset
method, i.e., in the massless case a single subset would
suffice to compute the correct number density. Note that
the large constant contribution to the quark number density
is a nontrivial feature of the subset construction, which
cannot be identified in the contributions of the individual
random matrices.

B. Microscopic limit and Silver Blaze puzzle

The equations derived above also show how the Silver
Blaze puzzle2 is resolved in the subset method. To be
equivalent to QCD the microscopic limit of RMT has to
be considered, where m̂ ¼ 2Nm and �̂2 ¼ 2N�2 are kept
fixed when N ! 1. In this limit Eqs. (21) and (23) lead to

�̂ð�̂; m̂Þ ¼ �̂ð0; m̂Þ and n̂ð�̂; m̂Þ ¼ 0; (28)

where we introduced the microscopic limits

f̂ð�̂; m̂Þ ¼ lim
N!1fð�̂=

ffiffiffiffiffiffiffi
2N

p
; m̂=2NÞ: (29)

The chiral condensate and the quark number density are
thus independent of the chemical potential in the micro-
scopic limit of RMT. Even more, following Eqs. (26) and
(27) we observe that the contribution from each individual
subset to the thermodynamic quantities is independent of
� in the microscopic limit, such that the Silver Blaze
puzzle is in fact already resolved at the subset level.
Note that the prefactor in (8) generates an exponential

factor in the microscopic limit of the RMT partition func-
tion, as

lim
N!1ð1��2ÞNfN ¼ lim

N!1

�
1� �̂2

2N

�
NfN ¼ exp

�
�Nf�̂

2

2

�
:

(30)

Interestingly, this exponential factor is already generated
within each subset individually as it originates from (8). In
the RMT model the free energy density is defined as

Fð�;mÞ ¼ � 1

2N
logZð�;mÞ; (31)

which also becomes independent of � in the microscopic
limit because

2The Silver Blaze puzzle in QCD refers to the fact that, at zero
temperature and for a chemical potential less than approximately
one third of the nucleon mass, the free energy and the thermo-
dynamical observables are independent of � [24].
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F̂ð�̂; m̂Þ ¼ lim
N!1

Nf�̂
2

4N
þ F̂ð0; m̂Þ ¼ F̂ð0; m̂Þ; (32)

where we used Eqs. (19) and (30). Although the factor (30)
does not occur in the partition function of chiral perturba-
tion theory and is an artifact of the randommatrix model, it
is not relevant when discussing its universal properties, as
it leaves the microscopic eigenvalue correlations un-
changed [31,35].

The subset method also allows a numerical investigation
of the convergence towards the microscopic limit, asN!1
with fixed microscopic parameters �̂ and m̂. This is illus-
trated in Fig. 11 where we plot the chiral condensate as a
function of the microscopic chemical potential �̂2 for
different values of N. As N increases the chiral condensate
converges to its microscopic limit given by Eq. (D5).

It is interesting to note that choosing �¼1��2 (assum-
ing � � 1) from the onset in the Gaussian weights (2) not
only gets rid of the spurious factor (30) but also makes the
partition function independent of the chemical potential.
This was proven using the method of orthogonal polyno-
mials in Ref. [11], but it also directly follows from the
subset relation (8) as is shown in Appendix E. This modi-
fication has the salient feature that the Silver Blaze is then
satisfied for any N, even away from the microscopic limit.
The � independence of Z does not, however, alleviate the
sign problem of the model, as the fermion determinants
still exhibit huge fluctuations when the quark mass enters
the cloud of eigenvalues. In fact, we know that these large
oscillations are essential to resolving the Silver Blaze
puzzle at large chemical potential. The efficacy of the
subset method to solve the sign problem remains intact
as this choice of �merely cancels the prefactor in (19) and
rescales the fermion mass [see Eq. (E3)]. The results for
this � can easily be related to those previously computed
with � ¼ 1, and therefore we will not present explicit
numerical results for this alternative choice. One observa-
tion is that the constant contribution to the quark number
density (27), which becomes large far from the micro-
scopic limit, will cancel out in this case. However, even

though their results differ at finite N, both values of � yield
the same universal limit.

