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Abstract

We perform numerical studies of the running coupling constatip2) and of the gluon and ghost
propagators for pur8U(2) lattice gauge theory in the minimal Landau gauge. Different definitions
of the gauge fields and different gauge-fixing procedures are used, respectively, for gaining better
control over the approach to the continuum limit and for a better understanding of Gribov-copy
effects. We find that the ghost—ghost—gluon vertex renormalization constant is finite in the continuum
limit, confirming earlier results by all-order perturbation theory. In the low momentum regime, the
gluon form factor is suppressed while the ghost form factor is divergent. Correspondingly, the ghost
propagator diverges faster tha;‘yuf and the gluon propagator appears to be finite. Precision data for
the running coupling: g (p2) are obtained. These data are consistent with an IR fixed point given by
lim 0 g (p?) =5(1).
0 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The non-perturbative study of non-Abelian gauge theories is of great importance for the
determination of infrared (IR) propertiesich as color confinement and hadronization.
These properties are encoded in thes Imomentum behavior of Yang-Mills Green’s
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functions. Derived from these Green functions, the so-called (renormalized) running
coupling constantéz(p2)” plays an important role for phenomenological studies and
model building. While at large momentum the running coupling decreases logarithmically
with momentum, it rapidly rises at the hadronic energy scale of several hundred MeVs
thus signaling the breakdown of the perturbative approach. Non-perturbative studies of
ar(p?) may be carried out analytically using the Dyson—Schwinger equations (DSEs) and
numerically through lattice simulations.

Whereas the high momentum behavior of the running coupling is uniquely determined
(to leading orders) and provided by perturbation theory, several definitions of the running
coupling in the low momentum regime are possible. All of them match with the
perturbative result at high energies. For example, the corrections to the Coulomb law of
the static-quark potential may be used to define the running coupling [1,2]. Alternatively,
the finite-size scaling has its imprint on the running coupling and may be used for a high-
precision measurement of the coupling [3,4]. The approach adopted in [5-7] is based on
extracting the running coupling directly fmoa vertex function. For a recent review of
lattice calculations fowg (p?) see [8].

In order to obtain Green'’s functions for the fundamental degrees of freedom, gluons and
qguarks, gauge fixing is necessary. Despite tp@jauge-dependent, these Green functions
play an important role for the phenomenological approach to hadron physics. Landau
gauge is a convenient choice for gauge fixing for several reasons. First of all, it is a
Lorentz-covariant gauge implying that 2-point functions only depend on the square of
the momentum transfer. Secondly, the renormalization procedure is simplified since the
ghost—ghost—gluon vertex renormalization constanis finite, at least to all orders of
perturbation theory. This result—obtained by Taylor [9]—is a particular feature of Landau
gauge and allows another definition of the rurqicoupling constant, ich only requires
the calculation of 2-point functions: Iét (p2, u2) andJg (p2, 12) denote the form factors
(for a renormalization point) of the gluon and the ghost propagator, respectively; the
running coupling is then defined by

ar(p?) = ar(1?)Fr(p?, 1) J3(p?, 1?) 1)

(see Section 2.7 below).

Due to its usefulness for the description of the physics of hadrons, the non-perturba-
tive approach to low-energy Yang—Mills ébry by means of the DSEs has attracted
much interest over the last decade [10,11]. The coupled set of continuum DSEs for the
renormalized gluon and ghost propagatortandau gauge has been recently studied by
several groups [12-25]. In all cases it was found that the gluon and ghost form factors
satisfy simple scaling laws in the IR momentum rapge 1 GeV

Fr(p® 1®) o [P Jr(p%1?) «[p?), )
where the remarkable sum rule holds for the IR exponeraisd 8:
a+28=0. 3

It is interesting that this result is rather independent of the truncation scheme under
consideration. These exponents may be ddteedhfrom lattice simulations, assuming the
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parameterizatioa = 2« and = —«. Note that for« > 0 this implies a divergent ghost
form factor J (p2, +2) in the IR limit and a vanishing gluon form factdtz (p2, 12) in

the same limit. Also, since the gluon propagator is giverDiip?) = F(p?)/p?, one gets

that D(0) is infinite or finite, respectively, if < 0.5 ork > 0.5. In the second case one has
D(0) =0 for « > 0.5 andD(0) finite and non-zero fox = 0.5. The IR sum rule (3) also
implies that the running coupling (defined in Eq. (61) below) develops a fixed point in the
IR limit

lim g (p?) = ac = const (4)
p—0

Note that this result is independent of the valuecadis long as the IR sum rule (3) is
satisfied.

The precise value ok as well as the fixed-point value, depend strongly on
the truncation of the Dyson—Schwinger tower of equations. In fact, depending on the
truncation, one finds.8 < « < 1 in the four-dimensional case [12,14-25]. These studies
vary in their vertex ansatzes, angular approximations of the momentum loop integral, and
on the tensor structure considered. In R&¥][a new class of truncation schemes has been
introduced, which manifestly ensures the multiplicative renormalizability of the propagator
solutions. In this truncation, although the exact values ahde,. depend on the details of
the truncation of the DSE tower, the valuec@fis constrained to

2_71' <. < 8—7T (5)
N, N,
for SU(NV,).

An IR-finite gluon propagator [26—-31] and an IR-divergent ghost form factor [30,31]
are also obtained using numerical simulations in the minimal Landau gauge. The present
numerical data for the ghost propagator indicate a value-ef- 8 smaller than (&, while
for the gluon propagator it is still under debate i= «/2 is equal to or larger than®. In
both cases large finite-size effects in the IR region make an exact determination of these
exponents difficult. This is particularly evident in the gluon propagator case [26,27,29,32,
33], where one needs to go to very large lattices in order to have control over the infinite-
volume extrapolation. Our present data are consistentsviththe order of 0.5 [34,35].

