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Diquark condensation and the quark-quark interaction
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Physics Division, Building 203, Argonne National Laboratory, Argonne, Illinois 60439-4843

~Received 21 July 1999; published 19 November 1999!

We employ a bispinor gap equation to study superfluidity at nonzero chemical potential,mÞ0, in two- and
three-color QCD, exploring the gap’s sensitivity to the nature of the quark-quark interaction. The two-color
theory, QC2D, is an excellent exemplar; the order of truncation of the quark-quark scattering kernelK has no
qualitative impact, which allows a straightforward elucidation of the effects ofm when the coupling is strong.
In the three-color theory the rainbow-ladder truncation admits diquark bound states, a defect that is eliminated
by an improvement ofK. The corrected gap equation describes a superfluid phase that is semiquantitatively
similar to that obtained using the rainbow truncation. A model study suggests that the width of the superfluid
gap and the transition point in QC2D provide reliable quantitative estimates of those quantities in QCD.
@S0556-2813~99!07112-5#

PACS number~s!: 12.38.Mh, 24.85.1p, 12.38.Lg, 11.10.St
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I. INTRODUCTION

In the application of Dyson-Schwinger equations@1#
~DSEs! extensive use has been made of models based o
rainbow-ladder truncation, with contemporary variants@2#
providing improved links with QCD. This truncation is als
implicit in the class of model field theories with four-fermio
interactions, such as the Nambu–Jona-Lasinio~NJL! model
@3# and the global color model@4#, which have been use
successfully in describing aspects of the strong interact
Such models admit the construction@5# of a meson-diquark
auxiliary-field effective action, which is important in deve
oping an understanding of nucleons using the relativi
Faddeev equation@6#. In addition, it is immediately apparen
that the action’s steepest-descent equations admit the p
bility of diquark condensation, i.e., quark-quark Cooper pa
ing, and that was first explored using a simple version of
NJL model@7#.

A nonzero chemical potentialmÞ0 promotes Coope
pairing in fermion systems, and earlier and independen
these developments in QCD phenomenology, the possib
that it is exhibited in quark matter was considered@8# using
the rainbow-ladder truncation of the gap equation. Interes
this possibility has been renewed@9#. A quark-quark Cooper
pair is a composite boson with both electric and color char
and hence superfluidity in quark matter entails supercond
tivity and color superconductivity. However, the last featu
makes it difficult to identify an order parameter that c
characterize a transition to the superfluid phase: the Co
pair is gauge dependent and an order parameter is ide
describable by a gauge-invariant operator.

Determining the (T,m) phase diagram of QCD is an im
portant goal. At (T,m)50 there is a quark-antiquark conde
sate^q̄q&Þ0, but it is undermined by increasingT and m,
and there is a domain of the (T,m) plane for which^q̄q&
50. IncreasingT also opposes Cooper pairing. Howeve
since increasingm promotes it, there may be a~low-T, large-
m) subdomain in which quark matter exists in a superfl
phase. That domain may not be accessible at the Relativ
Heavy Ion Collider~RHIC!, which will concentrate onm
0556-2813/99/60~6!/065208~7!/$15.00 60 0652
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.0 where all studies indicate that QCD with two light fla
vors exhibits a chiral symmetry restoring transition^q̄q&
→0, atT.150 MeV. However, it may be discernible in th
core of dense astrophysical objects@8#, which could undergo
a transition to superfluid quark matter as they cool, and
baryon-density-rich heavy ion collisions at the BN
Alternating Gradient Synchrotron~AGS! and CERN Super
Proton Synchrotron~SPS! @10#. An exploration of this pos-
sibility using numerical simulations of lattice QCD is inhib
ited by the absence of~i! a gauge-independent order param
eter for the superfluid phase and~ii ! a satisfactory procedure
for the numerical estimation of an integral with a compl
measure, such as themÞ0 QCD partition function. Conse
quently all the nonperturbative information we have com
from models.

The rainbow-ladder truncation has the feature and de
that it generates a quark-quark scattering kernelK that is
purely attractive in the color antitriplet channel 3c̄ . It there-
fore not only yields a 3̄c scalar diquark condensate but al
3̄c diquark bound states@11#, i.e., hitherto unobserved col
ored quark-quark bound states with masses~in GeV! @12#:

mJP501
ud

50.74, m11
ud

50.95, m02
ud

51.55m12
ud . ~1!

