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Diquark condensation and the quark-quark interaction
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We employ a bispinor gap equation to study superfluidity at nonzero chemical potgntifl, in two- and
three-color QCD, exploring the gap’s sensitivity to the nature of the quark-quark interaction. The two-color
theory, QGD, is an excellent exemplar; the order of truncation of the quark-quark scattering kehasl no
qualitative impact, which allows a straightforward elucidation of the effecjs when the coupling is strong.

In the three-color theory the rainbow-ladder truncation admits diquark bound states, a defect that is eliminated
by an improvement oK. The corrected gap equation describes a superfluid phase that is semiquantitatively
similar to that obtained using the rainbow truncation. A model study suggests that the width of the superfluid
gap and the transition point in QD provide reliable quantitative estimates of those quantities in QCD.
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PACS numbeps): 12.38.Mh, 24.85t+p, 12.38.Lg, 11.10.St

I. INTRODUCTION =0 where all studies indicate that QCD with two light fla-

vors exhibits a chiral symmetry restoring transitiéaq)

In the application of Dyson-Schwinger equatiofif] —0, atT=150 MeV. However, it may be discernible in the
(DSE9 extensive use has been made of models based on tleere of dense astrophysical objef3, which could undergo
rainbow-ladder truncation, with contemporary variafgy  a transition to superfluid quark matter as they cool, and in
providing improved links with QCD. This truncation is also baryon-density-rich heavy ion collisions at the BNL
implicit in the class of model field theories with four-fermion Alternating Gradient SynchrotrofAGS) and CERN Super
interactions, such as the Nambu—Jona-LasialL) model ~ roton SynchrotroiiSPS [10]. An exploration of this pos-

[3] and the global color moddH], which have been used §ibi|ity using numerical simulatior]s of lattice QCD is inhib-
successfully in describing aspects of the strong interactio lted by the absence df) a gauge-independent order param-

. . . "eter for the superfluid phase afid) a satisfactory procedure
Such models admit the constructifl of a meson-diquark - ¢or the numerical estimation of an integral with a complex

auxiliary-field effective action, which is important in devel- nmeasure, such as the#0 QCD partition function. Conse-
oping an understanding of nucleons using the relativistiqquently all the nonperturbative information we have comes
Faddeev equatiof6]. In addition, it is immediately apparent from models.

that the action’s steepest-descent equations admit the possi- The rainbow-ladder truncation has the feature and defect
bility of diquark condensation, i.e., quark-quark Cooper pair-that it generates a quark-quark scattering ketethat is

ing, and that was first explored using a simple version of theurely attractive in the color antitriplet channel.3lt there-

NJL model[7]. _ . fore not only yields a 3 scalar diquark condensate but also
A nonzero chemical potentigh#0 promotes Cooper 3 giquark bound statefl1], i.e., hitherto unobserved col-

pairing in fermion systems, and earlier and independent ofaq quark-quark bound states with maséesGeV) [12]:
these developments in QCD phenomenology, the possibility "

that it is exhibited in quark matter was considef&8l using mip_o:=0.74, m‘{3=0.95, m39:1.5= m‘ig. (1)

the rainbow-ladder truncation of the gap equation. Interest in ) us

this possibility has been renewg@l]. A quark-quark Cooper (us=ds diquarks are also bound, e.gn,;=0.88. Color-
pair is a composite boson with both electric and color chargeSextet bound states do not exist becakise purely repulsive
and hence superfluidity in quark matter entails supercondudn this channel, even in rainbow-ladder truncatfdd].) All
tivity and color superconductivity. However, the last featuremodels employed to date in the analysis of quark matter
makes it difficult to identify an order parameter that canSuperfluidity have this defe¢13], and we are primarily con-
characterize a transition to the superfluid phase: the Coop&€ermed with the question of whether any model or truncation
pair is gauge dependent and an order parameter is ideal 'th such a flawed representation of th? quark-qua.rlg inter=
describable by a gauge-invariant operator. ction can be a reliable tool for exploring superfluidity in

Determining the T, ) phase diagram of QCD is an im- quark matter au<1 GeV, i.e., in the nonperturbative do-