Let us stress that in the minimal Landau gauge, which is the gauge-fixing condition
used in numerical simulations (see Section 2.3 below), the gauge-fixed configurations
belong to the region of transverse configioas, for which the Faddeev—Popov operator
is non-negative. This implies a rigorous quality [36—38] for the Fourier components of
the gluon field and a strong suppression of the (unrenormalized) gluon propagator in the
IR limit. At the same time, the Euclidean probability gets concentrated near the border
of this region, the so-callefirst Gribov horizon implying the enhancement of the ghost
propagator at small momenta [38]. A similar result was also obtained by Gribov in [39].

Taylor’s finding is based upon the Faddeev—Popov quantization, thereby ignoring the
effect of Gribov copies, which are certainly present in an intrinsically non-perturbative
approach. The goal of the present paper is to confirm Taylor's regultig finite to
all orders of perturbation theory) by the npefturbative approach provided by lattice
simulations. In addition, a thorough study of the gluon and the ghost form factors is
performed. A focal point is the IR limit of the running coupling constant. Support for the
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existence of the fixed point is found, and a first estimate ab provided from extensive
lattice simulations. We present two sets of simulations, carried out, respectively, in S&o
Carlos and in TUbingen, employing different definitions of the gauge fields and different
gauge-fixing procedures. We believe that the comparison of these two formulations
strengthens the significance of our findings.

The paper is organized as follows. In Section 2 we describe the lattice approach to
Yang-Mills Green'’s functions. Section 3 contathe numerical setup for the simulations
carried out in S&o Carlos and in Tubingen. In Section 4 we report our data for the gluon
and ghost propagators and for the running coupling constant. Conclusions are left to the
final section.

Preliminary results have been presented in [34,35,40,41].

2. Thelattice approach to Green’sfunctions

In this section we explain the two lattice setups used for the numerical evaluation of the
gluon and ghost propagators. We also redsdldefinition of the running coupling constant
considered in Ref. [12], which can be evaluated using these propagators.

2.1. Gluon field on the lattice

The actionS of the continuunU(2) Yang—Mills theory is formulated in terms of the
field strength
FTAL(x) = 9, A% (x) — 3, A% (x) + goe“" AL (x) AS (x) (6)
and is given by

1
S = Z/d“x Fi A1) Fyj, [A](x). )

Herego is the bare coupling constant and (x) is the continuum gauge field.
On the lattice the dynamical fields &B&)(2) matricesU,, (x), which are associated with
the links of the lattice, and the Wilson action is given by

1
S:ﬁxéul— 5 tre P (), (8)
where the plaquette is defined as
Puv(x) = Up () Uy (x + €,) U} (x + ) U] (x) 9)

ande,, is a unit vector in the positive direction. (Note that the trace extends over color
indices only.) The Wilson action is invariant under the gauge transformation

UZ(x) =20 U027 (x +ep), (10)

where$2(x) areSU(2) matrices. The link variable§, (x) may be expressed in terms of
the continuum gauge field, (x) by making use of the relation

Uy (x) = expliagoAb (x)1"], (11)
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whereaq is the lattice spacing? = 0% /2 are the generators of ti8J(2) algebra and”
are the Pauli matrices. One can check that in the naive continuurmulirsitd the Wilson
action reproduces the continuum action in Eq. (7) if

p=t- 1 (12)

N 8_3 - mag’
whereqwq is the bare coupling constant (squared).

For the gauge grouBU(2), the link variables, (x) can be given in terms of (real)
four-vectors of unit length

Up@) =1 +idux) -6, [uS@] + [0 =1, (13)
wherel is a 2x 2 identity matrix. By defining the lattice gluon fieLdZ (x) as

Up(x) = Ul (x)

AL (x) = 5 (14)
one obtains
AZ(x) = 2uZ(x) = agoAZ(x) + (’)(a3) (15)

in the naive continuum limiz — 0. This definition has been used for the numerical
simulations done in Sdo Carlos.

Note that the gluon fieId4Z(x) defined above changes sign under a non-trivial center
transformatioriZ, of the link fieldsU, (x) — —U,(x). Recently, another identification of
the gluonic degrees of freedom in the lattice formulation was proposed [28]. In this case,
one first notices that the gluon field in doruum Yang—Mills theories transforms under
theadjointrepresentation of th8U(2) color group, i.e.,

aed
!/ a € ec C
AY(x) = 0" () AL (x) + —0 (x)8,, 0%, (16)
0% (x) = 2tr.[2()* 2T (0)r], (17)

where 2(x) € SU2) is a gauge transformation of the fundamental quark field and
0% (x) € SO3). In view of the transformation properties in Eq. (16), one can identify the
continuum gauge fieldaj (x) with the algebra-valued fields of the adjoint representation

U (x) = [expagoAl, ()]}, (18)

wheref?. = %< and the total anti-symmetric tensef®* is the generator of th8U(2)
group in the adjoint representation. On the lattice, the adjoint nrg&x) are obtained
from

U (x) = 2tr [Up (01U (0)1] (19)
and the gluon field4j, (x) is given by

A (x) = 2u8, ()b (x), (20)
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without summation over on the right-hand side. By expanding Eq. (18) in powers of the
lattice spacing and by using Egs. (13) and (19) one obtains

.AZ x) = agoAZ (x) + (’)(03). (21)

Clearly, the representation (20) is invariant under a non-trivial center transformation
U,(x) - —U,(x). This discretization of the gluon field has been used for the simulations
done in Tubingen.

It is well known that different discretizations of the gluon field lead to gluon
propagators equivalent up to a trivial (ftiplicative) renormalzation [42—45]. Also, this
proportionality constant between differentdistizations of the gluon propagator may be
(partially) explained as a tadpole renormalization [46,47]. We point out, however, that it is
useful to disentangle the information carried by center elements and coset fields, defined
above, when the vacuum energy is investigated. In particular, it was found that—in the
continuum limit—the center elements provide a contribution to the gluon condensate [48,
49].