VI. CONCLUSIONS

In this paper we have presented a solution to the sign
problem in dynamical simulations of the two-matrix model
of Osborn at finite chemical potential. The random matri-
ces are gathered into subsets, which have real and positive
fermionic weights while their cardinality only grows line-
arly with the matrix size. A detailed proof of the positivity
theorem for the subset weights was given.
The positive subset weights make it possible to sample

the partition function with an importance sampling
Monte Carlo method and generate a Markov chain of sub-
sets. As the chemical potential and the matrix size increase,
the weights of the subsets rapidly decrease, but without
causing a sign problem in the simulations. In contrast to
standard reweighting methods the large cancellations, in-
herent to simulations at real chemical potential, do not
happen through statistical sampling of the ensemble but
are confined inside the subsets, where the weights and
measurements are computed in a deterministic way from
a small number of contributions. The ensuing subset mea-
surements, which are used to compute the sample averages,
do not suffer from large statistical fluctuations so that the
standard error on the simulation result is well under control.
The method was used to compute the chiral condensate

and quark number density accurately over a large parame-
ter range, showing that the subset method has no sign
problem, even in regions where the reweighting methods
are unusable. The method is especially well suited to
compute the quark number density in this model, as the
statistical error on this quantity is extremely small, which
was understood from analytical considerations.
The subset method also enabled us to compute the

reweighting factors, appearing in the standard reweighting
methods, and their relative standard errors. This explicitly
revealed the exponential increase in the work required by
these reweighting methods, signaling the presence of the
sign problem.
We also showed how the positivity relation resolves the

Silver Blaze puzzle in the microscopic limit of the random
matrix model, where it is equivalent with QCD, and how
this mechanism already works at the subset level.
The important question whether the subset method

can be applied to physical systems and ultimately to
QCD itself has not yet been answered and is the focus of
current research.
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FIG. 11 (color online). Chiral condensate � versus micro-
scopic chemical potential �̂2 for m̂ ¼ 0:1 and increasing values
of N. As N gets larger the numerical results converge towards the
analytical microscopic value of Eq. (D5).
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APPENDIX A: PROOF OF THE
POSITIVITY THEOREM

In this appendix we prove the positivity theorem for the
subset weights, which is at the basis of the subset method.
We first prove the massless relation (9) for a single fer-
mion, before extending it to an arbitrary number of Nf

massless fermions. Consequently we generalize the iden-
tity to the massive case and prove relation (8), first for one
massive fermion and finally for Nf fermions with degen-

erate mass m.

1. One massless fermion

Using its block structure, the determinant of the Dirac
matrix (3) for a massless fermion, with � ¼ 0 or neglecting
the zero modes, is given by (see Appendix B)

detD�ð�Þ ¼ detQ�ð�Þ; (A1)

where we introduce, for brevity, D� � Dð�ð�; �ÞÞ for a
rotated configuration �ð�; �Þ ¼ ðc 1; c 2Þ defined in
Eq. (5), and Q� ¼ �BA is an N � N matrix with

A ¼ {c 1 þ�c 2 B ¼ {c y
1 þ�c y

2 : (A2)

When expanding the product in Q� we find

Q�ð�Þ¼ c y
1 c 1��2c y

2 c 2� {�ðc y
1 c 2þc y

2 c 1Þ; (A3)

and after substituting the definition (5) this becomes

Q�ð�Þ ¼ ðcos2� aþ sin2� bþ sin� cos� cÞ
��2ðsin2� aþ cos2� b� sin� cos� cÞ
� {�ððcos2�� sin2�Þcþ 2 sin� cos� ðb� aÞÞ;

(A4)

with the N � N matrices a ¼ �y
1�1, b ¼ �y

2�2, and

c ¼ �y
1�2 þ�y

2�1. After gathering the terms in a, b,
and c this can be rewritten as

Q�ð�Þ ¼ faaþ fbbþ fcc; (A5)

with

fa ¼ cos2���2sin2�þ 2{� cos� sin�

fb ¼ sin2���2cos2�� 2{� cos� sin�

fc ¼ ð1þ�2Þ sin� cos�� {�ðcos2�� sin2�Þ;
(A6)

which, interestingly, can be further simplified to

fa ¼ ðcos�þ {� sin�Þ2 fb ¼ ðsin�� {� cos�Þ2
fc ¼ ðcos�þ {� sin�Þðsin�� {� cos�Þ: (A7)