'’ ; ; main. In addressing this issue, it is important to compare
portant goal. AL, ) =0 there is a quark-antiquark conden- QGC,D with QCD because the same mechanism that provides

sate(qq)#0, but it is undermined by increasiigand u,  for the absence of diquark bound states in the lattest
and there is a domain of thel'(u) plane for which(qq)  guarantee their existence in @, where the diquark is the
=0. IncreasingT also opposes Cooper pairing. However, baryon of the theory. In fact, it must ensure that flavor-
since increasing. promotes it, there may be(bow-T, large-  nonsingletJ®= * mesons are degenerate wilfi diquarks
) subdomain in which quark matter exists in a superfluid[14].

phase. That domain may not be accessible at the Relativistic In Sec. Il we describe a bispinor DSgap equatiohthat
Heavy lon Collider(RHIC), which will concentrate oru is particularly useful for studying quark and diquark conden-
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sation and, in Sec. Ill, employ it in the general analysis of D(p,u)="Dy(p,u)
QGC,D and also to obtain quantitative results from a peda-

gogical model. In Sec. IV we focus on QCD, and employ the 2a1(p,p) 2P, p)
m(_)del’s_analogue to exemplify the gap equation and its so- * YaS1d—po) ¥4 CS1(—p,w)CH’
lution in rainbow truncation, and also when a

1/N.-suppressed dressed-ladder vertex correction is in- (7)

cluded. We summarize and conclude in Sec. V. . .
where, in the absence of a diquark source term,

Il. GAP EQUATION Do(p,)=(iy-p+m)7o—pu 73, 8

A direct means of determining whether a $N.) gauge

theory supports 0 diquark condensation is to study the gap with m the current-quark mass. Here we have introduced

equation satisfied By additional Pauli matrices {r5,¢=0,1,23 with °
=diag(1,1), which act on the bispinor indices. The structure
D(p,p):=S(p,p) * of Eij(p,,u). specifies the theory and, in practice, also the
_ . approximation or truncation of it.
- D(p, ) Al(p,u) YsNA @
—Al(p,—u) ysA\  CD(—p,u)'CT lil. TWO COLORS
; _ - As an important and instructive first example we consider
here, with =pstip, . ) i . o
W W@ =Pa s QC,D. In this special casa'\\\=A72 in Eq. (2) and it is
D(p, ) =i ;/ 5A(52,w[2m)+i74 0L C(ﬁz,w[zﬂ]) useful to employ a modified bispinor
+B(p%wl,), 3 ( a09 )
X):= , 9
i A A Q=] g, r2q(x) ©
INA,i=1,...n5, n.'=N(N.—1)/2} are the antisymmet- - -
ric generators of SUNc), andC=y,7, is the charge con- yith Q, the obvious analog of Eq(6), so that the
Jugation matrix: Lagrangian’s fermion-gauge-boson interaction term is sim-
ply
Cy,C'=~y,[C,ys]=0. 4
— [
Using the gap equation to study superfluidity makes unnec- Q2(x) EQV#TETOQ Q2(x) A(x) (10

essary a truncated bosonization, which in all but the simplest

models is a procedure difficult to improve systematically. ) o s 1o =
In addition to the usual color, Dirac, and isospin indicesPecause SH2) is pseudoreal, i.erg(—7¢) '7c=7c, and the

carried by the elements @(p, »), the explicit matrix struc- fundamental and conjugate representations are equivalent.
ture in Eq.(2) exhibits the quark bispinor index and is made

with reference to A. Zero chemical potential
The gap equation at arbitrary order in the systematic,
_ q(x) Ward-Takahashi identity preserving truncation scheme of
Q(x):= q(x):= TfZCET ’ ®) Ref.[15] is readily derived. Fop=0, C=A in Eq. (3), all
- the functions in the dressed-bispinor propa%;ator are real and
O(x)=(q(x) qx):=q" C T?), © the rainbow truncation yields the gap equation
. . d'q
where{7;:i=1,2,3 are Pauli matrices that act on the isos- D(p)=iy-p+ m+f 297D, (p—q)
pin index. Herein we only consider two-flavor theories (2m)
SU;(N;=2), becauséN; does not affect the question at the Tlé T‘é
core of our study, and focus oh=0, since nonzerd can X YMES(Q) Yoy (11

only act to eliminate a condensate. A nonzero quark conden-

sate(qq);&o is represented in the solution of the gap equa, solve Eq.(11) we consider a generalizatida7] of Eq.
tion by B(p 2 (u )70 while diquark condensation is char- (2),
acterized byA'(p p,)sso for at least oné.