(us5ds diquarks are also bound, e.g.,m01
us

50.88. Color-
sextet bound states do not exist becauseK is purely repulsive
in this channel, even in rainbow-ladder truncation@11#.! All
models employed to date in the analysis of quark ma
superfluidity have this defect@13#, and we are primarily con-
cerned with the question of whether any model or truncat
with such a flawed representation of the quark-quark in
action can be a reliable tool for exploring superfluidity
quark matter atm&1 GeV, i.e., in the nonperturbative do
main. In addressing this issue, it is important to comp
QC2D with QCD because the same mechanism that provi
for the absence of diquark bound states in the lattermust
guarantee their existence in QC2D, where the diquark is the
baryon of the theory. In fact, it must ensure that flavo
nonsingletJP5 7 mesons are degenerate withJ6 diquarks
@14#.

In Sec. II we describe a bispinor DSE~gap equation! that
is particularly useful for studying quark and diquark conde
©1999 The American Physical Society08-1
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sation and, in Sec. III, employ it in the general analysis
QC2D and also to obtain quantitative results from a pe
gogical model. In Sec. IV we focus on QCD, and employ t
model’s analogue to exemplify the gap equation and its
lution in rainbow truncation, and also when
1/Nc-suppressed dressed-ladder vertex correction is
cluded. We summarize and conclude in Sec. V.

II. GAP EQUATION

A direct means of determining whether a SUc(Nc) gauge
theory supports 01 diquark condensation is to study the g
equation satisfied by1

D~p,m!ªS~p,m!21

5S D~p,m! D i~p,m! g5l`
i

2D i~p,2m! g5l`
i CD~2p,m!TC†D ~2!

where, withv [m]5p41 im,

D~p,m!5 igW •pW A~pW 2,v [m]
2 !1 ig4 v [m] C~pW 2,v [m]

2 !

1B~pW 2,v [m]
2 !, ~3!

$l`
i , i 51, . . . ,nc

` , nc
`5Nc(Nc21)/2% are the antisymmet

ric generators of SUc(Nc), andC5g2g4 is the charge con-
jugation matrix:

Cgm
TC†52gm ;@C,g5#50. ~4!

Using the gap equation to study superfluidity makes unn
essary a truncated bosonization, which in all but the simp
models is a procedure difficult to improve systematically.

In addition to the usual color, Dirac, and isospin indic
carried by the elements ofD(p,m), the explicit matrix struc-
ture in Eq.~2! exhibits the quark bispinor index and is ma
with reference to

Q~x!ªS q~x!

q~x!ªt f
2 C q̄TD , ~5!

Q̄~x!ª~ q̄~x! q̄~x!ªqT C t f
2!, ~6!

where$t f
i : i 51,2,3% are Pauli matrices that act on the iso

pin index. Herein we only consider two-flavor theori
SUf(Nf52), becauseNf does not affect the question at th
core of our study, and focus onT50, since nonzeroT can
only act to eliminate a condensate. A nonzero quark cond
sate^q̄q&Þ0 is represented in the solution of the gap eq
tion by B(pW 2,v [m]

2 )Ó0 while diquark condensation is cha
acterized byD i(p,m)Ó0, for at least onei.

The bispinor DSE can be written in the form

1In our Euclidean formulation,$gm ,gn%52dmn , gm
† 5gm , p•q

5( i 51
4 piqi , and trD@g5gmgngrgs#524 emnrs , e123451.
06520
f
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D~p,m!5D0~p,m!

1S S11~p,m! S12~p,m!

g4 S12~2p,m! g4 CS11~2p,m!TC†D ,

~7!

where, in the absence of a diquark source term,

D0~p,m!5~ ig•p1m!tQ
0 2m tQ

3 , ~8!

with m the current-quark mass. Here we have introduc
additional Pauli matrices $tQ

a ,a50,1,2,3% with t0

5diag(1,1), which act on the bispinor indices. The structu
of S i j (p,m) specifies the theory and, in practice, also t
approximation or truncation of it.

