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Abstract

We perform numerical studies of the running coupling constantαR(p2) and of the gluon and ghos
propagators for pureSU(2) lattice gauge theory in the minimal Landau gauge. Different definit
of the gauge fields and different gauge-fixing procedures are used, respectively, for gaining
control over the approach to the continuum limit and for a better understanding of Gribov
effects. We find that the ghost–ghost–gluon vertex renormalization constant is finite in the con
limit, confirming earlier results by all-order perturbation theory. In the low momentum regime
gluon form factor is suppressed while the ghost form factor is divergent. Correspondingly, the
propagator diverges faster than 1/p2 and the gluon propagator appears to be finite. Precision da
the running couplingαR(p2) are obtained. These data are consistent with an IR fixed point give
limp→0 αR(p2) = 5(1).
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The non-perturbative study of non-Abelian gauge theories is of great importance
determination of infrared (IR) properties such as color confinement and hadronizati
These properties are encoded in the low momentum behavior of Yang–Mills Green
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functions. Derived from these Green functions, the so-called (renormalized) ru
coupling constant “αR(p2)” plays an important role for phenomenological studies
model building. While at large momentum the running coupling decreases logarithm
with momentum, it rapidly rises at the hadronic energy scale of several hundred
thus signaling the breakdown of the perturbative approach. Non-perturbative stud
αR(p2) may be carried out analytically using the Dyson–Schwinger equations (DSEs
numerically through lattice simulations.

Whereas the high momentum behavior of the running coupling is uniquely determ
(to leading orders) and provided by perturbation theory, several definitions of the ru
coupling in the low momentum regime are possible. All of them match with
perturbative result at high energies. For example, the corrections to the Coulomb
the static-quark potential may be used to define the running coupling [1,2]. Alterna
the finite-size scaling has its imprint on the running coupling and may be used for a
precision measurement of the coupling [3,4]. The approach adopted in [5–7] is ba
extracting the running coupling directly from a vertex function. For a recent review
lattice calculations forαR(p2) see [8].

In order to obtain Green’s functions for the fundamental degrees of freedom, gluo
quarks, gauge fixing is necessary. Despite being gauge-dependent, these Green functi
play an important role for the phenomenological approach to hadron physics. L
gauge is a convenient choice for gauge fixing for several reasons. First of all, i
Lorentz-covariant gauge implying that 2-point functions only depend on the squa
the momentum transfer. Secondly, the renormalization procedure is simplified sin
ghost–ghost–gluon vertex renormalization constantZ̃1 is finite, at least to all orders o
perturbation theory. This result—obtained by Taylor [9]—is a particular feature of La
gauge and allows another definition of the running coupling constant, which only requires
the calculation of 2-point functions: letFR(p2,µ2) andJR(p2,µ2) denote the form factor
(for a renormalization pointµ) of the gluon and the ghost propagator, respectively;
running coupling is then defined by

(1)αR

(
p2) = αR

(
µ2)FR

(
p2,µ2)J 2

R

(
p2,µ2)

(see Section 2.7 below).
Due to its usefulness for the description of the physics of hadrons, the non-per

tive approach to low-energy Yang–Mills theory by means of the DSEs has attrac
much interest over the last decade [10,11]. The coupled set of continuum DSEs
renormalized gluon and ghost propagatorsin Landau gauge has been recently studied
several groups [12–25]. In all cases it was found that the gluon and ghost form f
satisfy simple scaling laws in the IR momentum rangep � 1 GeV

(2)FR

(
p2,µ2) ∝ [

p2]α, JR

(
p2,µ2) ∝ [

p2]β,

where the remarkable sum rule holds for the IR exponentsα andβ :

(3)α + 2β = 0.
It is interesting that this result is rather independent of the truncation scheme under
consideration. These exponents may be determined from lattice simulations, assuming the
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parameterizationα = 2κ andβ = −κ . Note that forκ > 0 this implies a divergent gho
form factorJR(p2,µ2) in the IR limit and a vanishing gluon form factorFR(p2,µ2) in
the same limit. Also, since the gluon propagator is given byD(p2) = F(p2)/p2, one gets
thatD(0) is infinite or finite, respectively, ifκ < 0.5 orκ � 0.5. In the second case one h
D(0) = 0 for κ > 0.5 andD(0) finite and non-zero forκ = 0.5. The IR sum rule (3) als
implies that the running coupling (defined in Eq. (61) below) develops a fixed point i
IR limit

(4)lim
p→0

αR

(
p2) = αc = const.

Note that this result is independent of the value ofκ as long as the IR sum rule (3)
satisfied.

The precise value ofκ as well as the fixed-point valueαc depend strongly on
the truncation of the Dyson–Schwinger tower of equations. In fact, depending o
truncation, one finds 0.3 < κ < 1 in the four-dimensional case [12,14–25]. These stu
vary in their vertex ansatzes, angular approximations of the momentum loop integra
on the tensor structure considered. In Ref. [17] a new class of truncation schemes has b
introduced, which manifestly ensures the multiplicative renormalizability of the propa
solutions. In this truncation, although the exact values ofκ andαc depend on the details o
the truncation of the DSE tower, the value ofαc is constrained to

(5)
2π

Nc

< αc <
8π

Nc

for SU(Nc).
An IR-finite gluon propagator [26–31] and an IR-divergent ghost form factor [30

are also obtained using numerical simulations in the minimal Landau gauge. The p
numerical data for the ghost propagator indicate a value ofκ = −β smaller than 0.5, while
for the gluon propagator it is still under debate ifκ = α/2 is equal to or larger than 0.5. In
both cases large finite-size effects in the IR region make an exact determination o
exponents difficult. This is particularly evident in the gluon propagator case [26,27,2
33], where one needs to go to very large lattices in order to have control over the in
volume extrapolation. Our present data are consistent withκ of the order of 0.5 [34,35].