The bispinor DSE can be written in the form D(p)=iy-p A(p?)+WV(—m) M(p?), (12
YIn our Euclidean formulation{y, ,y,}=26,,, yﬂ Yur P-Q ’Renormalization is straightforward, evena# 0 [16]; however,
—EI 1PiGi, and th[ Y5V, ¥, Yp Yol = —4 €uipo» €123~ 1. since it is not relevant to our central theme, we neglect it here.
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_ 5 D L the string tension in Q4D is nonzero, and that is represented
W "):eXp{ ! 75,21 T m(p )] === " (13 implicitly in Eqg. (20) via the mass scalg. Further, a simple
extension of the model has been used efficaciou9y20 as
where {T123= r‘é@% T4= T%D@th), T5= ré@ T?}, {Ti'Tj} a heuristic tool for the analysis of QQD a}t nonzemo 4 ).
—261. s0 that The mass of the model'$=1 composites is a useful refer-
ence scale and, fan=0 in rainbow-ladder truncation,

_ —iy-pAR?) + U@ M(p?)

14 mZ_,=13 52 (22)
p2A%(p?)+ M¥(p?) o e
_ ) 5 m;_, is weakly dependent om, changing by<2% onm
==ly-poy(p?)+Um) os(p?). (19 £10,0.00 7, while adding 1N -suppressed vertex correc-

[ 7=(0,0,0,0;- $7) produces an inverse bispinor propagatortions produces an increase 6f10%[15].

with the simple form in Eq(2).]

For m(p?) =const, substituting Eq(12) into Eq. (11) B. Nonzero chemical potential
yields We now consider the.#0 gap equation and suppose a
. solution of the form
q
v-p[A(pz)—1]=—f 5 29°D,,(pP—q) D(p.)  vysA(p,w)
(27) D(p,p)= . - . (22
k K —ysA*(p,)  D(p,p)

Te 5 Te
Xy, —y- =, 16 ~
Yug v Ao@) v (18 e Do) defined i Eq (3) and B(p.),

:=C D(—p,u) C'. In the absenceof a diquark condensate;
d* i.e., forA=0
9°D,..(p—Q) ' ’
(2m*”

k Kk
T T
X h;cffs(qz) ?’u?c- (17)  which is a manifestation of baryon number conservation in

QGC,D.
It is clear from these equations that the gap equation in rain- The inverseS(p, 1) is sufficiently complicated that it pro-
bow truncation isindependendf 4 in the chiral limit. As ~ vides little insight directly. However, that can be obtained
this result is true order by order in the truncation scheme of'Sing Eq.(20), which yields an algebraic gap equation. Us-
Ref.[15], it is a general property of the complete fCgap  ing the rainbow truncation we find, @f=|p|?+ p3=0,
equation. Hence, if the interaction is strong enough to gen-
erate a mass gap, then that gap describes a five-parameter ~ A—1=13 72K {A(B*2—C*?u?)+A* |A|%}, (24
continuum of degenerate condensates,

M(pz)—mv(w)=f .
[Ug(@),D(p,u)]=0, Ug(a):=€27®", (23

_ Mo~
(QuV(m)Q,)#0, (18) n(C—=1)=2 n*K{C(B*?~C*2u?)—-C* |A[?},
and there are five associated Goldstone bosons: three pions, a (25
diquark, and an anti-diquark, which is a well-known conse-
quence of the Pauli-Ggey symmetry of QgD.
Form#0, it is clear from Eq(17) that the gap equation
requires tfo[ T'V]=0, i.e., in this case onlyQ,Q,)#0.
The Goldstone bosons are now massive but remain degene\z/(/-ith K—1=|B2— C2u?2+ 2| A|2(|B|2+|C|2u2) + |A |
ate. . These equations illustrate th&—A degeneracy described
The Landau gauge dressed-gauge-boson propagator is above for (n,u) =0, thatA is real for all x, and also the
K K action of u, enhancing the coupling in th& equation but
gzDP«V(k):( 8un— ﬂ) F(k?), (19 suppressing it foB, which is how an increasing promotes
k? diquark condensation at the expense of the quark condensate.
) For (m,u) =0 the rainbow gap equation is E(L1) and
and to exploreu# 0 we employ a pedagogical model for the \ith Eq. (20) the solution is
vacuum polarization in Q4D:

