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1 Introduction

It is well known that QCD in a finite volume V at small quark masses m simplifies as the
Compton wavelength of the pion, m−1

π , becomes large compared to V 1/4 [1]. In this limit
the space-time dependence of the low-energy effective theory is suppressed and the theory is
dominated by the constant mode of the pions. The distribution of the low-lying eigenvalues
of the Dirac operator can then be calculated in random matrix theory [2], see ref. [3] for a
review. The low-energy constants (LECs) of chiral perturbation theory are used to map the
dimensionful quantities of QCD (or the effective theory) to the dimensionless quantities of
RMT, see, e.g., ref. [4]. Matching lattice data for the low-lying Dirac eigenvalues to RMT
results then allows for a determination of phenomenologically important LECs.

The lowest-order LECs are Σ and F . While Σ can be determined rather easily from
the distribution of the small Dirac eigenvalues, F can be determined only if one includes
a suitable constant background gauge field [5, 6] such as isospin imaginary chemical po-
tential [7, 8]. In the following we discuss the geometry dependence of these methods and
show how to minimize systematic deviations from RMT by an optimal choice of the lattice
geometry. We also compare our findings with lattice data of the two-flavor epsilon-regime
run of JLQCD [9, 10] and extract Σ and F from these configurations.

The paper is structured as follows. In section 2 we briefly review the epsilon expansion
of chiral perturbation theory at next-to-next-to-leading order (NNLO) which allows for a
systematic discussion of the geometry dependence of RMT-based methods. In section 3
we summarize relevant results of RMT for the distribution of the lowest Dirac eigenvalues
at small imaginary chemical potential. In section 4 we compare the analytic predictions of
section 2 and 3 to lattice data of JLQCD. We conclude in section 5.

2 The epsilon expansion at NNLO

In this section we briefly review the epsilon expansion at NNLO with a small imaginary
chemical potential iµ, see ref. [11]. In the domain where the Compton wavelength of the
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pion becomes large compared to V 1/4, chiral perturbation theory (χPT) can be reordered
according to the power counting [1]

V ∼ ε−4 , ∂ρ ∼ ε , π(x) ∼ ε , mπ ∼ ε2 , µ ∼ ε2 (2.1)

with covariant derivative ∂ρ, pion fields π(x), pion mass mπ, and chemical potential µ.1

The corresponding systematic expansion of χPT is called epsilon expansion. To each order
in ε2 one can integrate out the space-time dependence and obtain a finite-volume effective
theory in terms of the constant pion mode. The order in ε2 then translates into the order
in 1/(F 2

√
V ). At leading order the finite-volume effective action is given by

SLO
eff = −1

2
V Σ Tr(M †U0 + U−1

0 M)− 1
2
V F 2 Tr(CU−1

0 CU0) (2.2)

with constant pion mode

U0 = exp[iπ0] , π0 =
1
V

∫
d4xπ(x) , (2.3)

quark mass matrix M = diag(m1, . . . ,mNf ), and quark chemical potential matrix C =
diag(µ1, . . . , µNf ), where mf is the quark mass and iµf is the imaginary chemical potential
of quark flavor f = 1, . . . , Nf . We find that SLO

eff is identical to the RMT action with nonzero
chemical potential [8]. Note that the pion decay constant F drops out for vanishing chemical
potential. At next-to-leading order (NLO) in ε2 the general form of eq. (2.2) remains
unchanged with Σ → ΣNLO

eff , F → FNLO
eff , see refs. [12–14] for explicit expressions. In an

actual lattice simulation we measure effective values Σeff and Feff, and we need to include
finite-volume corrections to recover the infinite-volume values Σ and F .