III. TWO COLORS

As an important and instructive first example we consid
QC2D. In this special caseD il`

i 5Dtc
2 in Eq. ~2! and it is

useful to employ a modified bispinor

Q2~x!ªS q~x!

q2ªtc
2 q~x!D , ~9!

with Q̄2 the obvious analog of Eq.~6!, so that the
Lagrangian’s fermion-gauge-boson interaction term is s
ply

Q̄2~x!
i

2
ggmtc

ktQ
0 Q2~x! Am

k ~x! ~10!

because SUc(2) is pseudoreal, i.e.,tc
2(2tW c)

Ttc
25tW c , and the

fundamental and conjugate representations are equivale

A. Zero chemical potential

The gap equation at arbitrary order in the systema
Ward-Takahashi identity preserving truncation scheme
Ref. @15# is readily derived. Form50, C5A in Eq. ~3!, all
the functions in the dressed-bispinor propagator are real
the rainbow truncation yields the gap equation2

D~p!5 ig•p1m1E d4q

~2p!4
g2Dmn~p2q!

3gm

tc
k

2
S~q! gn

tc
k

2
. ~11!

To solve Eq.~11! we consider a generalization@17# of Eq.
~2!,

D~p!5 ig•p A~p2!1V~2p! M~p2!, ~12!

2Renormalization is straightforward, even atmÞ0 @16#; however,
since it is not relevant to our central theme, we neglect it here.
8-2
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DIQUARK CONDENSATION AND THE QUARK-QUARK . . . PHYSICAL REVIEW C 60 065208
V~p!5expH ig5 (
l 51

5

Tl p l~p2!J 5V~2p!21, ~13!

where $T1,2,35tQ
3

^ tW f , T45tQ
1

^ t f
0 , T55tQ

2
^ t f

0%, $Ti ,Tj%
52d i j , so that

S~p!5
2 ig•pA~p2!1V~p!M~p2!

p2A2~p2!1M 2~p2!
~14!

ª2 ig•p sV~p2!1V~p! sS~p2!. ~15!

@p5(0,0,0,0,2 1
4 p) produces an inverse bispinor propaga

with the simple form in Eq.~2!.#
For p(p2)5const, substituting Eq.~12! into Eq. ~11!

yields

g•p @A~p2!21#52E d4q

~2p!4
g2Dmn~p2q!

3gm

tc
k

2
g•q sV~q2! gn

tc
k

2
, ~16!

M~p2!2mV~p!5E d4q

~2p!4
g2Dmn~p2q!

3gm

tc
k

2
sS~q2! gn

tc
k

2
. ~17!

It is clear from these equations that the gap equation in r
bow truncation isindependentof p in the chiral limit. As
this result is true order by order in the truncation scheme
Ref. @15#, it is a general property of the complete QC2D gap
equation. Hence, if the interaction is strong enough to g
erate a mass gap, then that gap describes a five-param
continuum of degenerate condensates,

^Q̄2V~p!Q2&Þ0, ~18!

and there are five associated Goldstone bosons: three pio
diquark, and an anti-diquark, which is a well-known cons
quence of the Pauli-Gu¨rsey symmetry of QC2D.

For mÞ0, it is clear from Eq.~17! that the gap equation
requires trf Q@TiV#50, i.e., in this case onlŷ Q̄2Q2&Þ0.
The Goldstone bosons are now massive but remain dege
ate.

The Landau gauge dressed-gauge-boson propagator

g2Dmn~k!5S dmn2
kmkn

k2 DF~k2!, ~19!

and to exploremÞ0 we employ a pedagogical model for th
vacuum polarization in QC2D:

F2~k2!5 64
9 p4 ĥ2 d4~k!. ~20!

This form was introduced@18# for the modeling of confine-
ment in QCD. However, it is also appropriate here beca
06520
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the string tension in QC2D is nonzero, and that is represente
implicitly in Eq. ~20! via the mass scaleĥ. Further, a simple
extension of the model has been used efficaciously@19,20# as
a heuristic tool for the analysis of QCD at nonzero (T,m).
The mass of the model’sJ51 composites is a useful refer
ence scale and, form50 in rainbow-ladder truncation,

mJ51
2 5 1

2 ĥ2. ~21!

mJ51 is weakly dependent onm, changing by&2% on m

P@0,0.01# ĥ, while adding 1/Nc-suppressed vertex correc
tions produces an increase of,10% @15#.