Using the Leibniz formula for determinants, Eq. (A1)
can be written as

detD�ð�Þ ¼ XN
i1;i2;���;iN¼1

"i1;i2;���;{NQ1i1Q2i2 � � �QNiN ; (A8)

where "i1;i2;���;{N is the antisymmetric Levi-Civita symbol

and Qij are the entries of Q�. Each term in the sum is a

product of N matrix components, which, according to
Eq. (A5), can be written as Qij ¼ faaij þ fbbij þ fccij.

The coefficients fa, fb, and fc, given in (A7), are functions
of � and �, which are independent of the indices i and j.
After expanding all the products in (A8) and gathering
terms with equal powers of fa, fb, and fc, the determinant
can be written as

detD�ð�Þ ¼ XN
i;j¼0

tNijð�;�ÞHN
ijða; b; cÞ; (A9)

where

tNijð�; �Þ � fiaf
j
bf

N�i�j
c (A10)

and HN
ijða; b; cÞ is a sum of signed products, each contain-

ing i, j, and N � i� j components of the matrices a, b,
and c, respectively, which is implicitly defined by identi-
fying Eqs. (A8) and (A9). The � and � dependence of the
determinant (A9) is completely contained in the coeffi-
cients tNij defined in Eq. (A10). Using Eq. (A7) these

coefficients can be simplified to

tNijð�;�Þ ¼ ðsin�� {� cos�Þ�ðcos�þ {� sin�Þ�; (A11)

where � ¼ N � iþ j and � ¼ N þ i� j, and thus
�þ � ¼ 2N with 0 � �;� � 2N.
To prove the conjecture (9) it is sufficient to prove that

the identity holds term by term in the formula (A9), i.e,X
�

tNijð�; �Þ ¼ ð1��2ÞNX
�

tNijð0; �Þ; (A12)

for all 0 � i; j � N, where we denoted the subset summa-
tion as

X
�

fð�Þ � XNs�1

n¼0

fðn�=NsÞ; (A13)

with the subset � defined in Eq. (4).
To prove Eq. (A12) we first convert the trigonometric

functions in Eq. (A11) into complex exponentials using

cos� ¼ e{� þ e�{�

2
; sin� ¼ e{� � e�{�

2{
; (A14)

which leads to

tNijð�;�Þ ¼ ð�{Þ�
22N

½ð1þ�Þe{� � ð1��Þe�{�	�

� ½ð1þ�Þe{� þ ð1��Þe�{�	�: (A15)

We apply the binomial formula to expand both powers and
find
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tNijð�;�Þ ¼ {�

22N
X�
k¼0

X�
‘¼0

ð�Þk �

k

 !
�

‘

 !
ð1þ�Þkþ‘

� ð1��Þ2N�k�‘e2{ðkþ‘�NÞ�; (A16)

where we also used that �þ � ¼ 2N. The � dependence
of Eq. (A16) is completely contained in the exponential
function and its subset sum (A13) is

S� � X
�

e2{q� ¼ XNs�1

n¼0

e2�{
qn
Ns ; (A17)

where q � kþ ‘� N is an integer 2 ½�N;N	. S� is a
sum over the qth powers of all the Nsth roots of unity.
It can be computed by writing it as a geometric series,

S� ¼ XNs�1

n¼0

ðe2�{ qNsÞn: (A18)

We distinguish two cases, depending whether q=Ns is an

integer or not. For q=Ns =2 Zwe have e2�{q=Ns � 1, and the
sum of the geometric series is

S� ¼ 1� e2�{q

1� e2�{
q
Ns

¼ 0; (A19)

which vanishes as q is an integer by definition. If

q=Ns 2 Z then e2�{q=Ns ¼ 1 and the sum (A18) can be
computed explicitly,

S� ¼ Ns: (A20)