At NNLO and to leading order in the small chemical potential2 the effective action
has the form [11]

SNNLO
eff = −1

2
V ΣNNLO

eff Tr(M †U0 + U−1
0 M)− 1

2
V (FNNLO

eff )2 Tr(CU−1
0 CU0)

+ Υ1Σ(V F )2 Tr(C)[Tr(U0{M †, C}) + Tr(U−1
0 {C,M})]

+ Υ2Σ(V F )2 Tr({M †, C}U0C + {C,M}CU−1
0

+ {U0, C}U−1
0 CU0M

† + CU0{C,U−1
0 }MU−1

0 )

+ Υ3Σ(V F )2 Tr(U−1
0 CU0C + C2) Tr(MU−1

0 +M †U0)

+ Υ4Σ(V F )2 Tr(U−1
0 CU0C − C2) Tr(MU−1

0 +M †U0)

+ Υ5Σ(V F )2 Tr([M †, C]U0C + [C,M ]CU−1
0

+ [U0, C]U−1
0 CU0M

† + CU0[C,U−1
0 ]MU−1

0 )

+ Υ6(V Σ)2[Tr(MU−1
0 +M †U0)]2 + Υ7(V Σ)2[Tr(MU−1

0 −M †U0)]2

+ Υ8(V Σ)2[Tr(MU−1
0 MU−1

0 ) + Tr(M †U0M
†U0)]

+H1V F
2 Tr(C2) +H2(V Σ)2 Tr(M †M) +H3V F

2(TrC)2 (2.4)

1In the chiral effective theory a nonzero chemical potential is introduced through the covariant derivative

of the gauged flavor symmetry (see, e.g., ref. [12]), and therefore the power counting of µ is fixed by the

power counting of ∂ρ.
2There are also NNLO terms proportional to V 2C4 that have been omitted in (2.4).

– 2 –



J
H
E
P
0
5
(
2
0
1
1
)
1
1
5

x
1 2 3 4

0.6

0.8

1.0

1.2

1.4

x
1 2 3 4

0.6

0.8

1.0

1.2

1.4 ΣNNLO
eff /Σ

F NNLO
eff /F

Figure 1. Finite-volume corrections to Σ and F for geometries (ax) on the left and (bx) on the
right with parameters F = 90 MeV, L = 1.71 fm, and m2

π

√
V = 1. Taken from ref. [11].

with finite-volume effective coupling constants Υi and Hi. The LECs Σ and F also receive
further corrections, Σ → ΣNNLO

eff and F → FNNLO
eff . The terms in eq. (2.4) that were not

present in eq. (2.2) cannot be mapped to RMT. These terms are proportional to the Υi

and Hi. Therefore the magnitude of these coefficients determines the systematic deviations
from RMT of, e.g., Dirac eigenvalue distributions. The coefficients H1 and H3 do not
couple to U0 or M and are therefore irrelevant for Dirac eigenvalue distributions (which
involve derivatives with respect to M in the partially quenched theory). The coefficients
Υi, H2, ΣNNLO

eff , and FNNLO
eff depend on the NLO LECs of χPT and on the geometry of the

space-time box through finite-volume propagators. Explicit results are given in [11].
To be specific we discuss the following lattice geometries from now on,

(ax) L0 = xL , L1 = L2 = L3 = L , (2.5a)

(bx) L3 = xL , L0 = L1 = L2 = L , (2.5b)

where x ∈ {1, 3/2, 2, 3, 4}, and Li is the extent of the space-time box in direction i (i = 0
denotes the temporal direction to which µ couples). In figure 1 we show the finite-volume
corrections to Σ and F for the different geometries at NNLO for a set of parameters similar
to the parameters of the JLQCD two-flavor epsilon-regime run [9, 10]. We note that the
finite-volume corrections to Σ are invariant under (ax) ↔ (bx), while the finite-volume
corrections to F depend on the choice of geometry. The reason is that the permutation
symmetry of the four space-time dimensions is broken by the chemical potential, to which
F couples. For our choice of parameters, geometry (bx) leads to smaller finite-volume
corrections to F than geometry (ax). This was also observed in ref. [12] at NLO.