B. Nonzero chemical potential

We now consider themÞ0 gap equation and suppose
solution of the form

D~p,m!5S D~p,m! g5 D~p,m!

2g5D* ~p,m! D̃~p,m!
D , ~22!

with D(p,m) defined in Eq. ~3! and D̃(p,m),
ªC D(2p,m) C†. In the absenceof a diquark condensate
i.e., for D[0,

@UB~a!,D~p,m!#50, UB~a!ªeiatQ
3

^ t f
0
, ~23!

which is a manifestation of baryon number conservation
QC2D.

The inverseS(p,m) is sufficiently complicated that it pro
vides little insight directly. However, that can be obtain
using Eq.~20!, which yields an algebraic gap equation. U
ing the rainbow truncation we find, atp25upW u21p4

250,

A215 1
2 ĥ2 K $A ~B* 22C* 2m2!1A* uDu2%, ~24!

m~C21!5
m

2
ĥ2 K $C ~B* 22C* 2m2!2C* uDu2%,

~25!

B2m5ĥ2 K $B ~B* 22C* 2m2!1B* uDu2%, ~26!

D5ĥ2 K $D ~ uBu21uCu2m2!1D uDu2%, ~27!

with K215uB22C2m2u212uDu2(uBu21uCu2m2)1uDu4.
These equations illustrate theB↔D degeneracy describe
above for (m,m)50, thatD is real for all m, and also the
action of m, enhancing the coupling in theD equation but
suppressing it forB, which is how an increasingm promotes
diquark condensation at the expense of the quark conden

For (m,m)50 the rainbow gap equation is Eq.~11! and
with Eq. ~20! the solution is

M 2~p2!ªB2~p2!1D2~p2!5H ĥ224p2, p2,
ĥ2

4

0, otherwise,
~28!
8-3
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A~p2!5C~p2!55 2, p2,
ĥ2

4

1
2 S 11A11

2ĥ2

p2 D , otherwise.

~29!

The dynamically generated mass functionM(p2) is tied to
the existence of quark and/or diquark condensates and br
chiral symmetry. Further, in combination with the
momentum-dependent vector self-energy, it ensures tha
quark propagator does not have a Lehmann represent
and hence can be interpreted as describing a confined q
@1#. The interplay between the scalar and vector self-ener
is the key to realizing confinement in this way@21#, and is
precluded in studies that discard the vector self-energy.

For mÞ0 and arbitraryp we solve the rainbow gap equa
tion numerically, and determine whether quark or diqua
condensation is stable by evaluating

dPªP~m,S@B50,D#!2P~m,S@B,D50# !, ~30!

where the pressure is calculated using a steepest-desce
proximation@22#:

P@S#52Trln@S#2 1
2 Tr@~D2D0!S#. ~31!

dP.0 indicates that diquark condensation is favored.
The calculation ofdP is facilitated by employing the

m-dependent ‘‘bag constants’’@17#

BB~m!ªP~m,S@B,D50# !2P~m,S@B50,D50# !,
~32!

with BD(m) an obvious analog. They measure the stability
a quark- or diquark-condensed vacuum relative to that w
chiral symmetry realized in the Wigner-Weyl mode. T
(m,m)50 degeneracy of the quark and diquark condens
is manifest in

BB~0!5BD~0!5~0.092ĥ !45~0.13mJ51!4. ~33!

Increasingm atm50 and excluding diquark condensatio
one finds@19# chiral symmetry restoration at

m2c
B,D5050.28ĥ ~34!

whenBB(m)50; i.e., the pressures of the Wigner and qua
condensed phases are equal. However,

for all m.0, dP.0, BD~m!.0, ~35!

with
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BD~m2c
B,D50!5~0.20mJ51!4.BD~0!. ~36!

Therefore, the vacuum is unstable with respect to diqu
condensation for allm.0 and one has confinement and d
namical chiral symmetry breaking to arbitrarily large value
Of course, we have ignored the possibility thatĥ is m de-
pendent. In a more realistic model, them dependence ofĥ
would be significant in the vicinity ofm2c

B,D50 , with ĥ→0 as
m→`, which would ensure deconfinement and chiral sy
metry restoration at largem.