If we take Ns > N, the ratio q=Ns will be a noninteger

and S� zero for all q, except for q ¼ 0, as q is an integer
varying from �N to N. Hence, when summing Eq. (A16)
over the subset, only terms for which kþ ‘ ¼ N will
survive. After considering both cases � _ �, the subset
sum can be written asX

�

tNijð�; �Þ ¼ ð1��2ÞN!ij; (A21)

where

!ij ¼ Ns

22N
ð{sgn�ÞN� XN�

k¼0

ð�Þk N�
k

� �
Nþ

N � k

� �
(A22)

with N� ¼ N � j�j and � ¼ i� j.
As !ij is independent of �, Eq. (A21) immediately

implies thatX
�

tNijð�; �Þ ¼ ð1��2ÞNX
�

tNijð0; �Þ: (A23)

Because this relation holds for any i and j in Eq. (A9), it
also holds for the sum over these indices, which proves the
conjecture (9) for Nf ¼ 1, i.e.,X

�

detD�ð�Þ ¼ ð1��2ÞNX
�

detD�ð0Þ: (A24)

2. Nf massless fermions

To extend the theorem to Nf > 1, the determinant (A9)

has to be multiplied Nf times so that many more terms are

generated. Nevertheless, after exponentiation the global
structure of the fermionic weight remains similar to that
of Eq. (A9) and can be written as the following linear
combination:

det NfD�ð�Þ ¼ XNfN

i;j¼0

t
NfN
ij ð�;�ÞĤNfN

ij ða; b; cÞ; (A25)

where t
NfN
ij is defined in Eq. (A10) and the implicitly

defined function Ĥ only depends on the components of
the matrices a, b, and c, which were defined right after
Eq. (A4). The remainder of the proof is identical to that for
Nf ¼ 1withN replaced byNfN, which eventually leads toX

�

t
NfN
ij ð�; �Þ ¼ ð1��2ÞNNf

X
�

t
NfN
ij ð0; �Þ: (A26)

Together with Eq. (A25) this proves the conjecture (9) for
arbitrary Nf:X

�

detNfD�ð�Þ ¼ ð1��2ÞNfN
X
�

detNfD�ð0Þ: (A27)

3. One massive fermion

For the massive case we use the determinant block
formula (B3),

detD�ð�;mÞ ¼ m� detQ�ð�;mÞ; (A28)

with Q� ¼ m2 � BA, and A and B defined in Eq. (A2). To
prove the conjecture (8) for Nf ¼ 1we first study detQ�. If

we repeat the steps leading to Eq. (A5) we now find

Q�ð�;mÞ ¼ m2 þ faaþ fbbþ fcc; (A29)

where fa, fb, and fc are defined in (A7). After using the
Leibniz formula (A8) and expanding all the products, as we
did before when deriving Eq. (A9) for the massless case,
we now find

detQ�ð�;mÞ¼ XN
h;i;j¼0

tN�h
ij ð�;�Þm2h ~HN�h

i;j ða;b;cÞ; (A30)

where tN�h
ij is defined in (A10) and contains the full � and

� dependence, while ~H is implicitly defined by (A30) and
depends on the components of the matrices a, b, and c. We
can repeat the whole argument of Sec. A 1 on the subset
sum of the t coefficients, after replacing N by N � h. In
analogy to (A23) this leads toX

�

tN�h
ij ð�;�Þ ¼ ð1��2ÞN�h

X
�

tN�h
ij ð0; �Þ: (A31)