We continue our discussion with the finite-volume effective coupling constants Υi and
H2 that are responsible for the systematic deviations from RMT. The high-energy constant
H2 should not contribute to low-energy phenomenology (as was shown explicitly for the
spectral density in [15]), and therefore we do not discuss it further. It is an interesting
observation [11] that Υ1,Υ2,Υ3 do not depend on the NLO LECs of χPT and depend on
the geometry only through a common coefficient γ, i.e.,

Υ1,Υ2,Υ3 ∝ γ . (2.6)

The coefficient γ changes under (ax) ↔ (bx), while Υ4, . . . ,Υ8 (and H2) are invariant
under the same exchange [11]. This implies that for nonzero chemical potential a judicious
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Figure 2. Geometry dependence of systematic deviations from RMT. Taken from ref. [11].

choice of geometry is possible which minimizes the systematic deviations from RMT due
to Υ1,Υ2,Υ3 at a given volume. Of course, for zero chemical potential (ax) and (bx) are
equivalent, so the choice of geometry has no impact.

We plot γ for different geometries in figure 2 for the same set of parameters used in
figure 1.3 We note that the coefficient γ, and thus a part of the systematic deviations
from RMT, can be reduced significantly by choosing the geometry (bx) instead of (ax) for
the same value of the asymmetry x. Explicit numbers for the Υi and their impact on
systematic errors will be discussed in section 4. Note that for large asymmetries x the
coefficients Υi grow rapidly. Thus for too large values of x the epsilon expansion breaks
down. This corresponds to the largest individual dimension max(Li) being significantly
larger than the Compton wavelength of the pion.

Note that we can project out a single topological sector by modifying the integration
domain of the constant pion mode U0 and including a volume-independent determinant
term in the partition function, see, e.g., refs. [3, 12]. Therefore the discussion of systematic
deviations from RMT presented in this section is also valid for fixed topological charge.

3 Random matrix theory

In this section we summarize some important results of random matrix theory that can be
used to determine Σ and F from fits to Dirac eigenvalue distributions. We consider chiral
random matrix theory with imaginary chemical potential defined by the partition function

Zν =
∫
dV dW e−N Tr(W †W+V †V )

Nf∏
f=1

det
(
D(µrf ) +mr

f

)
, (3.1)

where mr
1, . . ., mr

Nf
(iµr1, . . ., iµrNf ) are the masses (imaginary chemical potentials) of

the sea quarks, see refs. [8, 16], the latter for the case of real chemical potential. The
integral is over the real and imaginary parts of the elements of the complex N × (N + ν)
matrices W and V with Cartesian integration measure. The random matrix Dirac operator

3Since the Υi are of order 1/(4π)2 we plot γ(4π)2, which is then of order 1.
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is defined by

D(µrf ) =

(
0 iV + iµrfW

iV † + iµrfW
† 0

)
, (3.2)

which has |ν| eigenvalues equal to zero. Therefore ν is interpreted as the topological charge.
Note that mr

f and µrf are dimensionless quantities. They have to be mapped to physical
quantities by comparison with the low-energy effective theory of QCD. It was shown in
ref. [4] that in the limit N → ∞ chiral random matrix theory can be mapped to chiral
perturbation theory using

m̂f = mfV Σ = 2Nmr
f , µ̂2

f = µ2
fF

2V = 2N(µrf )2 , (3.3)

where f denotes an arbitrary quark flavor, mf is the physical quark mass, and µf is
the physical chemical potential. Thus, the low-energy constants Σ and F appear in the
conversion from physical units to dimensionless random matrix units. Note that refs. [4]
and [8] use a different notation for the dimension of the random matrix Dirac operator.
The quantities m̂f and µ̂f are often referred to as microscopic scaling quantities due to the
limit N →∞.