B—m= 7K {B (B*2—C*2u?)+B* [A|?}, (26)

A=7?K{A (|B]?+[C|?u?)+A |A[2}, (27)

c2

~ ~ 7
Fo(K?) =% 74 92 84(K). 20 n°—4p?, p?<—
2(k%) =75 Y (k) (20) Mz(pz)::Bz(pz)_l_Az(pz): p 4
This form was introduced18] for the modeling of confine- 0, otherwise,
ment in QCD. However, it is also appropriate here because (29
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) o 7 Ba(p5~%)=(0.20m;_1)*>B,(0). (36)
4 Therefore, the vacuum is unstable with respect to diquark
72 condensation for alk>0 and one has confinement and dy-

%( 1+ 1+ —7]2) , Otherwise. namical chiral symmetry breaking to arbitrarily large values.
P (29 Of course, we have ignored the possibility thats u dg—
pendent. In a more realistic model, thedependence of
The dynamically generated mass functioi(p®) is tied to  would be significant in the vicinity of.2:2=°  with 7—0 as

the existence of quark and/or diquark condensates and breags ., .. \hich would ensure deconfinzément and chiral sym-

chiral symmetry. Further, incombination with the metry restoration at largg.

momentum-dependent vector self-energy, it ensures that the . _ I
quark propagator does not have a Lehmann representation A#0 |n_Eq.(22) corresponds ter=(0,0,0,0; ) in Eq.
and hence can be interpreted as describing a confined quatk®), i-€..(Q2i y575Q2)#0, and although the.#0 theory is
[1]. The interplay between the scalar and vector self-energiei§variant under

is the key to realizing confinement in this wé®1], and is L

precluded in studies that discard the vector self-energy. Q,—Ug(a) Qy, Q,— Qs Ug(—a), (37)

For u# 0 and arbitraryp we solve the rainbow gap equa- o . . )
tion numerically, and determine whether quark or diquarkVhich is associated with baryon number conservation, the

A(p?)=C(p*)=

condensation is stable by evaluating diquark condensate breaks this symmetry:
5P=P(u,S[B=0A])~P(u,5[B,A=0]),  (30) (Qal 7575Q2) —c032a) (Qai 7575Q2)
where the pressure is calculated using a steepest-descent ap- —sin(2a) <62i ’}/57'(1?Q2>. (39

proximation[22]: )
Hence, for m=0,u#0), one Goldstone mode remains.

P[S]=—Trin[S]— 3 Tr[(D—Dy)S]. (32) For m#0 and small values of., the gap equation only

admits a solution withA=0; i.e., diquark condensation is

6P>0 indicates that diquark condensation is favored. blocked. However, with increasing a diquark condensate is
The calculation ofSP is facilitated by employing the generated; e.g., we find the following minimum chemical

u-dependent “bag constantg'17] potentials for diquark condensation:
Bg(p):=P(u,S[B,A=0])—P(u,S[B=0,A=0]), m=0.013m;_;=u*7*°=0.051m;_,,
(32)
m=0.13m;_;= x**%=0.092m;_;. (39

with B, () an obvious analog. They measure the stability of

a quark- or diquark-condensed vacuum relative to that with  |mproving on rainbow-ladder truncation may yield quan-
chiral symmetry realized in the Wigner-Weyl mode. Thetitative changes of20% in the illustrative results provided
(m, ) =0 degeneracy of the quark and diquark condensategy our model of QGD. However, the pseudoreality of

is manifest in QGC,D and the equal dimension of the color and bispinor

R spaces, which underly the theory’'s Paulir€y symmetry,

Bg(0)=B,(0)=(0.0927)*=(0.13m;_,)*. (33 ensure that the entire discussion remains qualitatively un-

changed. QCD, however, has two significant differences: the

Increasingu atm=0 and excluding diquark condensation dimension of the color space is greater than that of the bis-

one finds[19] chiral symmetry restoration at pinor space and the fundamental and conjugate representa-
A tions of the gauge group are not equivalent. The latter is of
M26A20=0.287; (34 obvious importance because it entails that the quark-quark

and quark-antiquark scattering matrices are qualitatively dif-
whenBg(u)=0; i.e., the pressures of the Wigner and quark-ferent.