DÞ0 in Eq. ~22! corresponds top5(0,0,0,0,12 p) in Eq.

~18!, i.e.,^Q̄2ig5tQ
2 Q2&Þ0, and although themÞ0 theory is

invariant under

Q2→UB~a! Q2 , Q̄2→Q̄2 UB~2a!, ~37!

which is associated with baryon number conservation,
diquark condensate breaks this symmetry:

^Q̄2ig5tQ
2 Q2&→cos~2a! ^Q̄2ig5tQ

2 Q2&

2sin~2a! ^Q̄2ig5tQ
1 Q2&. ~38!

Hence, for (m50,mÞ0), one Goldstone mode remains.
For mÞ0 and small values ofm, the gap equation only

admits a solution withD[0; i.e., diquark condensation i
blocked. However, with increasingm a diquark condensate i
generated; e.g., we find the following minimum chemic
potentials for diquark condensation:

m50.013mJ51⇒mDÞ050.051mJ51 ,

m50.13mJ51⇒mDÞ050.092mJ51 . ~39!

Improving on rainbow-ladder truncation may yield qua
titative changes of&20% in the illustrative results provide
by our model of QC2D. However, the pseudoreality o
QC2D and the equal dimension of the color and bispin
spaces, which underly the theory’s Pauli-Gu¨rsey symmetry,
ensure that the entire discussion remains qualitatively
changed. QCD, however, has two significant differences:
dimension of the color space is greater than that of the
pinor space and the fundamental and conjugate represe
tions of the gauge group are not equivalent. The latter is
obvious importance because it entails that the quark-qu
and quark-antiquark scattering matrices are qualitatively
ferent.

IV. THREE COLORS

In canvassing superfluidity in QCD we chooseD il`
i

5D l2 in Eq. ~2! so that
D~p,m!5S D i~p,m!Pi1D'~p,m!P' D~p,m!g5l2

2D~p,2m!g5l2 D̃ i~p,m!Pi1D̃'~p,m!P'

D , ~40!
8-4
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DIQUARK CONDENSATION AND THE QUARK-QUARK . . . PHYSICAL REVIEW C 60 065208
wherePi5(l2)2, P'1Pi5diag(1,1,1), andD i , D' , D̃ i ,
D̃' are defined via obvious generalizations of Eqs.~2!, ~3!,
and~22!. The evident, demarcated block structure makes
plicit the bispinor index. Here each block is a 333 color
matrix and the subscriptsi , ' indicate whether or not the
subspace is accessible vial2. The bispinors associated wit
this representation are given in Eqs.~5! and ~6!, and in this
case the Lagrangian’s quark-gluon interaction term
Q̄(x) igGm

a Q(x)Am
a (x),

Gm
a 5S 1

2 gmla 0

0 2 1
2 gm~la!TD . ~41!

It is again straightforward to derive the gap equation at a
trary order in the truncation scheme of Ref.@15# and it is
important to note that because

D i~p,m!Pi1D'~p,m!P'5l0H 2

3
D i~p,m!1

1

3
D'~p,m!J

1
1

A3
l8$D i~p,m!2D'~p,m!%,

~42!

the interactionGm
a S(p,m)Gn

a , necessarily couples thei and
' components. That interplay is discarded in models t
ignore the vector self-energy of quarks, which is a qual
tively important feature of QCD@19–21,23#.

A. Rainbow truncation

Diquark condensation atm50 was studied in Ref.@24#
using a minor quantitative adjustment of the confining mo
gluon propagator defined via Eq.~20!:

F~k2!54p4 h2 d4~k!, ~43!

with which the rainbow-truncation gap equation is

D~p,m!5D0~p,m!1 3
16 h2 Gr

a S~p,m! Gr
a . ~44!

Solving this and the ladder-truncation Bethe-Salpeter eq
tion one obtains@19,20#

mv
2 5mr

25 1
2 h2, ~45!

^q̄q&5~0.11h!3, ~46!