The eigenvalue correlation functions for the random matrix model defined by eqs. (3.1)
and (3.2) in the limit of N →∞ were calculated in ref. [8]. In this section we consider the
case of Nf = 2 sea quarks with masses m̂u and m̂d at zero chemical potential. This setup
corresponds to the two-flavor simulation of JLQCD [9, 10] that is described in more detail
in section 4. We then compute Dirac eigenvalues x̂ at zero chemical potential and ŷ at
imaginary chemical potential iδ̂. Note that we could equally well have used a setup with x̂
at imaginary chemical potential −iδ̂/2 and ŷ at imaginary chemical potential +iδ̂/2 since
only the isospin component of the chemical potential is relevant for eigenvalue correlation
functions [8].

We define the two-point correlator

ρ
(2)
(1,1)(x̂, ŷ) =

〈∑
n,m

δ
(
x̂− λ̂n(µ̂ = 0)

)
δ
(
ŷ − λ̂m(µ̂ = δ)

)〉
, (3.4)

where λ̂n = 2Nλrn = λnV Σ and the sum is over all eigenvalues λrn of the random matrix
Dirac operator at chemical potential µ̂ = 0 and iµ̂ = iδ̂. This correlator allows for a
discussion of the shift of Dirac eigenvalues due to the imaginary chemical potential iδ̂.
Equation (3.4) is calculated in ref. [8]. The result is given by

ρ
(2)
(1,1)(x̂, ŷ) = x̂ ŷ det

[
Jν(im̂u) im̂uJν+1(im̂u)
Jν(im̂d) im̂dJν+1(im̂d)

]−2

det

[
Ψ11 Ψ12

Ψ21 Ψ22

]
, (3.5)
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where Jν is the Bessel function of the first kind,

Ψ11 = det

I0(x̂, im̂u) Jν(im̂u) im̂uJν+1(im̂u)
I0(x̂, im̂d) Jν(im̂d) im̂dJν+1(im̂d)
I0(x̂, x̂) Jν(x̂) x̂Jν+1(x̂)

 , (3.6a)

Ψ12 = det

I0(x̂, im̂u) Jν(im̂u) im̂uJν+1(im̂u)
I0(x̂, im̂d) Jν(im̂d) im̂dJν+1(im̂d)
−Ĩ−(x̂, ŷ) e−δ̂

2/2Jν(ŷ) e−δ̂
2/2Gν(ŷ, δ̂)

 , (3.6b)

Ψ21 = det

I+(ŷ, im̂u) Jν(im̂u) im̂uJν+1(im̂u)
I+(ŷ, im̂d) Jν(im̂d) im̂dJν+1(im̂d)
I+(ŷ, x̂) Jν(x̂) x̂Jν+1(x̂)

 , (3.6c)

Ψ22 = det

I+(ŷ, im̂u) Jν(im̂u) im̂uJν+1(im̂u)
I+(ŷ, im̂d) Jν(im̂d) im̂dJν+1(im̂d)
I0(ŷ, ŷ) e−δ̂

2/2Jν(ŷ) e−δ̂
2/2Gν(ŷ, δ̂)

 (3.6d)

with

I0(x̂, ŷ) =
1
2

∫ 1

0
dt Jν(x̂

√
t)Jν(ŷ

√
t) =

x̂Jν+1(x̂)Jν(ŷ)− ŷJν+1(ŷ)Jν(x̂)
x̂2 − ŷ2

, (3.7a)

I±(x̂, ŷ) =
1
2

∫ 1

0
dt e±δ̂

2t/2Jν(x̂
√
t)Jν(ŷ

√
t) , (3.7b)

Ĩ−(x̂, ŷ) =
1

δ̂2
exp

(
− x̂

2 + ŷ2

2δ̂2

)
Iν

(
x̂ŷ

δ̂2

)
− I−(x̂, ŷ) , (3.7c)

Gν(ŷ, δ̂) = ŷJν+1(ŷ) + δ̂2Jν(ŷ) , (3.7d)

and Iν is the modified Bessel function.
In the limit of small chemical potential δ̂2 � 1 the term proportional to δ̂−2 in Ĩ−

dominates. Furthermore, we can perform a large-argument expansion of the Bessel function
in Ĩ− and ignore all terms of order δ̂2, so that