condensed phases are equal. However,
IV. THREE COLORS

for all >0, SP>0, Ba(u)>0, (35 ) o o

In canvassing superfluidity in QCD we chooge\ )y
with =A\?in Eq. (2) so that
Dy(p, )P +Do(p,u) Py A(p, ) ysh?

D(p,u)= (40)

—A(p,— ) ys\? Dy(p,u)P+D . (p.u)P, /)’
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where PHZ ()\2)2, P, + P”=diag(1,1,1), andDH ,D,, 5” ,

D, are defined via obvious generalizations of E@, (3),
and(22). The evident, demarcated block structure makes ex-
plicit the bispinor index. Here each block is a<3 color
matrix and the subscript L indicate whether or not the
subspace is accessible Wa. The bispinors associated with
this representation are given in E@5) and(6), and in this £

£

case the Lagrangian’s quark-gluon interaction term is'g
N

010 F

YRy 0.05 -
Q(X)igl',Q(x)AL(x), ¢

1 a

SYVuN 0

ra :( 2 . T)_ (42)
0 _E’Y;L()\a)

It is again straightforward to derive the gap equation at arbi- °'°°0.0' T T e T ez T s
trary order in the truncation scheme of REE5] and it is wh

important to note that because
FIG. 1. u-dependent “bag constants” in the QCD model de-

2 1 fined via Eq.(43). Rainbow-truncated gap equation: dotted line,
Dy(p, )P+ DL(DUU«)PL:)\O:gD(p,M)+§DL(P7M)] Bg(u); short-dashed lineB,(u). At the intersection, where the
system flips to the superfluid phasé, (xE=4)=(0.75)* Bg(0).
1 Vertex-corrected gap equation: solid ling;(u«); long-dashed line
+ —)\B{D”(p,,u)— D,(p,u)}, with circles, By(u). At the intersectionB,=(0.96)* Bg(0). The
\/§ structure evident i3, (u) is an artifact characteristic of E¢43)
(42) [19].
For u# 0 and in theabsencef diquark condensation, the
v [nodel defined via Eq43) exhibits[19] coincident, first or-

1 components. That interplay is discarded in models thad r chiral symmetrv restorina and deconfining transitions at
ignore the vector self-energy of quarks, which is a qualita- er chiral symmetry restoring a eco g transitions a

the interactionl "5, S(p,u)T'5, necessarily couples tHeand

tively important feature of QCI[p19-21,23. Mg,’eai:n%ow: 0.287, (48)
A. Rainbow truncation which is whereBg=0.

Diquark condensation gi=0 was studied in Ref[24] For u#0, however, Eq.(44) admits a solution with
using a minor quantitative adjustment of the confining modeP (P:#)#0 andB(p,x)=0. 6P in Eq. (30) again deter-
gluon propagator defined via E(RO): mines whether the quark-condensed or superfluid phase is

the stable ground state. With increasjmgBg(w) decreases,
F(k?)=4x* 9 6%(Kk), (43)  very slowly at first, and3, () increases rapidly from zero.