BB~m50!5~0.10h!4, ~47!

and momentum-dependent vector self-energies, Eq.~29!,
which lead to an interaction between thei and' compo-
nents ofD that blocks diquark condensation. This is in sp
of the fact thatlal2(2la)T5 1

2 lala, which entails that the
ladder-truncation quark-quark scattering kernel is purely
tractive and strong enough to produce diquark bound st
@11#.
06520
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For mÞ0 and in theabsenceof diquark condensation, the
model defined via Eq.~43! exhibits @19# coincident, first or-
der chiral symmetry restoring and deconfining transitions

mc, rainbow
B,D50 50.28h, ~48!

which is whereBB50.
For mÞ0, however, Eq.~44! admits a solution with

D(p,m)[” 0 and B(p,m)[0. dP in Eq. ~30! again deter-
mines whether the quark-condensed or superfluid phas
the stable ground state. With increasingm, BB(m) decreases,
very slowly at first, andBD(m) increases rapidly from zero
As illustrated in Fig. 1, that evolution continues until

mc, rainbow
B50,D 50.25h50.89mc, rainbow

B,D50 , ~49!

whereBD(m) becomes greater thanBB(m). This signals a
first order transition to the superfluid ground state3 and at the
boundary

^Q̄ig5tQ
2 l2Q&m5m

c, rainbow
B50,D 5~0.65!3 ^Q̄Q&m50 . ~50!

These results are typical@25# of rainbow truncation models
in which the parameters in the dressed-gluon propagator
tuned to yield the correctp-r mass splitting. The solution o
the rainbow gap equation,D(p,mc

B,D), which is real and
characterizes the diquark gap, is plotted in Fig. 2. It vanis
at p250 as a consequence of thei-' coupling that blocked

3With h independent ofm, quark confinement, expressed as t
absence of a Lehmann representation forS, persists in the super
fluid phase.

FIG. 1. m-dependent ‘‘bag constants’’ in the QCD model d
fined via Eq. ~43!. Rainbow-truncated gap equation: dotted lin
BB(m); short-dashed line,BD(m). At the intersection, where the
system flips to the superfluid phase,BD(mc

B50,D)5(0.75)4 BB(0).
Vertex-corrected gap equation: solid line,BB(m); long-dashed line
with circles,BD(m). At the intersection,BD5(0.96)4 BB(0). The
structure evident inBD(m) is an artifact characteristic of Eq.~43!
@19#.
8-5
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diquark condensation atm50, and also at largep2, which is
a manifestation of the model’s version of asymptotic fre
dom.

B. Vertex-corrected gap equation

The next-order term in the gap equation corresponds
adding a 1/Nc-suppressed dressed-ladder correction to
quark-gluon vertex, and using Eq.~43! this yields

D~p,m!5D0~p,m!1 3
16 h2 Gr

a S~p,m! Gr
a

2 9
256h4 Gr

a S~p,m! Gs
b S~p,m! Gr

a S~p,m! Gs
b ,

~51!

which is illustrated in Fig. 3. The kernel of the Beth
Salpeter equation receives three additional contribution
this order. Their net effect is repulsive at timelike total m
mentum and hence they prevent the formation of diqu
bound states@15,26#. Theh4 term in Eq.~51! means that an
algebraic solution cannot be obtained; however, a numer
solution is possible. For simplicity we only considerm50
sincemÞ0 opposes diquark condensation, as we saw in S
III. At this order there is aD[” 0 solution even form50,
which is illustrated in Fig. 2, and

FIG. 2. Dashed line:D(z,mc
B,D) obtained in rainbow truncation

with the QCD model defined via Eq.~43!, plotted for a50 as a
function ofp, wherez5p (0,0,sina,im1cosa). As m increases, the
peak position shifts to larger values ofp and the peak height in
creases. Solid line:D(z,m50) obtained as the solution of Eq.~51!,
the vertex-corrected gap equation, also witha50.

FIG. 3. Illustration of the dressed-ladder vertex-corrected
equation, Eq.~51!. Each bispinor quark-gluon vertex is bare, giv
by Eq. ~41!.
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25~1.1!2 mr

2 ladder, ~52!

^Q̄Q&5~1.0!3 ^Q̄Q& rainbow, ~53!

BB5~1.1!4 B B
rainbow, ~54!

where the rainbow-ladder results are given in Eqs.~45!–~47!,
and

^Q̄ig5tQ
2 l2Q&5~0.48!3 ^Q̄Q&, ~55!

BD5~0.42!4 BB . ~56!