ρ
(2)
(1,1)(x̂, ŷ) = Hν(x̂, ŷ, m̂u, m̂d)

1√
2πδ̂2

exp
(
−(x̂− ŷ)2

2δ̂2

)
(3.8)

with

Hν(x̂, ŷ, m̂u, m̂d) =
√
x̂ŷ

det

I0(ŷ, im̂u) Jν(im̂u) im̂uJν+1(im̂u)
I0(ŷ, im̂d) Jν(im̂d) im̂dJν+1(im̂d)
I0(ŷ, x̂) Jν(x̂) x̂Jν+1(x̂)


det

[
Jν(im̂u) im̂uJν+1(im̂u)
Jν(im̂d) im̂dJν+1(im̂d)

] . (3.9)

Note that the prefactor Hν is independent of δ̂. Let us define a probability distribution
that measures the shift d̂ of the eigenvalues due to the imaginary chemical potential iδ̂ up

– 6 –



J
H
E
P
0
5
(
2
0
1
1
)
1
1
5

to a cutoff x̂c,

P (d̂, x̂c) =
1

N (xc)

∫ x̂c

0
dx̂ ρ

(2)
(1,1)(x̂, x̂+ d̂)

= H̃ν(d̂, x̂c, m̂u, m̂d)
1√
2πδ̂2

exp
(
− d̂2

2δ̂2

)
(3.10)

with

H̃ν(d̂, x̂c, m̂u, m̂d) =
1

N (xc)

∫ x̂c

0
dx̂Hν(x̂, x̂+ d̂, m̂u, m̂d) ,

N (xc) =
∫
dd̂

∫ x̂c

0
dx̂ ρ

(2)
(1,1)(x̂, x̂+ d̂) . (3.11)

The Gaussian factor peaks strongly at d̂ = 0, and thus we can expand H̃ν about d̂ = 0 to
linear order in d̂. The constant term in the expansion is fixed by the normalization∫

dd̂ P (d̂, x̂c) = 1 (3.12)

for δ̂2 → 0. Therefore we have

P (d̂, x̂c) =
1√
2πδ̂2

exp
(
− d̂2

2δ̂2

)(
1 + c1d̂+O(d̂2)

)
, (3.13)

where only c1 depends on x̂c. Note that to first order in d̂, P (d̂, x̂c) corresponds to a
Gaussian distribution with width δ̂ and center c1δ̂

2.
In section 4 we use a small δ̂ for the numerical fits. Due to the Gaussian factor, d̂ is

of order δ̂, and therefore the contribution of c1 can be neglected (we have confirmed this
for our numerical results in section 4). We define P (d̂) to be the leading contribution to
P (d̂, x̂c) in the limit of small δ̂, and therefore

P (d̂) =
1√
2πδ̂2

exp
(
− d̂2

2δ̂2

)
. (3.14)

This quantity is well-suited to determine δ̂ and therefore F from a fit to eigenvalue spectra
obtained in lattice QCD simulations. Note that in the limit of small δ̂ the distribution does
not depend on c1. For a related discussion with imaginary isospin chemical potential we
refer to ref. [17].

In refs. [18, 19] the distribution of the lowest Dirac eigenvalue ŷ was calculated analyti-
cally, and in ref. [20] the calculation was extended to nonzero imaginary chemical potential
iµ̂. We use the notation of ref. [20]. The distribution of the lowest eigenvalue is given by

P1(ŷ) = −∂ŷE
(0+2)
0,0 (ŷ, 0) (3.15)

with gap probability

E
(0+2)
0,0 (ŷ, 0) =

2 det

[
QS(ŷ, m̂u; t = 1) ∂tQS(ŷ, m̂u; t)|t=1

QS(ŷ, m̂d; t = 1) ∂tQS(ŷ, m̂d; t)|t=1

]
m̂dI0(m̂u)I1(m̂d)− m̂uI0(m̂d)I1(m̂u)

exp
(
−1

4
ŷ2 − δ̂2

)
, (3.16)
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m̂u = m̂d = 0.55, µ̂ = 0

m̂u = m̂d = 0.55, µ̂ = 1.1

m̂u = m̂d = 1.7, µ̂ = 0

Figure 3. Distribution of the lowest Dirac eigenvalue for different quark masses m̂u = m̂d and
imaginary chemical potentials iµ̂.