2.2. Tadpole improved gluon fields

The relation between lattice and continugoon fields relies on the expansion (see
Eqg. (11))
Up(x) =1 +iagoAl, ()" + -, (22)

where the ellipses denote higher erderms in the bare coupling constget The artificial
contributions of these higher order terms to loop integrals are called “tadpole” terms [50].
These terms are only suppressed by powelggazfnd are generically large in simulations
using moderat@ values.

In order to remove the tadpole contributions from the observable of interest one can
redefine the relation between the link matrices and the continuum gluon field by using

U (x) =uor[1 +iagoAl (x)t” + -], (23)
whereug 1 is given by the “meanfield” value

uo,L = <tL2”Uu(x)> (for arbitrary ) (24)

with the linksU,, (x) fixed to the Landau gauge. Equivalently, one can use [50] a gauge-
invariant definition of the tadpole factor given by

tr, 1/4
wor=|(Gree)] (25
whereP,, (x) is the plaquette defined in Eq. (9). Thus, the use of tadpole improvement in
the case of the standard definition of the lattice gluon field (15) gives

Ab (x) = agoAb (x) + O(a®) = 2ub, (x) /uo.p. (26)

In the case of the coset definition (20) of the gauge fields, the tadpole factors are
expressed in terms of the expectation values of the adjoint link and of the adjoint plaquette
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and are given by

udy = <%"uﬂ(x)>, (27)
1 1/4 ) 1/4
ud, = [é(trc P,N(x))} = [§<[trc Pu(0)] 1)] : (28)

Thus, the tadpole improved relation between the continuum gauget&@e{lﬂ) and the link
matrices is given in this case by

AZ (x)= agoAZ(x) + (’)(a3) = 2u2(x)uZ(x)/u8f'P. (29)

In the sections below we will stress the effect of tadpole improvement on the various
guantities considered in this work.

2.3. Minimal Landau gauge

The gluon and ghost propagators depend on the choice of the gauge. In order to maintain
contact with the Dyson—Schwinger approach and the results presented in the Introduction,
we consider the so-called minimal (lattice) Landau gauge. This gauge condition is imposed
by minimizing the functional

Six[2]=— Y tre U7 (x), (30)
X[

WhereUlf (x) is the gauge-transformed link (10)hiB minimizing condition corresponds
to imposing the transversality condition

(A AP )= Al (x) - Al (x —e,) =0 Vb andx, (31)
"

which is the lattice formulation of the ual Landau gaugexing condition in the
continuum. Let us notice that the condition (31) is exactly satisfied by the lattice gauge field
only if the standard discretization (15) is considered, while for the discretization given in
(20) the above result is valid up to discretization errors of osdeHowever, in both cases,
the gauge-fixing condition (30) implies that tbentinuumLandau gauge-fixing condition
9 - A =0is satisfied up to discretization errors of ordér In practice, we stop the gauge
fixing when the average value fifA - A)” (x)]? is smaller than 10'2.

The minimizing condition (30) also implies that the Faddeev—Popov matrix is positive
semi-definite. In particular, the space of gauge-fixed configura{iUﬁs(x)} lies within
the first Gribov horizon, where the smallest (non-trivial) eigenvalue of the Faddeev—Popov
operator is zero. It is well known that, in general, for a given lattice configurgtiqiix)},
there are many possible gauge transformati@s) that correspond to different local
minima of the functional (30), i.e., there aBibov copiednside the first Gribov horizon
[36,37]. Thus, the minimizing condition given in Eq. (30) is not sufficient to find a unique
representative on each gauge orbit. A possibletn to this problem is to restrict the
configuration space of gauge-fixed field’§ (x) to the so-calledundamental modular
region [38], i.e., to consider for each configurati¢®y, (x)} the absolute minimunof
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the functional (30). From the numerical point of view this is a highly non-trivial task,
corresponding to finding the ground state of a spin-glass model [51]. On the other hand, if
local minima are considered, one faces thebfem that differenhumerical gauge-fixing
algorithms yield different sets of local minima, i.e., they sample different configurations
from the region delimited by the first Gribov horizon (see, for example, [44] and references
therein). This implies that numerical results using gauge fixing could depend on the gauge-
fixing algorithm, making their interpretation conceptually difficult.

Inthe simulations done in S&o Carlos, a stochastic overrelaxation algorithm [52-54] was
used. The simulations done in Tiibingen have employed the simulated annealing technique
described in detail in Ref. [30]. The problem of Gribov copies was not considered in either
case. Even though neither method is able to locatelthigal minimum of the gauge-fixing
functional, i.e., to restrict the gauge-fixed configuration space to the fundamental modular
region, a comparison of the propagators obtained using the two methods can provide an
estimate of the biasJribov noisg introduced by the gauge-fixing procedure. From this
comparison we have found that the data for the propagators are rather insensitive to the
particular choice of gauge-fixing algorithm, suggesting that the influence of Gribov copies
on the two propagators (if present) is at most of the order of magnitude of the numerical
accuracy. For the gluon propagator thisuless in agreement with previous studies in
Landau gauge for th8U(2) andSU(3) groups in three [33] and four dimensions [31,44,
55]. A similar result has also been obtained for the gluon propagator in Coulomb gauge
[56]. On the other hand, a previous study of the ghost propaga®iif) Landau gauge
[31] has shown a clear bias related to Gribov copies in the strong-coupling regime. In
particular, data (in the IR region) obtained considering only absolute minima have been
found to be systematically smaller than data obtained using local minima. This result—
which has been recently confirmed in [57]—can be qualitatively explained. In fact, as said
above, the smallest non-trivial eigenvalugin, of the Faddeev—Popov operator goes to
zero as the first Gribov horizon is approached. At the same time, one expects that global
minima (i.e., configurations belonging to the fundamental modular region) be “farther”
away from the first Gribov horizon than local minima. Thus, the absolute minimum
configuration should correspond to a valueigfi, larger—on average—than the value
obtained in a generic relative minimulnSince the ghost propagator is given by the
inverse of the Faddeev—Popov matrix (see Section 2.5 below), this would imply a smaller
ghost propagator (on average) at the absolute minimum, as observed in Refs. [31,57]. The
analysis carried out in these references Hasmh that Gribov-copy effects are visible
only for the smallest non-zero momentum on tatice, at least for the lattice volumes
considered, which are still relatively small. As explained below (see Section 4.3), in our
analysis we have not considered the data points corresponding to the smallest momenta.