This identity still depends on the summation index h, and
after substitution in the subset sum of (A30) we find
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X
�

detQ�ð�;mÞ ¼ X
�

XN
h;i;j¼0

tN�h
ij ð�; �Þm2h ~HN�h

i;j ða; b; cÞ

¼ ð1��2ÞNX
�

XN
h;i;j¼0

tN�h
ij ð0; �Þ

� m2h

ð1��2Þh
~HN�h
i;j ða; b; cÞ

¼ ð1��2ÞNX
�

detQ�

0
@0; mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1��2
p

1
A;
(A32)

where the last equation is easily derived by inspection,

after setting � ¼ 0 and replacing m by m=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

p
in

Eq. (A30). After multiplying Eq. (A32) with m� and using
Eq. (A28), we find

X
�

detD�ð�;mÞ¼ ð1��2ÞNm�
X
�

detQ�

0
@0; mffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1��2
p

1
A

¼ð1��2ÞNþ�=2
X
�

detD�

0
@0; mffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1��2
p

1
A:
(A33)

This proves the conjecture (8) for Nf ¼ 1: In the massive

case the fermionic subset weight at chemical potential� and
mass m is related to the weight at � ¼ 0 and effective mass

m=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

p
. Note that for �> 1 the effective mass on the

right-hand side becomes imaginary, and the subset weights,
although still real, can be either positive or negative, without
having a definite sign. Therefore, importance sampling of
subsets can only be used for �< 1, which is the relevant
region when relating the random matrix model to QCD.

4. Nf massive fermions

The proof in the previous section can be generalized to
an arbitrary number of degenerate flavors, in exactly the
same way as was done in Sec. A 2 for the massless case.
Equation (A32) is then replaced by

X
�

detNfQ�ð�;mÞ¼ ð1��2ÞNfN
X
�

detNfQ�

0
@0; mffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1��2
p

1
A;

(A34)

and after multiplying with mNf� and using Eq. (A28), we
finally findX
�

detNfD�ð�;mÞ

¼ ð1��2ÞNfðNþ�=2ÞX
�

detNfD�

0
@0; mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1��2
p

1
A; (A35)

which proves the conjecture (8) for arbitrary Nf.

APPENDIX B: IMPLEMENTATION

Below we describe the numerical implementation of the
computation of the determinant, chiral condensate, and
quark number density. We write the Dirac matrix (3) as

D ¼ mNþ� A
B mN

� �
; (B1)

where A¼ {�1þ��2 is an ðNþ�Þ�N matrix, B¼ {�y
1 þ

��y
2 is N�ðNþ�Þ, andmN ¼ diagðm . . .mÞ is a diagonal

N � N matrix.
a. Determinant. It is well known that the determinant of

such a block matrix can be computed as

detD ¼ det½mNþ�	 det½mN � Bm�1
Nþ�A	 (B2)

whenm � 0. Note that this product of determinants cannot
be merged as their arguments have different dimensions.
This can be simplified to

detD ¼ m� detQ; (B3)

where we defined

Q � m2
N � BA: (B4)

Note that the factor m� is reminiscent of the � exact zero
modes of the massless Dirac matrix. In the massless case
the determinant simplifies to

detD ¼ det½�BA	; (B5)

for � ¼ 0 (or for � � 0 if we neglect the zero modes).
Numerically, detQ was computed using an LU factoriza-
tion, as this is more efficient and accurate than using a full
diagonalization.
b. Chiral condensate. The chiral condensate is given by

(for Nf ¼ 1)

� ¼ 1

2N

@ logZ

@m
¼ 1

2N

1

Z

Z
�

@ detD

@m

¼ 1

2N

1

Z

Z
�
detD tr

�
@D

@m
D�1

	

¼ 1

2N

1

Z

Z
�
detD trD�1 ¼

�
1

2N
trD�1

�
; (B6)

where we denoted
R
� � R

d�1d�2wð�1Þwð�2Þ. The in-

verse of D can be computed efficiently using its block
structure, which yields

D�1 ¼
1
m ð1Nþ� þ AQ�1BÞ �AQ�1

�Q�1B mQ�1

� �
: (B7)

This formula is easily verified as DD�1 ¼ 1. When taking
the trace of Eq. (B7) to compute (B6) this can be further
simplified as

SUBSET SOLUTION TO THE SIGN PROBLEM IN RANDOM . . . PHYSICAL REVIEW D 86, 074505 (2012)