Let us stress that in the minimal Landau gauge, which is the gauge-fixing con
used in numerical simulations (see Section 2.3 below), the gauge-fixed configur
belong to the region of transverse configurations, for which the Faddeev–Popov opera
is non-negative. This implies a rigorous inequality [36–38] for the Fourier components
the gluon field and a strong suppression of the (unrenormalized) gluon propagator
IR limit. At the same time, the Euclidean probability gets concentrated near the b
of this region, the so-calledfirst Gribov horizon, implying the enhancement of the gho
propagator at small momenta [38]. A similar result was also obtained by Gribov in [3

Taylor’s finding is based upon the Faddeev–Popov quantization, thereby ignorin
effect of Gribov copies, which are certainly present in an intrinsically non-perturb
approach. The goal of the present paper is to confirm Taylor’s result (Z̃1 is finite to
all orders of perturbation theory) by the non-perturbative approach provided by latti

simulations. In addition, a thorough study of the gluon and the ghost form factors is
performed. A focal point is the IR limit of the running coupling constant. Support for the
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existence of the fixed point is found, and a first estimate ofαc is provided from extensiv
lattice simulations. We present two sets of simulations, carried out, respectively, i
Carlos and in Tübingen, employing different definitions of the gauge fields and diff
gauge-fixing procedures. We believe that the comparison of these two formul
strengthens the significance of our findings.

The paper is organized as follows. In Section 2 we describe the lattice appro
Yang–Mills Green’s functions. Section 3 containsthe numerical setup for the simulatio
carried out in São Carlos and in Tübingen. In Section 4 we report our data for the
and ghost propagators and for the running coupling constant. Conclusions are left
final section.

Preliminary results have been presented in [34,35,40,41].

2. The lattice approach to Green’s functions

In this section we explain the two lattice setups used for the numerical evaluation
gluon and ghost propagators. We also recall the definition of the running coupling consta
considered in Ref. [12], which can be evaluated using these propagators.

2.1. Gluon field on the lattice

The actionS of the continuumSU(2) Yang–Mills theory is formulated in terms of th
field strength

(6)Fa
µν [A](x) = ∂µAa

ν(x) − ∂νA
a
µ(x) + g0ε

abcAb
µ(x)Ac

ν(x)

and is given by

(7)S = 1

4

∫
d4x Fa

µν[A](x)F a
µν[A](x).

Hereg0 is the bare coupling constant andAa
µ(x) is the continuum gauge field.

On the lattice the dynamical fields areSU(2) matricesUµ(x), which are associated wit
the links of the lattice, and the Wilson action is given by

(8)S = β
∑

x,µ>ν

1− 1

2
trc Pµν(x),

where the plaquette is defined as

(9)Pµν(x) = Uµ(x)Uν(x + eµ)U†
µ(x + eν)U

†
ν (x)

andeµ is a unit vector in the positiveµ direction. (Note that the trace extends over co
indices only.) The Wilson action is invariant under the gauge transformation

(10)UΩ
µ (x) = Ω(x)Uµ(x)Ω†(x + eµ),

whereΩ(x) areSU(2) matrices. The link variablesUµ(x) may be expressed in terms
the continuum gauge fieldAµ(x) by making use of the relation
(11)Uµ(x) = exp
[
iag0A

b
µ(x)tb

]
,
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wherea is the lattice spacing,tb = σb/2 are the generators of theSU(2) algebra andσb

are the Pauli matrices. One can check that in the naive continuum limita → 0 the Wilson
action reproduces the continuum action in Eq. (7) if

(12)β = 4

g2
0

= 1

πα0
,

whereα0 is the bare coupling constant (squared).
For the gauge groupSU(2), the link variablesUµ(x) can be given in terms of (rea

four-vectors of unit length

(13)Uµ(x) = u0
µ(x)1 + i �uµ(x) · �σ,

[
u0

µ(x)
]2 + [�uµ(x)

]2 = 1,

where1 is a 2× 2 identity matrix. By defining the lattice gluon fieldAb
µ(x) as

(14)Ab
µ(x) = Uµ(x) − U†

µ(x)

2i

one obtains

(15)Ab
µ(x) = 2ub

µ(x) = ag0A
b
µ(x) +O

(
a3)

in the naive continuum limita → 0. This definition has been used for the numer
simulations done in São Carlos.

Note that the gluon fieldAb
µ(x) defined above changes sign under a non-trivial ce

transformationZ2 of the link fieldsUµ(x) → −Uµ(x). Recently, another identification o
the gluonic degrees of freedom in the lattice formulation was proposed [28]. In this
one first notices that the gluon field in continuum Yang–Mills theories transforms und
theadjoint representation of theSU(2) color group, i.e.,

(16)Aa′
µ (x) = Oab(x)Ab

µ(x) + εaed

2
Oec(x)∂µOdc,

(17)Oab(x) = 2 trc
[
Ω(x)taΩ†(x)tb

]
,

where Ω(x) ∈ SU(2) is a gauge transformation of the fundamental quark field
Oab(x) ∈ SO(3). In view of the transformation properties in Eq. (16), one can identify
continuum gauge fieldsAa

µ(x) with the algebra-valued fields of the adjoint representat

(18)Ucd
µ (x) = {

exp
[
ag0A

b
µ(x)t̂b

]}cd
,

where t̂ bac = εabc and the total anti-symmetric tensorεabc is the generator of theSU(2)

group in the adjoint representation. On the lattice, the adjoint linksUab
µ (x) are obtained

from

(19)Ucd
µ (x) = 2 trc

[
Uµ(x)tcU†

µ(x)td
]

and the gluon fieldAa
µ(x) is given by
(20)Ab
µ(x) = 2u0

µ(x)ub
µ(x),
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without summation overµ on the right-hand side. By expanding Eq. (18) in powers of
lattice spacinga and by using Eqs. (13) and (19) one obtains

(21)Ab
µ(x) = ag0A

b
µ(x) +O

(
a3).

Clearly, the representation (20) is invariant under a non-trivial center transform
Uµ(x) → −Uµ(x). This discretization of the gluon field has been used for the simula
done in Tübingen.

It is well known that different discretizations of the gluon field lead to glu
propagators equivalent up to a trivial (multiplicative) renormalization [42–45]. Also, this
proportionality constant between different discretizations of the gluon propagator may
(partially) explained as a tadpole renormalization [46,47]. We point out, however, tha
useful to disentangle the information carried by center elements and coset fields, d
above, when the vacuum energy is investigated. In particular, it was found that—
continuum limit—the center elements provide a contribution to the gluon condensa
49].

2.2. Tadpole improved gluon fields

The relation between lattice and continuumgluon fields relies on the expansion (s
Eq. (11))

(22)Uµ(x) = 1 + iag0A
b
µ(x)tb + · · · ,

where the ellipses denote higher order terms in the bare coupling constantg0. The artificial
contributions of these higher order terms to loop integrals are called “tadpole” terms
These terms are only suppressed by powers ofg2

0 and are generically large in simulatio
using moderateβ values.