2.4. Gluon propagator
The continuum gluon propagator in position space is given by

DI (x — y) = (A% (x) AL (y)). (32)

1 This was checked numerically in Ref. [58].
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Correspondingly, one can consider the (fos space) lattice gluon propagator

D (x — y) = (A% () AL (), (33)

whereA‘;L(x) is one of the lattice discretizatiord the continuum gluon field discussed
above (see Egs. (15) and (20)). At the leading otdirese two quantities are related by

86a° Db (x — y) = D (x — y)/uf p, (34)
whereug, p is the tadpole factor given in Eq. (25) (respectively, Eg. (28)) when considering
the lattice gluon field defined in Eq. (15) (respectively, Eq. (20)).

The lattice gluon propagator in momentum space is obtained by evaluating the Fourier
transform

R 1 A .
Db () = v YD x—yexdip-G-H].  pu=

X,y

2mny,
Ny

: (35)

wheren,, labels the Matsubara modes in thelirection,N,, is the number of lattice points

in the same directiony = xa, y = ya andV is the lattice volume. In order to minimize
discretization effects [59], we consider the gluon propagator as a function of the lattice
momentump with components

Py = Zsin(%‘) (36)
Itis also useful to introduce the lattice gluon form facfefp?), defined as
L _F0? R e WU
DP)=—5= Dh=g > D (p). (37)
a,pu

which is a measure of the deviation of the full propagator from the free one. Note that, in
Landau gauge, the propagator is diagonal imcepace and transversal in Lorentz space.
The transversality condition (31) implies [31] tHat0) is not given byD(p) at p = 0. In
fact, for p = 0 the previous equation beconBg0) = (1/12) Za’# Dy, (0).

In order to evaluate numerically the gluon propagator in momentum space it is useful to

employ the formula [31]

1 2 7
D(p) = Wz:<[2:,4§j(x)cos(ﬁ-32)] + [ZAZ(x)sm(pw)} > (38)
a, X X

In fact, by expanding the previous equation we obtain

A 1 a a A n oA
D(p) =g 2 D ML AL codp - (= )], (39)
a, ;b x,y
which is directly related to Eq. (35).
One can also evaluate the form facfofp?) directly [28]. To this end we can consider,
without any loss of generality, a momentunansfer parallel to the time directigh =
(0,0, 0, pg) and define

AtAu(x) ZAu(x+e4) _Aﬂ(x)v (40)
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whereey is the unit vector in the time direction. The form factor is then obtained from

1 2 TP
f(ﬁ2)=WZ<[ZAtAZ(x)COS(ﬁ-£)] +[ZA,AZ(x)SIn(p-x)] > (41)

a,u

By expanding the previous formula one can verify that the free pgst is canceled
exactly. This strongly suppresses the statistical noise in the high-momentum regime. Here,
we will present results that directly address the gluon propagator (38) and the gluon form
factor (41), evaluated, respeatly, in S&o Carlos and in Tubingen.

2.5. Ghost propagator

The ghost propagat@¥®’ (p) is uniquely defined once the gge-fixing functional (30)
is specified. In fact, if we write the gauge-fixing matrix as

2(x) = exp[i0° (x)1*], (42)

with ¢ defined as in Section 2.1, then the gadigeng functional can be expanded with
respect to the angle¥ (x) and, at any local minimum ofsx, we obtain

1 a a
Six = So+ 5 Z}:Z};e )MEoP (y) + O(63). (43)

whereMj;f is the so-called Faddeev—Popov operator. Note that the linear teérx)n
is absent by virtue of the minimizing gauge-fixing condition (see Egs. (30) and (31)).
The expression of the Faddeev—Popov operatterms of the gauge-fixed link variables
can be found in [38, Eq. (B.18)]. Note that the mati\idg’;7 obtained in this way is a
lattice discretization of the continuum Faddeev—Popov ope(atdr A) - 9 and that this
discretization yields automatically the standard discretizaﬂcﬁmx) for the gluon field
givenin Eq. (15).

The lattice ghost propagat6f® (p) is provided by the inverse Faddeev—Popov operator
Mjf;’. Due to translation invariance, the lattice average of the inverse operator depends only
on (x — y). Thus, in momentum space we have

.1 1 N
G (p) =3 D_N(M ) )exd —ip - (5 — )] (44)
X,y

Since the matriﬂv[f;’ depends linearly on the link variablé, (x), tadpole improvement
applied to the ghost propagator implies a rescaling

G (p) = G*" (P)uc,p. (45)
Thus, at the leading orderone has
a®G™(p) =G*" (p)uop, (46)

whereG? (p) is the continuum ghost propagator in momentum space.
The asymptotic behavior of the ghost propagaiéf (p) is known from perturbation
theory: it decreases ag 42 with additional logarithmic corrections. The 42 behavior is
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inherited from the free-theory case. The non-trivial information on the ghost propagator is
therefore encoded in the (continuum) form faci@p?), which is defined by

A2

G () =8 G(p) = 60 L2, (47)
yielding the lattice form
~2

geb(p) = sr L7 (48)

Numerically, the lattice ghost propagator damobtained by inverting the Faddeev—Popov
matrix M;‘f. In the numerical simulations carried out in S&o Carlos this has been done
using a conjugate-gradient algorithm. On the contrary, in the simulations in Tubingen the
(lattice) ghost form factoy7 (52) has been evaluated directly. To this end one can consider
the following set of linear equations (for a given set of link varialilgs

> MU’ (y) =n“{codp - (& — eu)] — codp - 21}, (49)
v.b
Y MPUT (y) = n{sin[p - (& —e,)] - sinlp - 21}, (50)
b
wheren® is an arbitrary unit vector that specifies the components of the ghost propagator
under investigation. We are considering momenta with a non-zero component onlyin the

direction. In fact, by solving these equations #d(y) andv”(y) and using trigonometric
identities we find that the ghost form factor is given by

1
j(ﬁz) = V Z({Coiﬁ . ()Az — eu)] — Coqﬁ . )A/]}I’Lbﬁb(y)
y

+{sin[p - (5 = e,)] = sinlp - $1}n" 5 (v) (5)
——ZZn [4st< )]co{ﬁ()%—y)]. (52)
x,¥ a,b

Note that, with our choice of momenta, the lattice momentum squared is giveR By
4sir12(ﬁ#/2) implying that the free part/Jp? of the ghost propagator exactly cancels out
and we are left with the form factgr (52). The set of equations (49)—(50) has been solved
using a bi-conjugate gradient method for matrix inversion.