As illustrated in Fig. 1, that evolution continues until
with which the rainbow-truncation gap equation is oA B Ao
M, rainbow 0.257= 0-89/“‘(:,’ rainbow (49

D(p,u)=Do(p,w)+ 7 TaS(Puw) T5. (44 o
where B, (1) becomes greater thaig(w). This signals a
Solving this and the ladder-truncation Bethe-Salpeter equdirst order transition to the superfluid ground stated at the

tion one obtain$19,2Q boundary
me,=mp=3 7%, (45 (Qi7s7oM*Q) =800 =(0.69°(QQ),—0. (50)
(qq)=(0.117)3, (46)  These results are typicg®5] of rainbow truncation models
in which the parameters in the dressed-gluon propagator are
Ba(u=0)=(0.107)* (47) tuned to yield the correct-p mass splitting. The solution of

the rainbow gap equatiorx)(p,,uE'A), which is real and
and momentum-dependent vector self-energies, ©8), chagacterizes the diquark gap, is plotted ip Fig. 2. It vanishes
which lead to an interaction between theand L compo- atP°=0 as a consequence of tie. coupling that blocked
nents ofD that blocks diquark condensation. This is in spite
of the fact that\®\2(—A3)T=2A3\2, which entails that the
ladder-truncation quark-quark scattering kernel is purely at- 3with 7 independent ofx, quark confinement, expressed as the
tractive and strong enough to produce diquark bound stateshsence of a Lehmann representationS$pmpersists in the super-
[11]. fluid phase.
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0.7 2_ 2 2 ladd
] me=(1.2)%m; (52
06 ] (QQ)=(1.0°(QQ)™">", (53
‘ ] Bg=(1.1)* B2inbow, (54)
0.5 ]
. ] where the rainbow-ladder results are given in E45)—(47),
0.4 . and
£ ] _ _
T os ] (Qiys7h?Q)=(0.48°(QQ), (55
t ] By=(0.42Bg. (56)
0.2 | b
; } Unsurprisingly the quark-condensed phase is favoRrd-
04 L ] cludingdiquark condensation, the model exhibits coincident,
T ] first order chiral symmetry restoring and deconfinement
N IR R transition$ at
0.0 0.1 0.2 o 0.3 0.4 0.5 ME,A=0: Oj?/*‘(?}éi:k?ow- (57)

FIG. 2. Dashed lineA(z,u2*) obtained in rainbow truncation Our numerical re§ulfsfqr th_e'“ dependence of the “ba_g
with the QCD model defined via Ed43), plotted fora=0 as a  constants” are depicted in Fig. 1, which shows there is a
function ofp, wherez=p (0,0,sina,i+cosa). As u increases, the  transition to the superfluid phase at
peak positio_n s_hifts to larger vaIL_Jes pfand the p(_aak height in- B=0A BA=0
creases. Solid lineA(z, . =0) obtained as the solution of E(1), Mc =0.63u¢ (58
the vertex-corrected gap equation, also witk 0.

and at the boundarjcf. Eq. (50)]
diquark condensation at=0, and also at largp?, which is _ _
a manifestation of the model's version of asymptotic free- (Qi 75Té7\2Q>ﬂ:o.63ﬂ§~A:0:(0-51)3(QQM:O- (59
dom.

The ratio of the condensates increases ¥y % on u

B. Vertex-corrected gap equation € [O,M?:O'A]. Quantitatively, the next-order correction leads

to a reduction in the critical chemical potential for the tran-
ition to superfluid quark matter but does not much affect the
idth of the gap. Qualitatively, the transition occurs despite
the significant effect that this correction has on the nature of

The next-order term in the gap equation corresponds t
adding a 1N.-suppressed dressed-ladder correction to th
quark-gluon vertex, and using E@J) this yields

D(p, ) =Do(p, )+ 2 72T28(p, ) T2 the quark-quark interaction.
(P.u)=Po(P.p) + 157" 1, SP.p) T Further insight is provided by solving the inhomogeneous
— 2367 T38(p.u) T2.S(p ) T2S(pop) TY, Bethe-Salpeter equation for the' 0diquark vertex in the

quark-condensed phase. At=0 and zero total momentum
P=0, the additional contributions to the quark-quark scat-
which is illustrated in Fig. 3. The kernel of the Bethe- tering kernel ge_nerat_e an enhancement in the magnitude of
Salpeter equation receives three additional contributions épe scalazr functlon§ in the .Bethe—SaIpeter amphtude. .HOW'
this order. Their net effect is repulsive at timelike total mo- Y&" asP evollv_es lnto(;hgltlnlelilée r?glon,t_the cc;ntrlbdu_tlonsk
mentum and hence they prevent the formation of diquarlggﬁzngt;teepucsé\rﬁ;:e|y iggreasﬁzg;r?r?yl(;?veon tﬁnelli(lq;(jaar