In order to remove the tadpole contributions from the observable of interest on
redefine the relation between the link matrices and the continuum gluon field by usin

(23)Uµ(x) = u0,L

[
1 + iag0A

b
µ(x)tb + · · ·],

whereu0,L is given by the “meanfield” value

(24)u0,L =
〈
trc
2

Uµ(x)

〉
(for arbitraryµ)

with the linksUµ(x) fixed to the Landau gauge. Equivalently, one can use [50] a ga
invariant definition of the tadpole factor given by

(25)u0,P =
[〈

trc
2

Pµν(x)

〉]1/4

,

wherePµν(x) is the plaquette defined in Eq. (9). Thus, the use of tadpole improvem
the case of the standard definition of the lattice gluon field (15) gives

(26)Ab
µ(x) = ag0A

b
µ(x) +O

(
a3) = 2ub

µ(x)/u0,P .
In the case of the coset definition (20) of the gauge fields, the tadpole factors are
expressed in terms of the expectation values of the adjoint link and of the adjoint plaquette
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and are given by

(27)uad
0,L =

〈
trc
3
Uµ(x)

〉
,

(28)uad
0,P =

[
1

3

〈
trc Pµν(x)

〉]1/4

=
[

1

3

〈[
trc Pµν(x)

]2 − 1
〉]1/4

.

Thus, the tadpole improved relation between the continuum gauge fieldAb
µ(x) and the link

matrices is given in this case by

(29)Ab
µ(x) = ag0A

b
µ(x) +O

(
a3) = 2u0

µ(x)ub
µ(x)/uad

0,P .

In the sections below we will stress the effect of tadpole improvement on the va
quantities considered in this work.

2.3. Minimal Landau gauge

The gluon and ghost propagators depend on the choice of the gauge. In order to m
contact with the Dyson–Schwinger approach and the results presented in the Introd
we consider the so-called minimal (lattice) Landau gauge. This gauge condition is im
by minimizing the functional

(30)Sfix[Ω] = −
∑
x,µ

trc UΩ
µ (x),

whereUΩ
µ (x) is the gauge-transformed link (10). This minimizing condition correspond

to imposing the transversality condition

(31)(
 ·A)b(x) =
∑
µ

Ab
µ(x) −Ab

µ(x − eµ) = 0 ∀b andx,

which is the lattice formulation of the usual Landau gauge-fixing condition in the
continuum. Let us notice that the condition (31) is exactly satisfied by the lattice gaug
only if the standard discretization (15) is considered, while for the discretization giv
(20) the above result is valid up to discretization errors of ordera2. However, in both cases
the gauge-fixing condition (30) implies that thecontinuumLandau gauge-fixing conditio
∂ · A = 0 is satisfied up to discretization errors of ordera2. In practice, we stop the gaug
fixing when the average value of[(
 ·A)b(x)]2 is smaller than 10−12.

The minimizing condition (30) also implies that the Faddeev–Popov matrix is po
semi-definite. In particular, the space of gauge-fixed configurations{UΩ

µ (x)} lies within
the first Gribov horizon, where the smallest (non-trivial) eigenvalue of the Faddeev–P
operator is zero. It is well known that, in general, for a given lattice configuration{Uµ(x)},
there are many possible gauge transformationsΩ(x) that correspond to different loca
minima of the functional (30), i.e., there areGribov copiesinside the first Gribov horizon
[36,37]. Thus, the minimizing condition given in Eq. (30) is not sufficient to find a un
representative on each gauge orbit. A possible solution to this problem is to restrict th

configuration space of gauge-fixed fieldsUΩ

µ (x) to the so-calledfundamental modular
region [38], i.e., to consider for each configuration{Uµ(x)} the absolute minimumof
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the functional (30). From the numerical point of view this is a highly non-trivial ta
corresponding to finding the ground state of a spin-glass model [51]. On the other h
local minima are considered, one faces the problem that differentnumerical gauge-fixing
algorithms yield different sets of local minima, i.e., they sample different configura
from the region delimited by the first Gribov horizon (see, for example, [44] and refere
therein). This implies that numerical results using gauge fixing could depend on the g
fixing algorithm, making their interpretation conceptually difficult.

In the simulations done in São Carlos, a stochastic overrelaxation algorithm [52–5
used. The simulations done in Tübingen have employed the simulated annealing tec
described in detail in Ref. [30]. The problem of Gribov copies was not considered in
case. Even though neither method is able to locate theglobalminimum of the gauge-fixing
functional, i.e., to restrict the gauge-fixed configuration space to the fundamental m
region, a comparison of the propagators obtained using the two methods can pro
estimate of the bias (Gribov noise) introduced by the gauge-fixing procedure. From t
comparison we have found that the data for the propagators are rather insensitive
particular choice of gauge-fixing algorithm, suggesting that the influence of Gribov c
on the two propagators (if present) is at most of the order of magnitude of the num
accuracy. For the gluon propagator this result is in agreement with previous studies
Landau gauge for theSU(2) andSU(3) groups in three [33] and four dimensions [31,4
55]. A similar result has also been obtained for the gluon propagator in Coulomb
[56]. On the other hand, a previous study of the ghost propagator inSU(2) Landau gauge
[31] has shown a clear bias related to Gribov copies in the strong-coupling regim
particular, data (in the IR region) obtained considering only absolute minima have
found to be systematically smaller than data obtained using local minima. This re
which has been recently confirmed in [57]—can be qualitatively explained. In fact, a
above, the smallest non-trivial eigenvalueλmin of the Faddeev–Popov operator goes
zero as the first Gribov horizon is approached. At the same time, one expects that
minima (i.e., configurations belonging to the fundamental modular region) be “far
away from the first Gribov horizon than local minima. Thus, the absolute minim
configuration should correspond to a value ofλmin larger—on average—than the val
obtained in a generic relative minimum.1 Since the ghost propagator is given by t
inverse of the Faddeev–Popov matrix (see Section 2.5 below), this would imply a s
ghost propagator (on average) at the absolute minimum, as observed in Refs. [31,5
analysis carried out in these references has shown that Gribov-copy effects are visib
only for the smallest non-zero momentum on thelattice, at least for the lattice volume
considered, which are still relatively small. As explained below (see Section 4.3), i
analysis we have not considered the data points corresponding to the smallest mom

2.4. Gluon propagator

The continuum gluon propagator in position space is given by

(32)Dab
µν(x − y) = 〈

Aa
µ(x)Ab

ν(y)
〉
.