2.6. Renormalization

Renormalization of Yang—Mills theories ifour dimensions implies that the bare
coupling acquires a dependence on the ultraviolet (UV) cuteff given by

oo — ao(Auv/Ascald- (53)

Thereby, the bare coupling constant is nader the theory’s parameter. The Yang—Mills
scale parametetscgetakes over the role of the only parameter of the theory. In the context
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of (quenched) lattice-gauge-theoiliynsilations of the string tensioa is widely used as
the generic low-energy scalm this case, the cutoff dependence of the bare coupling is
implicitly given by the 8 dependence ofa?(8) wherep is related to the bare coupling
in (12) andAyy = /a(B). In Section 3.3 we will derive this relation from lattice data
(obtained in Ref. [60]).

In addition, wave-function renormalizan constants develop a dependencefy,/
Ascale The lattice bare form factors of the previous subsectigizgsand 7, are related to
their continuum analogues (for very largg by

FBZfBLZ, Jp = Jpuo,p. (54)
4”O,P
These form factors depend on the momenfefhand on the UV cutoffAyy (given in units

of the string tension) or, equivalently, on the lattice couplih{see Section 4.3 below).
Thus, we can write

Fe=Fp(p®.B).  Ts=JTs(pr% B). (55)
The renormalized form factors are olstad upon multiplicative renormalization

Fr(p® 1?) = 2518, W F(p% B), (56)

Tr(p? 1?) = 235 B. w I (% B). (57)
using the renormalization conditions

Fr(? 1?) =1, Jr(n? 1?) =1 (58)

(Notice that tadpole renormalization does not affect the calculatidrkof/z but may be
useful for the determination of the renormalization constZ@tsig.)

Clearly, similar relations hold also for the bare and renormalized gluon and ghost
propagators. In practice, the multiplicative renormalizability of the theory implies that a
rescaling of the data for eaghvalue (independently of the lattice momentum) is sufficient
to let the form factorsFg(p?, B) and Jz(p?, p)—or equivalently the corresponding
propagators—fall on top of a single curve describing the momentum dependence of the
corresponding renormalized quantity.

2.7. Running coupling constant

Of great importance for phenomenological purposes is the running coupling strength
ar(p?) considered in Ref. [12]. In particular, this strength enters directly the quark DSE
and can be interpreted as an effective iattion strength between quarks [61]. This
running coupling strength is a renormalizatigroup-invariant combination of the gluon
and ghost form factors. In order to derivesitiombination we canaitt with the definition
of the ghost—ghost—gluon vertex renormalized coupling strength

_ 23 W Z5B, 1w
Z2(B. )

ar(p?) ao(Auv), (59)
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where Z1(B8, ) is the ghost-ghost—gluomertex renormalization constant. In lattice
simulations, the UV-cutoff is related by Ayy = 7 /a(B), wherea is the lattice spacing.
Using Egs. (56) and (57) we can express the renormalization constgfs ) and
Zg(ﬁ, w) in terms of the bare and renormalized form factors yielding

ar (1) Fr(p2 1) T3 (92 1) = S8 £ (02, B) T3 (52, B). (60)

Zl(ﬁ’ )

Note that the left-hand side of this relation is finite and independegthnf construction
and that the right-hand side depends on the renormalizationscally through the ghost—
ghost—gluon vertex renormalization constaft(8, ). It was found more than twenty
years ago by Taylor [9] that (in the continuui) is finite, independent gi, at least to all
orders of perturbation theory. This finding will be confirmed by our lattice studies below.
In this case, the right-hand side of Eq. (60) is thus independent @hen, by choosing
= \/F and using the renormalization conditions (58), we find the final expression for
the running coupling strength, i.e.,

ar(p?) = ar(1?) Fr(p?, n?) IR (p?, 1), (61)

Finally, let us notice that Egs. (34) and (46)dty that tadpole renormalization does not
affect the renormalized coupling defined above.

3. Detailsof the numerical smulations
3.1. Setup

All our simulations used the standard Wilson action $(2) lattice gauge theory in
four dimensions with periodiboundary conditions. In order to check finite-volume effects
and verify scaling we consider several valueg @ind of the lattice volumeg = Nf x Nji.

The dependence of the lattice spacingfocan be inferred from a calculation of the string
tensiono in lattice units. Here, we will use the data fer? reported in Ref. [60] and a
linear interpolation of the logarithm of these data where neédedalue of the lattice
spacing in physical units was obtained using the vatue [440 MeV)? for the string
tension. We usedV¢ons independent configurations for the numerical evaluation of the
propagators.

Computations in Séo Carlos were perfaainon the PC cluster at the IFSC-USP (the
system has 16 nodes with 866 MHz Pentium Ill CPU and 256 MB RAM memory). All
runs in S8o Carlos started with a random gauge configuration and for thermalization we
use ahybrid overrelaxedHOR) algorithm. The total computer time used for the runs
was about 50 days on the full PC cluster. In Table 1 we report the parameters used for the
simulations in Sdo Carlos. For eggélvalue three different lattice volumes were considered,
i.e.,V =14% 20* and 26. For the lattice volum& = 14* (respectivelyy = 20* and 26)
and for eactB value we producedconi = 500 (respectively, 150 and 50) configurations.