where

QS(ŷ, m̂; t) =
1
2

∫ 1

0
dr er(t/2)δ̂2I0

(√
rt m̂

)√ t

1−r
ŷ I1

(√
(1−r)t ŷ

)
+ e(t/2)δ̂2I0

(√
t m̂
)
.

(3.17)
In figure 3 we display P1(ŷ) for different values of µ̂ and m̂u = m̂d. Note that the depen-
dence on µ̂ and m̂u is strongly correlated, and therefore it is challenging to use this quantity
to determine both Σ and F from a fit to numerical data. Nevertheless, the distribution of
the lowest eigenvalue is well-suited to determine the scale of ŷ for µ̂ = 0 and therefore Σ.

4 Numerical results

In this section we check the results of section 2 against the epsilon-regime run of JLQCD
with two dynamical overlap fermions with masses amu = amd = 0.002 and 163 × 32
lattice points at lattice spacing a = 0.1091(23) fm [9, 10]. For these parameters we
have mπ min(Li) ' 1, mπ max(Li) ' 2, and m2

π

√
V ' 1.34 (using the GOR value

mπ = 110 MeV, see below). The sea quarks are at zero chemical potential, and topol-
ogy is fixed to ν = 0. We compute the eigenvalues of the valence overlap Dirac operator
on 460 configurations at zero and nonzero imaginary chemical potential.4 In this way the
existing configurations can be used to extract Σ and F with low numerical cost.

We first fit the distribution P1(λ) of the lowest-lying Dirac eigenvalue at zero chemical
potential in figure 4 in order to extract the finite-volume effective value a3Σeff = 0.00208(2),
where we cite the statistical error. This corresponds to the dimensionful value

Σeff =
(
231(1)(5) MeV

)3
, (4.1)

where we cite the statistical error (left) and the error propagated from the uncertainty in
the lattice spacing (right). The dimensionless value is compatible with a3Σeff = 0.00212(6)
obtained in ref. [9] on the same configurations by a fit to the integrated Dirac eigenvalue
distribution. Note that Σ is renormalization scheme dependent and that we give only the

4In order to introduce a nonzero imaginary chemical potential iµ in the overlap Dirac operator we

multiply the forward (backward) temporal links by a factor of eiaµ (e−iaµ), see [21].
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Figure 4. Fit to lowest-lying Dirac eigenvalue distribution P1(λ) with χ2/dof = 2.9, a3Σeff =
0.00208(2).

values for the lattice renormalization scheme here. Including finite-volume corrections at
NLO gives an infinite-volume value

Σ = Σeff/1.1454 =
(
221(1)(5) MeV

)3
. (4.2)

We use only NLO finite-volume corrections here and in the remainder of this paper since
the NNLO finite-volume corrections and the systematic deviations from RMT are of the
same order in 1/F 2

√
V . From figure 4 we see that the systematic deviations from RMT

are significant. As discussed in section 2, they cannot be minimized by a judicious choice
of lattice geometry. To further reduce the systematic errors in the fit for Σ, one would
have to go to a larger volume, which is beyond the scope of this work. Alternatively, one
could compute P1(λ) to NNLO, including all non-universal terms. This is a a very difficult
calculation that nobody has attempted yet.