1 This was checked numerically in Ref. [58].
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Correspondingly, one can consider the (position space) lattice gluon propagator

(33)Dab
µν(x − y) = 〈

Aa
µ(x)Ab

ν(y)
〉
,

whereAa
µ(x) is one of the lattice discretizationsof the continuum gluon field discusse

above (see Eqs. (15) and (20)). At the leading ordera these two quantities are related by

(34)g2
0a2Dab

µν(x − y) =Dab
µν(x − y)/u2

0,P ,

whereu0,P is the tadpole factor given in Eq. (25) (respectively, Eq. (28)) when consid
the lattice gluon field defined in Eq. (15) (respectively, Eq. (20)).

The lattice gluon propagator in momentum space is obtained by evaluating the F
transform

(35)Dab
µν(p̂) = 1

V

∑
x,y

Dab
µν(x − y)exp

[
ip̂ · (x̂ − ŷ)

]
, p̂µ = 2πnµ

Nµ

,

wherenµ labels the Matsubara modes in theµ direction,Nµ is the number of lattice point
in the same direction,x = x̂a, y = ŷa andV is the lattice volume. In order to minimiz
discretization effects [59], we consider the gluon propagator as a function of the
momentump with components

(36)pµ = 2 sin

(
p̂µ

2

)
.

It is also useful to introduce the lattice gluon form factorF(p̂2), defined as

(37)D(p̂) = F(p̂2)

p2 , D(p̂) = 1

9

∑
a,µ

Daa
µµ(p̂),

which is a measure of the deviation of the full propagator from the free one. Note th
Landau gauge, the propagator is diagonal in color space and transversal in Lorentz spa
The transversality condition (31) implies [31] thatD(0) is not given byD(p̂) at p̂ = 0. In
fact, for p̂ = 0 the previous equation becomesD(0) = (1/12)

∑
a,µDaa

µµ(0).
In order to evaluate numerically the gluon propagator in momentum space it is us

employ the formula [31]

(38)D(p̂) = 1

9V

∑
a,µ

〈[∑
x

Aa
µ(x)cos(p̂ · x̂)

]2

+
[∑

x

Aa
µ(x)sin(p̂ · x̂)

]2〉
.

In fact, by expanding the previous equation we obtain

(39)D(p̂) = 1

9V

∑
a,µ

∑
x,y

〈
Aa

µ(x)Aa
µ(y)

〉
cos

[
p̂ · (x̂ − ŷ)

]
,

which is directly related to Eq. (35).
One can also evaluate the form factorF(p̂2) directly [28]. To this end we can conside

without any loss of generality, a momentumtransfer parallel to the time direction̂p =
(0,0,0, p̂4) and define
(40)
tAµ(x) =Aµ(x + e4) −Aµ(x),
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wheree4 is the unit vector in the time direction. The form factor is then obtained from

(41)F
(
p̂2) = 1

9V

∑
a,µ

〈[∑
x


tAa
µ(x)cos(p̂ · x̂)

]2

+
[∑

x


tAa
µ(x)sin(p̂ · x̂)

]2〉
.

By expanding the previous formula one can verify that the free part 1/p2 is canceled
exactly. This strongly suppresses the statistical noise in the high-momentum regime
we will present results that directly address the gluon propagator (38) and the gluo
factor (41), evaluated, respectively, in São Carlos and in Tübingen.

2.5. Ghost propagator

The ghost propagatorGab(p̂) is uniquely defined once the gauge-fixing functional (30)
is specified. In fact, if we write the gauge-fixing matrix as

(42)Ω(x) = exp
[
iθa(x)ta

]
,

with ta defined as in Section 2.1, then the gauge-fixing functional can be expanded wi
respect to the anglesθa(x) and, at any local minimum ofSfix , we obtain

(43)Sfix = S0 + 1

2

∑
x,y

∑
a,b

θa(x)Mab
xy θb(y) +O

(
θ3),

whereMab
xy is the so-called Faddeev–Popov operator. Note that the linear term inθ(x)

is absent by virtue of the minimizing gauge-fixing condition (see Eqs. (30) and (
The expression of the Faddeev–Popov operator in terms of the gauge-fixed link variable
can be found in [38, Eq. (B.18)]. Note that the matrixMab

xy obtained in this way is a
lattice discretization of the continuum Faddeev–Popov operator(−∂ + A) · ∂ and that this
discretization yields automatically the standard discretizationAb

µ(x) for the gluon field
given in Eq. (15).

The lattice ghost propagatorGab(p̂) is provided by the inverse Faddeev–Popov oper
Mab

xy . Due to translation invariance, the lattice average of the inverse operator depen
on (x − y). Thus, in momentum space we have

(44)Gab(p̂) = 1

V

∑
x,y

〈(
M−1)ab

xy

〉
exp

[−ip̂ · (x̂ − ŷ)
]
.

Since the matrixMab
xy depends linearly on the link variablesUµ(x), tadpole improvemen

applied to the ghost propagator implies a rescaling

(45)Gab(p) → Gab(p̂)u0,P .

Thus, at the leading ordera one has

(46)a2Gab(p) = Gab(p̂)u0,P ,

whereGab(p) is the continuum ghost propagator in momentum space.

The asymptotic behavior of the ghost propagatorGab(p̂) is known from perturbation

theory: it decreases as 1/p2 with additional logarithmic corrections. The 1/p2 behavior is
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inherited from the free-theory case. The non-trivial information on the ghost propaga
therefore encoded in the (continuum) form factorJ (p̂2), which is defined by

(47)Gab(p̂) = δabG(p̂) = δab J (p̂2)

p2 ,

yielding the lattice form

(48)Gab(p̂) = δabJ (p̂2)

p2 .