2 For B = 2.15 an extrapolation of these data was necessary in order to ohtain
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Table 1

Simulation parameters of the runs in Sdo Carlos. Data from Ref. [60] were used to obtain the lattice spacing in
units of the string tension. Error bars (in parentheses)e from propagation of errors and indicate one standard
deviation on the last significant digit. The lattice voluniésnd the number of configurationé.qns considered

are discussed in the text

B 2.2 23 24 25 26 27 28
ca?  0.22009) 0.136(2) 0.071(1) 0.03633) 0.018(1) 0.01032) 0.00553)

Table 2
Simulation parameters of the runs in Tubingen. Data from Ref. [60] were used to obtain the lattice spacing in
units of the string tension

215 22 23 2375 245 2525
oa? 0.280(13) 0.220(9) 0.1362) 0.0832) 0.05078) 0.03075)
N3N, 163 x 32 16 x 32 16 x 32 16 x 32 16 x 32 16 x 32
Neonf 200 200 200 200 200 200

Table 3
Differences between the Sédo Carlos and the Tuibingen numerical approach

Séao Carlos Tlbingen
Definition of gauge fields fundamental representation adjoint representation
Gauge fixing iterative stoch. overrelaxation simulated annealing
Number of lattice points finite-size control fixed

Computations in TUbingen were carried out at the local PC cluster where 4-12 nodes (1
Ghz Athlon) were used. The simulation parameters for the runs in Tlbingen are listed in
Table 2.

Table 3 lists the differences between the Sdo Carlos and the Tibingen approach.
Reconstructing the continuum gauge field from the link fields in different manners
(compare Eq. (15) with Eq. (20)) provides insight into the discretization errors. Employing
different gauge-fixing algorithms points out the effect of the Gribov ambiguities on the
propagators.

3.2. Determination of renormalization constants

In order to obtain the renormalized propagators and form factors, one needs to evaluate
the renormalization constanﬁtgl(ﬂ,u) and Z;l(ﬁ, w) defined in Egs. (56) and (57),
respectively. Multiplicative renormalizability implies that one can “collapse” data obtained
at differentg on a single curve. This can be done by using the matching technique
described in detail in Ref. [62, Section V.B.2], For instance, for the gluon form factor
this is equivalent to considering the quantity

Fr(p? 1?) = 231 (B, 0 F(B. p?), (62)

where the factoagl(ﬁ, w) for eachp is obtained from the matching technique. The
renormalization point, i.e., the-dependence, comes into plavhen the “single” curve
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is rescaled to satisfy the condition

Fgr (uz, uz) =1 (63)

The same procedure is applied to the ghost form factor. For our analysis we considered a
renormalization scale of =3 GeV.

For the S&o Carlos data we checked for firsize effects before applying the matching
technique® In particular, by comparing data at different lattice sizes and sanaalue,
we find (for each8) a range of momenta for which the data are free from finite-volume
corrections. We then perform the matching using data for these momenta-araé*.

3.3. Asymptotic scaling

As said in Section 2.6, the cutoff dependence of the bare coupling is implicitly given by
oa?(B). Thereby, the string tensian serves as the fundamental energy scale.
In principle, perturbation theory predicts the dependence ofa? for the regime
a < 1//a. In practice, large deviations of the measured funciéarf(8) from the
perturbative scaling are observed in the scaling region, which corresponds to the interval
B € [2.15,2.8] in our case. Clearly, the relation between the “measured” valuesd®ér
and perturbation theory is highly important for a careful extrapolation of the lattice data to
continuum physics. One goal of the present paper is to present this relation.
For this purpose, we perform a largeexpansion of the lattice spacing in units of the
string tension, i.e.,
2 2 2
4 2—’321|n<4” )+4Li+c. (64)
Bo Bs Bo

The first two terms on the rhs of (64) are in accordance with 2-loop perturbation theory.
The termd /8 represents higher order effects and the teima dimensionless scale factor

to the string tension. Parameterandd are determined by fitting the formula (64) to the
lattice data reported in Ref. [60]. Using only data fbe 2.3 we obtain

c=43809), d=1664), x?/dof.=0.62 (65)

The corresponding fit is shown in Fig. 1. It appears that the truncation of the series (64) at
the 1/8 level reproduces the measured values to high accuracy.

In order to illustrate the impact of theterm correction in (64) on the estimate of Yang—
Mills scale parameters, we briefly consider the lattice scale paramgtemhis parameter
is implicitly defined at the 2-loop level by considering [50]

a; =—1In + In{In , 66
lat = 45 (azAét 27 o azAét (66)
where for theSU(N) gauge group

11 17 4, 27

3 For more details see [33, Section I11].



J.C.R. Bloch et al. / Nuclear Physics B 687 (2004) 76—100 91

In( Gaz)
&
T
|

5 =

% L i ! i ! i L ;
2.2 24 2.6 2.8 3

B

Fig. 1. The string tension in units of the lattice spacing: lattice data from [60] and the fit using Eq. (64).

Inverting Eq. (66) consistently up to 2-loop perturbation theory yields

. 4 1 2 4T _
In(a?AZy) = —ﬂ—zalatl + ﬂigl |”<ﬁ_7;0‘|atl)- (68)

Then, usingxlgtl =z B from Eq. (67) and eliminating by subtracting Eq. (64) from the
latter equation we find

AL : 4r2d
|n<ﬁ> — lim [—c — l—] (69)
o B—>00 Bo B
Thus, if we extrapolate to the continuum linfit— co we obtain
Alat= e~ /2/o =0.112(5) /o . (70)

Using the valuer = [440 MeV|? one getsAjat = 49(2) MeV. If one instead of the limit

in (69) assumes that the asymptotic scaling regime is reached forde-2,5, one gets
Ajat = 0.01888). /0. This is the order of magnitude familiar from the literature. Hence, for
a scaling analysis of lattice results employifig [2.15, 2.8] the irrelevant term of order
1/8 is still important.