Next we fit the shift of the lowest-lying Dirac eigenvalue due to a small imaginary
chemical potential iµ in order to extract F as proposed in ref. [7]. As shown in section 3,
RMT predicts a Gaussian distribution with σ2 = µ2F 2V for the distribution P of the
difference d between the lowest Dirac eigenvalue at zero and at nonzero imaginary chemical
potential, see also refs. [7, 8, 17]. In figure 5 we show the resulting fit for geometry (a2)
with finite-volume effective value

F
(a2)
eff = 66(5)(1) MeV, (4.3)

where we cite the statistical error (left) as well as the error propagated from the uncertainty
in the lattice spacing (right). We note that the quality of the fit is rather bad (χ2/dof =
4.2) and that this value is not compatible with the result from a fit to meson correlators
obtained on the same configurations [22], Fmeson = 87.3(5.6) MeV. If we include finite-
volume corrections at NLO we obtain the infinite-volume value

F (a2) = 50(4)(1) MeV (4.4)

so that the agreement is even worse. The bad χ2/dof = 4.2 suggests that the non-universal
terms at NNLO, see eq. (2.4) and the subsequent discussion, affect the distribution in a
non-trivial manner.
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d̂

P(d̂)

−0.4 −0.2 0 0.2 0.4

1

2

3

4 Gaussian fit
Lattice data

Figure 5. Fit to the distribution of Dirac eigenvalue shifts P (d̂) due to imaginary chemical potential
aµ = 0.01 with d̂ = dΣV in geometry (a2). The result is given by Feff = 66(5)(1) MeV with
χ2/dof = 4.2. We cite the statistical error (left) as well as the error propagated from the uncertainty
in the lattice spacing (right).

d̂

P(d̂)

−0.4 −0.2 0 0.2 0.4

1

2

3

4 Gaussian fit
Lattice data

Figure 6. Fit to the distribution of Dirac eigenvalue shifts P (d̂) due to imaginary chemical potential
aµ = 0.01 with d̂ = dΣV in geometry (b2). The result is given by Feff = 85(5)(2) MeV with
χ2/dof = 0.91. We cite the statistical error (left) as well as the error propagated from the uncertainty
in the lattice spacing (right).

From our discussion in section 2 we learned that we can significantly reduce these
systematic deviations from RMT by choosing lattice geometry (b2) instead of (a2). In
practice this means that we should rotate the lattice by 90 degrees so that we have one
large spatial dimension instead of a large temporal dimension. In figure 6 we show the
resulting fit for geometry (b2) with good χ2/dof = 0.91 and

F
(b2)
eff = 85(5)(2) MeV. (4.5)

Including finite-volume corrections at NLO5 this gives

F (b2) = 80(5)(2) MeV, (4.6)
5If we use finite-volume corrections at NNLO the value is further reduced by 2%.
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which agrees within errors with the result from the fit to meson correlators given above.
The value of χ2/dof in our fits is stable under variations of the bin size. Specifically,

if we keep the value of F fixed at the result of eq. (4.5) and vary the bin size from 0.05 to
0.25, the value of χ2/dof only changes within about one standard deviation of the χ2/dof
distribution, as theoretically expected. Based on the good χ2/dof in geometry (b2), we
make the hypothesis that in this geometry the non-universal terms in eq. (2.4) are small
compared to the universal terms. Using the Cramér-von-Mises criterion to estimate the
goodness of our fit in geometry (b2) we obtain a T -value of 0.097, which implies that there
is no reason to reject our hypothesis.

Nevertheless, it is instructive to compute the actual values of the Υi which determine
the size of the systematic errors. One can show that for Nf = 2 the traces of the flavor
matrices multiplied by Υ4 and Υ5 in (2.4) are identical, and therefore (2.4) only depends on
the combination Υ4 +Υ5. Similarly, (2.4) only depends on the combinations Υ6 +Υ8/2 and
Υ7 + Υ8/2, up to a term proportional to Re det(MU †0), which for U0 ∈ SU(Nf ) reduces to
Re detM and can therefore be neglected for the same reason as for the term proportional
to H2.6 To compute the Υi we use eq. (2.26) of [11] and find

Υ1 = −2Υ2 = −2Υ3 =
P r4 + 4P r5

2F 4V
=

{
−0.033 for geometry (a2) ,

0.0069 for geometry (b2) ,
(4.7a)