074505-15



� ¼ 1

2N

�
tr

�
1

m
ð1Nþ� þ AQ�1BÞ

	
þ tr½mQ�1	

�

¼ 1

2Nm
hN þ �þ tr½ðm2 þ BAÞQ�1	i

¼ 1

2Nm
hN þ �þ tr½ð2m2 �QÞQ�1	i

¼ �

2Nm
þm

N
htrQ�1i; (B8)

where we also used the definition (B4) of Q. The term
�=2Nm originates from the zero modes of the massless
operator and is sometimes omitted. The inverseQ�1 can be
computed using the LU factorization of Q, which is al-
ready available from the evaluation of detQ.

c. Quark number density. The average quark number
density is given by (for Nf ¼ 1)

n ¼ 1

2N

@ logZ

@�
¼ 1

2N

1

Z

Z
�

@ detD

@�

¼ 1

2N

1

Z

Z
�
detD tr

�
@D

@�
D�1

	

¼ 1

2N

1

Z

Z
�
detD tr

�
0 �2

�y
2 0

� �
D�1

	

¼
�
1

2N
tr

�
0 �2

�y
2 0

� �
D�1

	�
: (B9)

Using the block-inverse (B7) this simplifies to

n ¼ � 1

2N
htr½ð�y

2Aþ B�2ÞQ�1	i: (B10)

APPENDIX C: REWEIGHTING

Reweighting methods can be used to perform
Monte Carlo simulations when the weights are complex
and the ensemble cannot be directly sampled with impor-
tance sampling.

The ensemble average of an observable yðxÞ in an en-
semble with weights wðxÞ is defined by

hyiw ¼
R
dxwðxÞyðxÞR
dxwðxÞ : (C1)

In the reweighting method one introduces an auxiliary
ensemble with weights w0ðxÞ and rewrites the previous
equation as

hyiw ¼
R
dxw0ðxÞ wðxÞ

w0ðxÞ yðxÞR
dxw0ðxÞ wðxÞ

w0ðxÞ
¼ hww0

yiw0

hww0
iw0

: (C2)

If the weights w0 are chosen to be real and positive, the
auxiliary ensemble can be sampled using importance sam-
pling methods and the ratio of expectation values in
Eq. (C2) can be evaluated in a Monte Carlo simulation.
Typical examples for w0 are the quenched, phase-
quenched, �-quenched, and sign-quenched ensembles.

Reweighting methods typically suffer from an overlap
problem, when the relevant configurations in the target and
auxiliary ensembles do not coincide. More importantly,
when the target weight is nonpositive one encounters the
sign problem, as the work needed to make reliable mea-
surements on the statistical ensemble grows exponentially
with volume and chemical potential because it involves the
computation of exponentially small reweighting factors
hw=w0iw0

from a statistical sampling of largely canceling

contributions [1].

APPENDIX D: SOME ANALYTICAL RESULTS

In order to verify some of our simulation data, we quote
a couple of known analytical results.

1. Nf ¼ 1 observables

The Nf ¼ 1 partition function Z1 can be expressed in

terms of orthogonal polynomials as [23,34]

Z1ð�;mÞ
Z0

¼ m�

�
1��2

N

�
N
N!L�

N

�
� Nm2

1��2

�
; (D1)

where L�
N are generalized Laguerre polynomials of order �

and degree N. Their derivatives are given by

d

dz
L�
NðzÞ ¼ �L�þ1

N�1ðzÞ; (D2)

such that the chiral condensate (20) is given by [23]

�ð�;mÞ ¼ �

2Nm
þ m

1��2

L�þ1
N�1



� Nm2

1��2

�
L�
N



� Nm2

1��2

� : (D3)

The quark number density (22) can be computed analo-
gously, yielding

nð�;mÞ¼� �

1��2

2
41� m2

1��2

L�þ1
N�1



� Nm2

1��2

�
L�
N



� Nm2

1��2

�
3
5: (D4)

In the microscopic limit, where m̂ ¼ 2Nm and
�̂2 ¼ 2N�2 are kept fixed while taking N ! 1, the chiral
condensate (D3) and quark number density (D4) become

�̂ð�̂; m̂Þ ¼ I0�ðm̂Þ
I�ðm̂Þ and n̂ð�̂; m̂Þ ¼ 0; (D5)

where I� is a modified Bessel function.