4. Results

4.1. Renormalization constanfs, Z3 and Z;

Let us firstly focus on the renormalization constatts and Zs. As outlined in
Section 3.2, these constants are obtained from “matching” the lattice data from simulations
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Fig. 2. The gluon and ghost renormalization constantsf, ) andZ3(B, ), foru =3 GeVN(Ieft panel)y axis
is arbitrarily scaled. The cutoff dependenceZy‘Z% (right panel) is consistent with a finité, (see Egs. (74),
(75)). Figures correspondirtg the Tibingen data only.
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Fig. 3. The analogue of Fig. 2, for the Séo Carlos data fite shown on the left-hand side for the gluon (upper
curve) and ghost (lower curve) renormalization constants are done/veitha free parameter. All fits neglect the
leftmost data point.

using differentg values. Figs. 2 and 3 show the cutoff dependence of these constants,
respectively, for the Tubingeand Sao Carlos sets of data.
Using the results above, we can check that our data are consistent with the predictions

from perturbation theory. For large enough UV cutoff, one expects that the 1-loop behavior
is recovered, i.e.,

Z3(B, ), Z3(B, ) = b[—In(0a®) + 0] (71)
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Table 4
Expectation value of the adjoint plaquette (28) usedHe tadpole improvement of the gluon fields derived from
the adjoint representation

B 2.15 22 23 2.375 245 2525

MS,dP 0.22542) 0.241(43) 0.274(45) 0.297(46) 0.317(46) 0.336(47)

If only small lattice spacings are consideredis related to the ratio between the string
tension and the Yang—Mills scale parameter at 1-loop level

7T26

5 .
1-loop

w=In (72)

Here, we treab as a fit parameter and explore a range of lattice spacings where one would
already expect significant deviations from the 1-loop behavior. As shown in Figs. 2 and 3
(left panel), a good consistency with the known anomalous dimensions is observed.

For the Tilbingen data, we find that~ 1.13 is a good choice for reproducing the
data forZ3 and Z3 simultaneously. It turns out that within th& range explored in the
Tubingen runs, tadpole improvement has a minor effect on the anomalous dimension. The
adjoint plaquette used for the tadpole improvement (see Eq. (34)) employing the adjoint
representation is listed in Table 4.

For the S8o Carlos data we have performed the fits widls a free parameter, leaving
out the data point with = 2.2 (i.e., the leftmost point in Fig. 3). We obtain the following
values for the gluon and ghost cases

Ygluon= 060(5) and Yghost= 032(7) (73)

We see that the values are, respectively, consistent witB21:8 0.59 and 944~ 0.20

within error bars (but notice that there is a discrepancy of almost two standard deviations
for yghosp. In this case we have not succeeded in finding a value afescribing the
behaviors forZs and Z3 simultaneously.

In order to interpret the product of ghost and gluon form factors as the running coupling
strength (see Section 2.7), it is of great importance that the ghost—ghost—gluon vertex
renormalization constart; be finite in the continuum limit. For detecting the UV behavior
of Z1, let us investigate the product

~ 2 ~
Z3(B. ) Z2(B. ) = %Zi(ﬁ, 1), (74)

where (59) was used. The left-hand side of the latter equation can be directly obtained
from the numerical result for the renormalization constay&3, 1) and Z3(8, u). Note
that for large UV cutoff, one finds

2
1 Ay

-3
ao(Auv) Al-toop

= —In(0a?) + const (75)

where the constant comprises cutoff (and therefgriedependent terms. The crucial point
is that if the producZs(8, M)Zg(ﬁ, w) rises linearly with—In(oa?) the additional factor
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Z%(ﬂ, w) must be finite in the continuum limit (since the renormalized couplipg?) is
assumed finite). Our numerical findings f0$(5, M)Zg(ﬁ, w) are also shown in Figs. 2 and

3 (right panel). The data nicely support Taylor’s findings, i&. is cutoff- and therefore
u-independent.

4.2. The running coupling constant

Once it is established thaf; is finite, the momentum dependence of the running
coupling constant can be simply derived from the product (61)

ar(p?) =ar(1?) Fr(p?, 1?) I3 (P 11?). (76)
The overall normalization factor can be obtained by comparing the lattice data with the
well-known perturbative result, which is valid at high momentum. Here, we compare

with the 2-loop expression, which is knowia be independent of the renormalization
prescription, i.e.,

A {1 @In(lnx)}’ 77)

oo ="/ oo = e |1 g7
with 8o and 1 given in Eq. (67). In order to obtairio>-o0p and to fix the overall factor,
we fitted g (1) Fr (p?, 1?)J2(p?, 11?) to the 2-loop running couplingz-ipop(p) Where
only momenta > pj were taken into account. Fitting parameters wegéu) and the 2-
loop perturbative scalé »-jo0p. Starting from a very low valug,, we fit these parameters
while gradually increasing,,. For small values of,,, we observe that the functional
form of (77) tries to incorporate genuine non-perturbative effects by adjustingop,
thus, introducing a spurioysy, dependence td-o0p. However, a plateau is reached for
the Tibingen data gty ~ 2 GeV indicating that the data are well reproduced by the
2-loop formula in this regime. We find in this case that

Az-loop = 0.95(15) GeV. (78)

For the Sao Carlos data we have cut the data,ate 2.5 GeV, which corresponds to a
large drop in thex2/d.o.f. of the fit. (This also corresponds to reaching a relatively good
plateau forA,-jo0p Obtained from the fit.) We obtain the valug-joop = 1.2(1) GeV. The
two values are consistent within error bars.

Our final results for the running coupling constant are presented in Fig. 4. In the
IR region, the two data sets show a clear departure from the perturbative behavior and
suggest a finite value, for the running coupling constant at zero momentum. We estimate
a. = 5(1). This value is in agreement with our previous fits &g¢(p?) [34,35], and is
consistent with the DSE result of Ref. [25], ~ 5.2, usingx = 0.5 as input.