Numerically, the lattice ghost propagator canbe obtained by inverting the Faddeev–Pop
matrix Mab

xy . In the numerical simulations carried out in São Carlos this has been
using a conjugate-gradient algorithm. On the contrary, in the simulations in Tübinge
(lattice) ghost form factorJ (p̂2) has been evaluated directly. To this end one can con
the following set of linear equations (for a given set of link variablesU )

(49)
∑
y,b

Mab
xy [U ]ūb(y) = na

{
cos

[
p̂ · (x̂ − eµ)

] − cos[p̂ · x̂]},
(50)

∑
y,b

Mab
xy [U ]v̄b(y) = na

{
sin

[
p̂ · (x̂ − eµ)

] − sin[p̂ · x̂]},
wherena is an arbitrary unit vector that specifies the components of the ghost propa
under investigation. We are considering momenta with a non-zero component only inµ

direction. In fact, by solving these equations forūb(y) andv̄b(y) and using trigonometri
identities we find that the ghost form factor is given by

J
(
p̂2) = 1

V

∑
y

〈{
cos

[
p̂ · (ŷ − eµ)

] − cos[p̂ · ŷ]}nbūb(y)

(51)+ {
sin

[
p̂ · (ŷ − eµ)

] − sin[p̂ · ŷ]}nbv̄b(y)
〉

(52)= 1

V

∑
x,y

∑
a,b

nb
〈(
M−1)ab

xy

〉
na

[
4 sin2

(
p̂µ

2

)]
cos

[
p̂ · (x̂ − ŷ)

]
.

Note that, with our choice of momenta, the lattice momentum squared is given byp2 =
4 sin2(p̂µ/2), implying that the free part 1/p2 of the ghost propagator exactly cancels
and we are left with the form factorJ (p̂2). The set of equations (49)–(50) has been sol
using a bi-conjugate gradient method for matrix inversion.

2.6. Renormalization

Renormalization of Yang–Mills theories infour dimensions implies that the ba
coupling acquires a dependence on the ultraviolet (UV) cutoffΛUV given by

(53)α0 → α0(ΛUV/Λscale).
Thereby, the bare coupling constant is no longer the theory’s parameter. The Yang–Mills
scale parameterΛscaletakes over the role of the only parameter of the theory. In the context
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of (quenched) lattice-gauge-theory simulations of the string tensionσ is widely used as
the generic low-energy scale.In this case, the cutoff dependence of the bare couplin
implicitly given by theβ dependence ofσa2(β) whereβ is related to the bare couplin
in (12) andΛUV = π/a(β). In Section 3.3 we will derive this relation from lattice da
(obtained in Ref. [60]).

In addition, wave-function renormalization constants develop a dependence onΛUV/

Λscale. The lattice bare form factors of the previous subsections,FB andJB , are related to
their continuum analogues (for very largeβ) by

(54)FB =FB
β

4u2
0,P

, JB = JBu0,P .

These form factors depend on the momentump2 and on the UV cutoffΛUV (given in units
of the string tension) or, equivalently, on the lattice couplingβ (see Section 4.3 below
Thus, we can write

(55)FB =FB

(
p2, β

)
, JB = JB

(
p2, β

)
.

The renormalized form factors are obtained upon multiplicative renormalization

(56)FR

(
p2,µ2) = Z−1

3 (β,µ)FB

(
p2, β

)
,

(57)JR

(
p2,µ2) = Z̃−1

3 (β,µ)JB

(
p2, β

)
,

using the renormalization conditions

(58)FR

(
µ2,µ2) = 1, JR

(
µ2,µ2) = 1.

(Notice that tadpole renormalization does not affect the calculation ofFR , JR but may be
useful for the determination of the renormalization constantsZ3, Z̃3.)

Clearly, similar relations hold also for the bare and renormalized gluon and
propagators. In practice, the multiplicative renormalizability of the theory implies th
rescaling of the data for eachβ value (independently of the lattice momentum) is suffici
to let the form factorsFB(p2, β) and JB(p2, β)—or equivalently the correspondin
propagators—fall on top of a single curve describing the momentum dependence
corresponding renormalized quantity.

2.7. Running coupling constant

Of great importance for phenomenological purposes is the running coupling str
αR(p2) considered in Ref. [12]. In particular, this strength enters directly the quark
and can be interpreted as an effective interaction strength between quarks [61]. Th
running coupling strength is a renormalization-group-invariant combination of the gluo
and ghost form factors. In order to derive this combination we can start with the definition
of the ghost–ghost–gluon vertex renormalized coupling strength

( ) Z3(β,µ)Z̃2(β,µ)

(59)αR µ2 = 3

Z̃2
1(β,µ)

α0(ΛUV),
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where Z̃1(β,µ) is the ghost–ghost–gluonvertex renormalization constant. In latti
simulations, the UV-cutoff is related toβ by ΛUV = π/a(β), wherea is the lattice spacing
Using Eqs. (56) and (57) we can express the renormalization constantsZ3(β,µ) and
Z̃3(β,µ) in terms of the bare and renormalized form factors yielding

(60)αR

(
µ2)FR

(
p2,µ2)J 2

R

(
p2,µ2) = α0(ΛUV)

Z̃2
1(β,µ)

FB

(
p2, β

)
J 2

B

(
p2, β

)
.

Note that the left-hand side of this relation is finite and independent ofβ by construction
and that the right-hand side depends on the renormalization scaleµ only through the ghost–
ghost–gluon vertex renormalization constantZ̃1(β,µ). It was found more than twent
years ago by Taylor [9] that (in the continuum)Z̃1 is finite, independent ofµ, at least to all
orders of perturbation theory. This finding will be confirmed by our lattice studies be
In this case, the right-hand side of Eq. (60) is thus independent ofµ. Then, by choosing
µ = √

p2 and using the renormalization conditions (58), we find the final expressio
the running coupling strength, i.e.,

(61)αR

(
p2) = αR

(
µ2)FR

(
p2,µ2)J 2

R

(
p2,µ2).

Finally, let us notice that Eqs. (34) and (46) imply that tadpole renormalization does n
affect the renormalized coupling defined above.

3. Details of the numerical simulations

3.1. Setup

All our simulations used the standard Wilson action forSU(2) lattice gauge theory in
four dimensions with periodic boundary conditions. In order to check finite-volume effe
and verify scaling we consider several values ofβ and of the lattice volumesV = N3

s ×Nt .
The dependence of the lattice spacing onβ can be inferred from a calculation of the stri
tensionσ in lattice units. Here, we will use the data forσa2 reported in Ref. [60] and
linear interpolation of the logarithm of these data where needed.2 A value of the lattice
spacing in physical units was obtained using the valueσ = [440 MeV]2 for the string
tension. We usedNconf independent configurations for the numerical evaluation of
propagators.