2. Phase-quenched reweighting factor for Nf ¼ 2

The reweighting factor, i.e., the denominator in the
reweighting formula (C2), in the phase-quenched re-
weighting scheme is nothing but the average phase of the
fermion determinant in the phase-quenched ensemble and
can be computed analytically for Nf ¼ 2. This average

phase can be written as [18]
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he2{�ipq ¼
hdet2DiNf¼0

hj detDj2iNf¼0

: (D6)

Both numerator and denominator are quenched expecta-
tion values of products of characteristic polynomials and
their complex conjugates, which can be computed analyti-
cally using the method of orthogonal polynomials [34].
For random matrices of size N and topology � this yields

hdet2DiNf¼0 ¼ 1

2m
det

p�
Nðm;�Þ p�

Nþ1ðm;�Þ
@mp

�
Nðm;�Þ @mp

�
Nþ1ðm;�Þ

 !

(D7)

and

hj detDj2iNf¼0 ¼ r�Nð�ÞXN
k¼0

jp�
k ðm;�Þj2
r�k ð�Þ ; (D8)

with orthogonal polynomials

p�
k ðz;�Þ ¼

�
1��2

N

�
k
k!L�

k

�
� Nz2

1��2

�
(D9)

and normalization factors

r�k ð�Þ ¼ 1

N2kþ�þ2
��2ð1þ�2Þ2kþ�k!ðkþ �Þ!: (D10)

Substitution of Eqs. (D7) and (D8) in Eq. (D6) yields the
average phase in the phase-quenched ensemble.

APPENDIX E: SILVER BLAZE AT FINITE N

Below we show that the partition function (1) can be
made independent of � with a judicious choice of � in the
Gaussian weights (2). For arbitrary � 2 Rþ we rescale
the matrices in (1) using �0

i ¼ ffiffiffiffi
�

p
�i, such that

Z ¼ C
Z

d�0
1d�

0
2 exp½�Nðtr�0y

1 �
0
1 þ tr�0y

2 �
0
2Þ	

� YNf

f¼1

detDð�0
1=

ffiffiffiffi
�

p
; �0

2=
ffiffiffiffi
�

p
;�;mfÞ; (E1)

where C ¼ ðN=�Þ2NðNþ�Þ and we also took into account
the Jacobian of the transformation. The � dependence has
thus been shifted from the Gaussian weights to the Dirac
matrix, and the partition function now looks like a conven-
tional � ¼ 1 partition function, albeit with a modified
Dirac matrix. From the structure of the Dirac matrix (3)
we see that the scaling of the fields can be shifted to the
mass, as

Dð�0
1=

ffiffiffiffi
�

p
;�0

2=
ffiffiffiffi
�

p
;�;mfÞ¼ 1ffiffiffiffi

�
p Dð�0

1;�
0
2;�;

ffiffiffiffi
�

p
mÞ: (E2)

Recalling that the Dirac matrix has dimension 2N þ �, the
partition function becomes

Z ¼ C
Z

d�0
1d�

0
2 exp½�Nðtr�0y

1 �
0
1 þ tr�0y

2 �
0
2Þ	

� ��Nfð2Nþ�Þ=2 YNf

f¼1

detDð�0
1; �

0
2;�;

ffiffiffiffi
�

p
mfÞ: (E3)

We now look at the subset sum (7) of fermion determinants
for Nf degenerate quarks in the partition function (E3).

Using the relation (8) we find that these fermionic subset
weights satisfy

��Nfð2Nþ�Þ=2��ð�;
ffiffiffiffi
�

p
mÞ

¼
�
1��2

�

�
NfðNþ�=2Þ

��

0
@0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

1��2

s
m

1
A: (E4)

Clearly, if we choose � ¼ 1��2 (assuming � � 1) the
right-hand side of (E4) is independent of�. From Eq. (E3)
we can then immediately conclude that Eq. (19) is now
replaced by

ZNf
ð�;mÞ ¼ ZNf

ð0;mÞ; (E5)

such that the Silver Blaze is not only satisfied in the micro-
scopic limit, but also for any finite N away from it.
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