4.3. Gluon and ghost form factors
Fig. 5 shows the Tlbingen data for the gluon and the ghost form factors. The error

bars comprise statistical errors only. It turns out that one observes an additional scattering
of the data points which is not of statistical origin. This additional systematic noise is
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Fig. 4. The running coupling in comparison with the resfrten perturbation theoryTubingen data (left panel)
and Sédo Carlos data (right panel). The momentum cutgffijs= 2 GeV in the former case angy, = 2.5 GeV
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Fig. 5. The gluon form factoFg (p) and the ghost form factafz (p) as a function of the momentum transfer
(Tubingen data).

pronounced when simulated annealing is used for gauge fixing and it afflicts especially
the small momentum range. We attributestlerror to the residual uncertainty of gauge
fixing (Gribov noise). In particular, since the simulated annealing is capable of hopping
from one local minimum to the other, the algorithm is sensitive to the large-scale structure

of the minimizing functional. This hopping then produces a hon-Gaussian noise which is
underestimated when one uses the standard Gaussian error propagation. For this reason,
we dropped the first three momentum points from the Tibingen data sets.
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momentum transfep (Sdo Carlos data). Note the logarithmic scal the second plot. Fit of gluon propagator
using the analogue of Eq. (79) has been done for momept2 GeV and withA = 1.2 GeV.

In Figs. 6 and 7 we report the rescaled S&o Carlos data for the renormalized gluon
(respectively, ghost) form factor and the data for the corresponding propagators. We stress
that in the gluon case finite-size effects depend on whether we consider the full propagator
or the form factor. In fact, for the propagator these effects are larger in the IR region, while
for the form factor the effects are larger in the UV limit (due to the multiplicationpBy
Thus, the ranges of momenta (for eaéj considered for the plots are different in the
two cases. Nevertheless, thatthing factors obtained are figreement. The difference in
finite-size effects between propagator and form factor is less pronounced when considering
the ghost propagator.

At sufficiently high momentunp > py, (we found in Section 4.2 thaty, ~ 2 GeV is
an acceptable choice), the mombiem dependence of the renaalized form factors should
be given by the formula

2\ p?
Fr(p? 1?). Jr(p?, 1?) ~ da(u) [“2"°°p<A2 ﬂ [1 i Paz-loop</‘2 ﬂ |

2-loop 2-loop
(79)
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Fig. 7. The ghost form factorg (p) (above) and the ghost propagaiGik (p) (below) as a function of the
momentum transfep (S&o Carlos data). Note the logarithmic gcal the second plot. Fit of ghost propagator
using the analogue of Eq. (79) has been done for moment® GeV and withA = 1.2 GeV.

where y is the leading-order anomalous dimension of the gluon (respectively, ghost)
propagator, given by = 13/22 (respectivelyy = 9/44). The parametep stems from
the next to leading order to the anomalous dimension and is scheme-dependent. At least
in the MS scheme, this parameter is small. Furthermore, Eq. (79) can be derived from
the renormalization-group equatiaising the 2-loop scaling functioggr) andy4(gr).
Hence, (79) originates from the resummation of an infinite set of 2-loop diagrams and, e.g.,
comprises the so-called “leading logs”.

Using the Tubingen data sgiy = 2 GeV andAz-ipop = 950 MeV, we fittedy to the
gluon and ghost data, respectively. We find that these parameters are, indeed, small, i.e.,

fgluon= —0.036(18), J7ghost= 0.011(10). (80)

Although the errors on these parameters are rather large, we find it encouraging that
the parameters appear with opposite signs. In the case that the product of form factors
Fr (pZ)JI%(pZ) is, indeed, renormalization group invariant, one would expect that

Ygluon+ 2Yghost= 0. (81)
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Itis clear from the Figs. 2 and 5 that the higlomentum tail is well reproduced by (79).

For the S&o Carlos data we have found that a cphat= 2GeV corresponds to a large
drop in thex?/d.o.f. of the fits, both for the gluon and for the ghost cases. We start by
fitting the leading-order term only (i.e., ignoring. We get

A2—|00p = 119(4) and A2—|00p = 113(2), (82)

respectively, from the fits of the gluon and of the ghost propagator. These values are
consistent with the resulft;-o0p = 1.2(1), obtained in the previous section. We then

fix this value for Ax-50p and perform fits withy as a free parameter. We obtain a good
description of the data (see Figs. 6 and 7), with valuegfeven consistent with zero.

As can be seen from our plots, the gluon form factor is suppressed in the low momentum
regime, while the ghost form factor is divergent. Correspondingly, the ghost propagator
diverges faster than/p? and the gluon propagator appears to be finite. As mentioned in
the introduction, an IR-finite gluon propagator [26—31] and an IR-divergent ghost form
factor [30,31] were obtained before by separate studies.

A quantitative analysis of the IR behavior for the propagators—including the evaluation
of the exponenk mentioned in the introduction—was already presented in Refs. [34,
35]. More thorough such analyses will be presented separately for the two sets of data
in Refs. [63,64].

5. Conclusions

For the first time, evidence from extensivéige simulations is provided that the ghost—
ghost—gluon vertex renormalization constZatis, indeed, finite in continuum field theory
(as found by Taylor using all orders pertutiba theory). Also, our result is probably
not affected by Gribov ambiguities, sinég is obtained using data in the UV limit. It
therefore appears that the Gribov ambiguities (in the lattice approach and the Faddeev—
Popov quantization) do not afflict the renormalization of the vertex.

Also, we performed a thorough study of the gluon and the ghost form factors. Our data
favor the scenario of an IR finite (or even vanishing) gluon propagator while the ghost form
factor is singular in the IR limit.

Finally, we have obtained the running coupling constant over a wide range of momenta
using the data for gluon and ghost form factors. Our data are consistent with the existence
of an IR fixed pointx, = 5(1). Note that this value is inside the interval given by the DSE
expression (5).

We stress that we compared our results for two slightly different lattice formulations,
obtaining consistent results in all cases considered.
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