Computations in São Carlos were performed on the PC cluster at the IFSC-USP (
system has 16 nodes with 866 MHz Pentium III CPU and 256 MB RAM memory)
runs in São Carlos started with a random gauge configuration and for thermalizati
use ahybrid overrelaxed(HOR) algorithm. The total computer time used for the ru
was about 50 days on the full PC cluster. In Table 1 we report the parameters used
simulations in São Carlos. For eachβ value three different lattice volumes were consider
i.e.,V = 144, 204 and 264. For the lattice volumeV = 144 (respectively,V = 204 and 264)
and for eachβ value we producedNconf = 500 (respectively, 150 and 50) configuration
2 Forβ = 2.15 an extrapolation of these data was necessary in order to obtainσa2.
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Table 1
Simulation parameters of the runs in São Carlos. Data from Ref. [60] were used to obtain the lattice sp
units of the string tension. Error bars (in parentheses)come from propagation of errors and indicate one stand
deviation on the last significant digit. The lattice volumesV and the number of configurationsNconf considered
are discussed in the text

β 2.2 2.3 2.4 2.5 2.6 2.7 2.8
σa2 0.220(9) 0.136(2) 0.071(1) 0.0363(3) 0.018(1) 0.0103(2) 0.0055(3)

Table 2
Simulation parameters of the runs in Tübingen. Data from Ref. [60] were used to obtain the lattice spa
units of the string tension

β 2.15 2.2 2.3 2.375 2.45 2.525
σa2 0.280(13) 0.220(9) 0.136(2) 0.083(2) 0.0507(8) 0.0307(5)

N3
s Nt 163 × 32 163 × 32 163 × 32 163 × 32 163 × 32 163 × 32

Nconf 200 200 200 200 200 200

Table 3
Differences between the São Carlos and the Tübingen numerical approach

São Carlos Tübingen

Definition of gauge fields fundamental representation adjoint represent
Gauge fixing iterative stoch. overrelaxation simulated anneali
Number of lattice points finite-size control fixed

Computations in Tübingen were carried out at the local PC cluster where 4–12 no
Ghz Athlon) were used. The simulation parameters for the runs in Tübingen are lis
Table 2.

Table 3 lists the differences between the São Carlos and the Tübingen app
Reconstructing the continuum gauge field from the link fields in different man
(compare Eq. (15) with Eq. (20)) provides insight into the discretization errors. Emplo
different gauge-fixing algorithms points out the effect of the Gribov ambiguities on
propagators.

3.2. Determination of renormalization constants

In order to obtain the renormalized propagators and form factors, one needs to e
the renormalization constantsZ−1

3 (β,µ) and Z̃−1
3 (β,µ) defined in Eqs. (56) and (57

respectively. Multiplicative renormalizability implies that one can “collapse” data obta
at differentβ on a single curve. This can be done by using the matching techn
described in detail in Ref. [62, Section V.B.2], For instance, for the gluon form fa
this is equivalent to considering the quantity

(62)FR

(
p2,µ2) = Z−1

3 (β,µ)FB

(
β,p2),

−1
where the factorZ3 (β,µ) for eachβ is obtained from the matching technique. The
renormalization point, i.e., theµ-dependence, comes into play when the “single” curve
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is rescaled to satisfy the condition

(63)FR

(
µ2,µ2) = 1.

The same procedure is applied to the ghost form factor. For our analysis we consid
renormalization scale ofµ = 3 GeV.

For the São Carlos data we checked for finite-size effects before applying the matchi
technique.3 In particular, by comparing data at different lattice sizes and sameβ value,
we find (for eachβ) a range of momenta for which the data are free from finite-volu
corrections. We then perform the matching using data for these momenta andV = 264.

3.3. Asymptotic scaling

As said in Section 2.6, the cutoff dependence of the bare coupling is implicitly give
σa2(β). Thereby, the string tensionσ serves as the fundamental energy scale.

In principle, perturbation theory predicts theβ dependence ofσa2 for the regime
a � 1/

√
σ . In practice, large deviations of the measured functionσa2(β) from the

perturbative scaling are observed in the scaling region, which corresponds to the i
β ∈ [2.15,2.8] in our case. Clearly, the relation between the “measured” values forσa2

and perturbation theory is highly important for a careful extrapolation of the lattice da
continuum physics. One goal of the present paper is to present this relation.

For this purpose, we perform a largeβ expansion of the lattice spacing in units of t
string tension, i.e.,

(64)ln
(
σa2) = −4π2

β0
β + 2β1

β2
0

ln

(
4π2

β0
β

)
+ 4π2

β0

d

β
+ c.

The first two terms on the rhs of (64) are in accordance with 2-loop perturbation th
The termd/β represents higher order effects and the termc is a dimensionless scale fact
to the string tension. Parametersc andd are determined by fitting the formula (64) to t
lattice data reported in Ref. [60]. Using only data forβ � 2.3 we obtain

(65)c = 4.38(9), d = 1.66(4), χ2/d.o.f. = 0.62.

The corresponding fit is shown in Fig. 1. It appears that the truncation of the series
the 1/β level reproduces the measured values to high accuracy.

In order to illustrate the impact of thed-term correction in (64) on the estimate of Yan
Mills scale parameters, we briefly consider the lattice scale parameterΛlat. This paramete
is implicitly defined at the 2-loop level by considering [50]

(66)α−1
lat = β0

4π
ln

(
1

a2Λ2
lat

)
+ β1

2πβ0
ln

[
ln

(
1

a2Λ2
lat

)]
,

where for theSU(N) gauge group

(67)β0 = 11

3
N, β1 = 17

3
N2, α−1

lat = 2π

N
β.
3 For more details see [33, Section III].
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Fig. 1. The string tension in units of the lattice spacing: lattice data from [60] and the fit using Eq. (64

Inverting Eq. (66) consistently up to 2-loop perturbation theory yields

(68)ln
(
a2Λ2

lat

) ·= −4π

β0
α−1

lat + 2β1

β2
0

ln

(
4π

β0
α−1

lat

)
.

Then, usingα−1
lat = πβ from Eq. (67) and eliminatinga by subtracting Eq. (64) from th

latter equation we find

(69)ln

(
Λ2

lat

σ

)
= lim

β→∞

[
−c − 4π2

β0

d

β

]
.

Thus, if we extrapolate to the continuum limitβ → ∞ we obtain

(70)Λlat = e−c/2√σ = 0.112(5)
√

σ .

Using the valueσ = [440 MeV]2 one getsΛlat = 49(2) MeV. If one instead of the limi
in (69) assumes that the asymptotic scaling regime is reached for, e.g.,β = 2.5, one gets
Λlat = 0.0188(8)

√
σ . This is the order of magnitude familiar from the literature. Hence

a scaling analysis of lattice results employingβ ∈ [2.15,2.8] the irrelevant term of orde
1/β is still important.