Υ4 + Υ5 = −P
r
4 + lr4

2F 4V
= −0.017 , (4.7b)

Υ6 + Υ8/2 = −
3
4P

r
4 + lr3 + lr4
4F 4V

= −0.0074 , (4.7c)

Υ7 + Υ8/2 =
lr7

4F 4V
= 0.0025 , (4.7d)

see [11] for the notation and the values of P r4,5. To arrive at the formulas for the Υi in (4.7)
we used the relation between the three-flavor NLO LECs Li and the two-flavor NLO LECs
li [23, eq. (11.6)]. To compute the numbers, we took F from (4.6) and lr7 = l7 = 0.005 [24,
eq. (19.21)]. For lr3 and lr4 we used the running given in [24, eq. (10.18)] with M = mπ

and µ = V −1/4 and took l̄3 = 3.13 and l̄4 = 4.43 [25, table X]. For mπ we used the GOR
relation, resulting in mπ =

√
2mΣ/F = 110 MeV, where we took Σ from (4.2). For the

combinations of the Υi in (4.7) the dependence on the renormalization scale drops out so
that the numbers given there are scale independent.

Note that in geometry (b2) all coefficients Υi are quite small, which is consistent with
our hypothesis that in this geometry the systematic errors due to the non-universal terms
are under control. In geometry (a2) the Υ1,2,3 are larger by a factor of ∼ 5. These terms
appear to be the reason for the systematic deviations observed in figure 5. As in the case of
Σ, the systematic errors can be reduced either by going to a larger volume, or by computing
the spectral correlation functions corresponding to the effective action of eq. (2.4) including
all non-universal terms. Again, this is beyond the scope of this work.

6For fixed topology we have U0 ∈ U(Nf ), and the contribution proportional to Υ8 Re det(MU†0 ) in (2.4)

cannot be neglected. However, for two flavors Υ8 does not depend on the geometry [11] and is proportional

to L8, which in turn is a combination of two-flavor LECs and HECs that are all of order 1/(4π)2 [24].
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To estimate the systematic errors on our determination of Σ and F , we recall that the
NNLO finite-volume corrections and the systematic deviations from RMT are of the same
order in 1/F 2

√
V , see the comment after (4.2). The systematic errors due to the NNLO

finite-volume corrections can be estimated by comparing the NLO and NNLO values given
in [11, table 2], and we obtain ≈ 2% for F and ≈ 5% for Σ. Assuming that for geometry
(b2) the systematic errors due to non-universal contributions in eq. (2.4) are roughly of the
same numerical size, we assign a total systematic error of ≈ 4% to F and of ≈ 10% to Σ.

5 Conclusions

We have shown that the geometry dependence of the Dirac eigenvalue distributions at
nonzero chemical potential strongly influences the determination of F from RMT fits.
Making a judicious choice of the lattice geometry (in our case, by exchanging the temporal
axis with one of the spatial axes), this dependence can be significantly reduced such that
the systematic error on F is kept under control. This makes the RMT-based method
proposed in ref. [7] a useful alternative to other lattice methods.

Our final results for Σ and F obtained from the two-flavor epsilon-regime run of JLQCD
are given by

ΣMS(2 GeV) = ZMS
S (2 GeV) Σ =

(
230(1)(14) MeV

)3
, F = 80(5)(5) MeV, (5.1)

where both values include finite-volume corrections at NLO and ZMS
S (2 GeV) = 1.14(2) [9,

10]. The left bracket gives the statistical error, the right bracket gives the combined
systematic error (including the systematic error of the conversion to MS and the uncertainty
in the lattice spacing). The individual systematic errors were added linearly.

To reduce the systematic errors due to the finite volume, it would be beneficial to repeat
this study at a larger simulation volume. Also, to eliminate the contamination caused by the
non-universal terms, one could attempt, within the framework of the finite-volume effective
theory of ref. [11], to calculate Dirac eigenvalue distributions beyond RMT including the
systematic deviations at NNLO in the epsilon expansion. Work in this direction is in
progress.
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