Unsurprisingly the quark-condensed phase is favored.Pre-
cludingdiquark condensation, the model exhibits coincide
first order chiral symmetry restoring and deconfinem
transitions4 at

mc
B,D5050.77mc rainbow

B,D50 . ~57!

Our numerical results5 for the m dependence of the ‘‘bag
constants’’ are depicted in Fig. 1, which shows there is
transition to the superfluid phase at

mc
B50,D50.63mc

B,D50 ~58!

and at the boundary@cf. Eq. ~50!#

^Q̄ig5tQ
2 l2Q&m50.63m

c
B,D505~0.51!3 ^Q̄Q&m50 . ~59!

The ratio of the condensates increases by,7% on m
P@0,mc

B50,D#. Quantitatively, the next-order correction lea
to a reduction in the critical chemical potential for the tra
sition to superfluid quark matter but does not much affect
width of the gap. Qualitatively, the transition occurs desp
the significant effect that this correction has on the nature
the quark-quark interaction.

Further insight is provided by solving the inhomogeneo
Bethe-Salpeter equation for the 01 diquark vertex in the
quark-condensed phase. Atm50 and zero total momentum
P50, the additional contributions to the quark-quark sc
tering kernel generate an enhancement in the magnitud
the scalar functions in the Bethe-Salpeter amplitude. Ho
ever, asP2 evolves into the timelike region, the contribution
become repulsive and block the formation of a diqua
bound state. Conversely, increasingm at any given timelike
P2 yields an enhancement in the magnitude of the sc
functions, and asm→mc

B,D50 that enhancement become
large, which suggests the onset of an instability in the qua
condensed vacuum.

4At m50 and TÞ0 these transitions are second order, and
critical temperature is reduced by,2% when calculated using Eq
~51! instead of the rainbow truncation@27#.

5Following the evolution of the diquark gap with increasingm is
numerically difficult because of the interaction between thei and'

components ofD. With that interaction the gap equation yields nin
coupled, quintic algebraic equations in nine variables, and of
many possible solutions one must follow the correct branch ap
andm evolve.

p
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V. CONCLUSIONS

We have studied a confining model of QCD using a tru
cation of the Dyson-Schwinger equations that describes w
the p-r mass splitting at (T,m)50 and improves upon the
rainbow-ladder truncation by ensuring that no diquark bou
states appear in the spectrum. Employing a criterion of ma
mal pressure, we observe a first order transition to a ch
symmetry breaking superfluid ground state, which occurs
a chemical potential approximately two-thirds that requir
to completely eliminate the quark condensate in the abse
of diquark condensation. Without fine-tuning, the superflu
gap at the transition is large, approximately one-half of t
characterizing quark condensation. Thus, while complet
changing the qualitative nature of the quark-quark interact
and hence the bound state spectrum in the model~eliminat-
ing unobserved colored bound states! our vertex-corrected
gap equation yields a phase diagram that is semiquan
tively the same as that obtained using the rainbow truncat
This bolsters our confidence in the foundation of curre
speculations@13# about the phases of high-density QCD.

The procedure we used to improve the gap equation
equally applicable to two-color QCD, which we analyze
with the help of a pedagogical model for the dressed-ga
boson propagator. Diquark bound states must exist in QC2D
because they are the baryons of the theory, and the trunca
procedure ensures this, with the result that flavor-nonsin
.

.

m

0652
-
ell
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xi-
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d
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id
at
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ita-
n.

nt
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d
ge

tion
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JP57 mesons are degenerate withJ6 diquarks. Using a
straightforward, constructive approach, we saw that atm
50 there are five Goldstone modes in QC2D, and that one of
them survives atmÞ0. A nonzero current-quark mass op
poses diquark condensation but for light fermions there
always a value of the chemical potential at which a transit
to the superfluid phase takes place. Our model studies i
cate that in some respects, such as the transition point
magnitude of the gap, the phase diagram of QC2D is quan-
titatively similar to that of QCD. This observation can b
useful because the simplest superfluid order paramete
gauge invariant in QC2D and the fermion determinant is rea
and positive, which makes tractable the exploration of sup
fluidity in QC2D using numerical simulations of the lattic
theory@28#. The results of those studies can then be a relia
guide to features of QCD.
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