4. Results

4.1. Renormalization constantsZ3, Z̃3 andZ̃1
Let us firstly focus on the renormalization constantsZ3 and Z̃3. As outlined in
Section 3.2, these constants are obtained from “matching” the lattice data from simulations
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Fig. 2. The gluon and ghost renormalization constants,Z3(β,µ) andZ̃3(β,µ), for µ = 3 GeV (left panel),y axis
is arbitrarily scaled. The cutoff dependence ofZ3Z̃2

3 (right panel) is consistent with a finitẽZ1 (see Eqs. (74)
(75)). Figures correspondingto the Tübingen data only.

Fig. 3. The analogue of Fig. 2, for the São Carlos data. The fits shown on the left-hand side for the gluon (up
curve) and ghost (lower curve) renormalization constants are done withγ as a free parameter. All fits neglect th
leftmost data point.

using differentβ values. Figs. 2 and 3 show the cutoff dependence of these cons
respectively, for the Tübingen and São Carlos sets of data.

Using the results above, we can check that our data are consistent with the pred
from perturbation theory. For large enough UV cutoff, one expects that the 1-loop be
is recovered, i.e.,
(71)Z3(β,µ), Z̃3(β,µ) ≈ b
[− ln

(
σa2) + ω

]γ
.
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Table 4
Expectation value of the adjoint plaquette (28) used for the tadpole improvement of the gluon fields derived fr
the adjoint representation

β 2.15 2.2 2.3 2.375 2.45 2.525
uad

0,P
0.225(42) 0.241(43) 0.274(45) 0.297(46) 0.317(46) 0.336(47)

If only small lattice spacings are considered,ω is related to the ratio between the stri
tension and the Yang–Mills scale parameter at 1-loop level

(72)ω = ln
π2σ

Λ2
1-loop

.

Here, we treatω as a fit parameter and explore a range of lattice spacings where one
already expect significant deviations from the 1-loop behavior. As shown in Figs. 2
(left panel), a good consistency with the known anomalous dimensions is observed.

For the Tübingen data, we find thatω ≈ 1.13 is a good choice for reproducing th
data forZ3 and Z̃3 simultaneously. It turns out that within theβ range explored in the
Tübingen runs, tadpole improvement has a minor effect on the anomalous dimensio
adjoint plaquette used for the tadpole improvement (see Eq. (34)) employing the a
representation is listed in Table 4.

For the São Carlos data we have performed the fits withγ as a free parameter, leavin
out the data point withβ = 2.2 (i.e., the leftmost point in Fig. 3). We obtain the followin
values for the gluon and ghost cases

(73)γgluon= 0.60(5) and γghost= 0.32(7).

We see that the values are, respectively, consistent with 13/22≈ 0.59 and 9/44≈ 0.20
within error bars (but notice that there is a discrepancy of almost two standard dev
for γghost). In this case we have not succeeded in finding a value ofω describing the
behaviors forZ3 andZ̃3 simultaneously.

In order to interpret the product of ghost and gluon form factors as the running cou
strength (see Section 2.7), it is of great importance that the ghost–ghost–gluon
renormalization constant̃Z1 be finite in the continuum limit. For detecting the UV behav
of Z̃1, let us investigate the product

(74)Z3(β,µ)Z̃2
3(β,µ) = αR(µ2)

α0(ΛUV)
Z̃2

1(β,µ),

where (59) was used. The left-hand side of the latter equation can be directly ob
from the numerical result for the renormalization constantsZ3(β,µ) andZ̃3(β,µ). Note
that for large UV cutoff, one finds

(75)
1

α0(ΛUV)
∝ ln

Λ2
UV

Λ2
1-loop

= − ln
(
σa2) + const,
where the constant comprises cutoff (and thereforeβ) independent terms. The crucial point
is that if the productZ3(β,µ)Z̃2

3(β,µ) rises linearly with− ln(σa2) the additional factor
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Z̃2
1(β,µ) must be finite in the continuum limit (since the renormalized couplingαR(µ2) is

assumed finite). Our numerical findings forZ3(β,µ)Z̃2
3(β,µ) are also shown in Figs. 2 an

3 (right panel). The data nicely support Taylor’s findings, i.e.,Z̃1 is cutoff- and therefore
µ-independent.

4.2. The running coupling constant

Once it is established that̃Z1 is finite, the momentum dependence of the runn
coupling constant can be simply derived from the product (61)

(76)αR

(
p2) = αR

(
µ2)FR

(
p2,µ2)J 2

R

(
p2,µ2).

The overall normalization factor can be obtained by comparing the lattice data wi
well-known perturbative result, which is valid at high momentum. Here, we com
with the 2-loop expression, which is knownto be independent of the renormalizati
prescription, i.e.,

(77)α2-loop
(
x = p2/Λ2

2-loop

) = 4π

β0 lnx

{
1− 2β1

β2
0

ln(lnx)

lnx

}
,

with β0 andβ1 given in Eq. (67). In order to obtainΛ2-loop and to fix the overall factor
we fittedαR(µ)FR(p2,µ2)J 2

R(p2,µ2) to the 2-loop running couplingα2-loop(p) where
only momentap � pM were taken into account. Fitting parameters wereαR(µ) and the 2-
loop perturbative scaleΛ2-loop. Starting from a very low valuepM we fit these parameter
while gradually increasingpM . For small values ofpM , we observe that the function
form of (77) tries to incorporate genuine non-perturbative effects by adjustingΛ2-loop,
thus, introducing a spuriouspM dependence toΛ2-loop. However, a plateau is reached f
the Tübingen data atpM ≈ 2 GeV indicating that the data are well reproduced by
2-loop formula in this regime. We find in this case that

(78)Λ2-loop = 0.95(15) GeV.

For the São Carlos data we have cut the data atpM ≈ 2.5 GeV, which corresponds to
large drop in theχ2/d.o.f. of the fit. (This also corresponds to reaching a relatively g
plateau forΛ2-loop obtained from the fit.) We obtain the valueΛ2-loop = 1.2(1) GeV. The
two values are consistent within error bars.