4 i . ,
bound §tate§15,26|. The " term n Eq.(5) means that an p2 yields an enhancement in the magnitude of the scalar
algebraic solution cannot be obtained; however, a numerical B.A=0
solution is possible. For simplicity we only consider=0

(59)

unctions, and asu— . that enhancement becomes

sincem+ 0 opposes diquark condensation, as we saw in Seéz_arge, which suggests the onset of an instability in the quark-
Ill. At this order there is aA#0 solution even foru=0, condensed vacuum.
which is illustrated in Fig. 2, and

At u=0 andT#0 these transitions are second order, and the
critical temperature is reduced by2% when calculated using Eq.
(51) instead of the rainbow truncatid27].

SFollowing the evolution of the diquark gap with increasings
numerically difficult because of the interaction between|thad L
components oD. With that interaction the gap equation yields nine

FIG. 3. lllustration of the dressed-ladder vertex-corrected gapcoupled, quintic algebraic equations in nine variables, and of the
equation, Eq(51). Each bispinor quark-gluon vertex is bare, given many possible solutions one must follow the correct brancp as
by Eq. (41). and i evolve.

[\
I
3]
+
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V. CONCLUSIONS JP=% mesons are degenerate wii diquarks. Using a
We have studied a confining model of QCD using a trun—s_tgj"g]htfomar?’ cgni;rutctlve ap:jprogch, we ds?hwtthaWa]:c
cation of the Dyson-Schwinger equations that describes we{ll_qem EL?V?JZS'\? ;éoo sAone modes in QICtan ka one o
the 7m-p mass splitting at T,«) =0 and improves upon the . k#0. A nonzero current-quark mass op-
rainbow-ladder truncation by ensuring that no diquark bouncploSes d|que|1rk conhdenﬁathn FUt for .I'?ht ferz(mr:)ns therle. IS
states appear in the spectrum. Employing a criterion of maxic /ays a value of the chemical potential at which a transition
mal pressure, we observe a first order transition to a chirati0 the sup_erflwd phase takes place. Our modgl_stud|e§ indi-
symmetry breaking superfluid ground state, which occurs a(fate t_ha(tj n ?orr]ne respehcts, SUCh d"’?s the trafnangn point and
a chemical potential approximately two-thirds that requiredr.nagrmlu € O.It € gaﬁ, t ? P gge T'r?grag] 02Q. quan-b

to completely eliminate the quark condensate in the absenc,lgat'vey similar to t a_t of QCD. This 9 servation can €
of diquark condensation. Without fine-tuning, the supen‘luidusefuI _beca_use_the simplest super_flwd order_ para_meter IS
gap at the transition is large, approximately one-half of thadude Invariant in QD and the fermion determlnant is real
characterizing quark condensation. Thus, while completel nd positive, which makes tractable the exploration of super-

; o ) : - Tluidity in QC,D using numerical simulations of the lattice
;:znk?érrl]%éhﬁ]gu;\ glbitévgtg?;u;g ; gt:[]”enqiléirrl]( equ#acgl(amitr? ::_Ctlo the_ory[28]. The results of those studies can then be a reliable
ing unobserved colored bound statesir vertex-corrected guide 1o features of QCD.
gap equation yields a phase diagram that is semiquantita-
tively the same as that obtained using the rainbow truncation.
This bolsters our confidence in the foundation of current We acknowledge helpful interactions with D. Blaschke,
speculationg13] about the phases of high-density QCD. K. Rajagopal, and B. van den Bossche. This work was sup-

The procedure we used to improve the gap equation iported by the U.S. Department of Energy, Nuclear Physics
equally applicable to two-color QCD, which we analyzed Division, under Contract No. W-31-109-ENG-38 and the
with the help of a pedagogical model for the dressed-gaugBlational Science Foundation under Grant No. INT-9603385,
boson propagator. Diquark bound states must exist iRIRC and benefited from the resources of the National Energy Re-
because they are the baryons of the theory, and the truncati@earch Scientific Computing Center. S.M.S. is supported by
procedure ensures this, with the result that flavor-nonsinglehe A.v. Humboldt foundation.
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