Our final results for the running coupling constant are presented in Fig. 4. I
IR region, the two data sets show a clear departure from the perturbative behavi
suggest a finite valueαc for the running coupling constant at zero momentum. We estim
αc = 5(1). This value is in agreement with our previous fits forαR(p2) [34,35], and is
consistent with the DSE result of Ref. [25],αc ≈ 5.2, usingκ = 0.5 as input.

4.3. Gluon and ghost form factors

Fig. 5 shows the Tübingen data for the gluon and the ghost form factors. The

bars comprise statistical errors only. It turns out that one observes an additional scattering
of the data points which is not of statistical origin. This additional systematic noise is
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Fig. 4. The running coupling in comparison with the resultsfrom perturbation theory:Tübingen data (left panel
and São Carlos data (right panel). The momentum cutoff ispM = 2 GeV in the former case andpM = 2.5 GeV
in the latter.

Fig. 5. The gluon form factorFR(p) and the ghost form factorJR(p) as a function of the momentum transferp

(Tübingen data).

pronounced when simulated annealing is used for gauge fixing and it afflicts espe
the small momentum range. We attribute this error to the residual uncertainty of gau
fixing (Gribov noise). In particular, since the simulated annealing is capable of ho
from one local minimum to the other, the algorithm is sensitive to the large-scale stru
of the minimizing functional. This hopping then produces a non-Gaussian noise wh

underestimated when one uses the standard Gaussian error propagation. For this reason,
we dropped the first three momentum points from the Tübingen data sets.
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Fig. 6. The gluon form factorFR(p) (above) and the gluon propagatorDR(p) (below) as a function of the
momentum transferp (São Carlos data). Note the logarithmic scale in the second plot. Fit of gluon propagat
using the analogue of Eq. (79) has been done for momentap � 2 GeV and withΛ = 1.2 GeV.

In Figs. 6 and 7 we report the rescaled São Carlos data for the renormalized
(respectively, ghost) form factor and the data for the corresponding propagators. We
that in the gluon case finite-size effects depend on whether we consider the full prop
or the form factor. In fact, for the propagator these effects are larger in the IR region,
for the form factor the effects are larger in the UV limit (due to the multiplication byp2).
Thus, the ranges of momenta (for eachβ) considered for the plots are different in t
two cases. Nevertheless, the matching factors obtained are inagreement. The difference
finite-size effects between propagator and form factor is less pronounced when cons
the ghost propagator.

At sufficiently high momentump � pM (we found in Section 4.2 thatpM ≈ 2 GeV is
an acceptable choice), the momentum dependence of the renormalized form factors shoul
be given by the formula

FR

(
p2,µ2), JR

(
p2,µ2) ≈ d2(µ)

[
α2-loop

(
p2

2

)]γ [
1+ γ̄ α2-loop

(
p2

2

)]
,

(79)

Λ2-loop Λ2-loop
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Fig. 7. The ghost form factorJR(p) (above) and the ghost propagatorGR(p) (below) as a function of the
momentum transferp (São Carlos data). Note the logarithmic scale in the second plot. Fit of ghost propaga
using the analogue of Eq. (79) has been done for momentap � 2 GeV and withΛ = 1.2 GeV.

where γ is the leading-order anomalous dimension of the gluon (respectively, g
propagator, given byγ = 13/22 (respectively,γ = 9/44). The parameter̄γ stems from
the next to leading order to the anomalous dimension and is scheme-dependent.
in the MS scheme, this parameter is small. Furthermore, Eq. (79) can be derived
the renormalization-group equation using the 2-loop scaling functionsβ(gR) andγA(gR).
Hence, (79) originates from the resummation of an infinite set of 2-loop diagrams and
comprises the so-called “leading logs”.

Using the Tübingen data set,pM = 2 GeV andΛ2-loop = 950 MeV, we fittedγ̄ to the
gluon and ghost data, respectively. We find that these parameters are, indeed, sma

(80)γ̄gluon= −0.036(18), γ̄ghost= 0.011(10).

Although the errors on these parameters are rather large, we find it encouragin
the parameters appear with opposite signs. In the case that the product of form
FR(p2)J 2

R(p2) is, indeed, renormalization group invariant, one would expect that
(81)γ̄gluon+ 2γ̄ghost= 0.
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It is clear from the Figs. 2 and 5 that the high momentum tail is well reproduced by (79)
For the São Carlos data we have found that a cut atpM = 2GeV corresponds to a larg

drop in theχ2/d.o.f. of the fits, both for the gluon and for the ghost cases. We sta
fitting the leading-order term only (i.e., ignorinḡγ ). We get

(82)Λ2-loop = 1.19(4) and Λ2-loop = 1.13(2),

respectively, from the fits of the gluon and of the ghost propagator. These valu
consistent with the resultΛ2-loop = 1.2(1), obtained in the previous section. We th
fix this value forΛ2-loop and perform fits withγ̄ as a free parameter. We obtain a go
description of the data (see Figs. 6 and 7), with values forγ̄ even consistent with zero.

As can be seen from our plots, the gluon form factor is suppressed in the low mom
regime, while the ghost form factor is divergent. Correspondingly, the ghost propa
diverges faster than 1/p2 and the gluon propagator appears to be finite. As mentione
the introduction, an IR-finite gluon propagator [26–31] and an IR-divergent ghost
factor [30,31] were obtained before by separate studies.

A quantitative analysis of the IR behavior for the propagators—including the evalu
of the exponentκ mentioned in the introduction—was already presented in Refs.
35]. More thorough such analyses will be presented separately for the two sets o
in Refs. [63,64].

5. Conclusions

For the first time, evidence from extensive lattice simulations is provided that the ghos
ghost–gluon vertex renormalization constantZ̃1 is, indeed, finite in continuum field theo
(as found by Taylor using all orders perturbation theory). Also, our result is probab
not affected by Gribov ambiguities, sincẽZ1 is obtained using data in the UV limit.
therefore appears that the Gribov ambiguities (in the lattice approach and the Fa
Popov quantization) do not afflict the renormalization of the vertex.

Also, we performed a thorough study of the gluon and the ghost form factors. Ou
favor the scenario of an IR finite (or even vanishing) gluon propagator while the ghos
factor is singular in the IR limit.

Finally, we have obtained the running coupling constant over a wide range of mo
using the data for gluon and ghost form factors. Our data are consistent with the ex
of an IR fixed pointαc = 5(1). Note that this value is inside the interval given by the D
expression (5).

We stress that we compared our results for two slightly different lattice formulat
obtaining consistent results in all cases considered.
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