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In this talk we present the results published recently in Ref. [1], where we showed how to intro-

duce a quark chemical potential in the overlap Dirac operator. The resulting operator satisfies a

Ginsparg-Wilson relation and has exact zero modes. It is no longerγ5-Hermitian, but its nonreal

eigenvalues still occur in pairs. We compute the spectral density of the operator on the lattice

and show that, for small eigenvalues, the data agree with analytical predictions of non-Hermitian

chiral random matrix theory for both trivial and nontrivialtopology. We also explain an observed

change in the number of zero modes as a function of chemical potential.
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Quantum chromodynamics (QCD) at nonzero baryon density is important for the study of
relativistic heavy-ion collisions, neutron stars, and theearly universe [2]. The effects of such a
density are investigated by introducing a quark chemical potential µ in the QCD Dirac operator.

For µ 6= 0 the Dirac operator loses its hermiticity properties and its spectrum moves into the
complex plane. This causes a variety of problems, both analytically and numerically. Lattice sim-
ulations are the main source of nonperturbative information about QCD, but atµ 6= 0 they cannot
be performed by standard importance sampling methods because the measure of the functional
integral, which includes the complex fermion determinant,is no longer positive definite.

A better analytical understanding of QCD at very high baryondensity has been obtained by
a number of methods [3], and the QCD phase diagram has been studied in model calculations
based on symmetries [4]. Chiral random matrix theory (RMT) [5], which makes exact analytical
predictions for the correlations of the small Dirac eigenvalues, has been extended toµ 6= 0 [6],
and a mechanism was identified [7] by which the chiral condensate atµ 6= 0 is built up from the
spectral density of the Dirac operator in the complex plane,in stark contrast to the Banks-Casher
mechanism atµ = 0. This mechanism and its relation to the sign problem was also discussed by
Splittorff in a plenary talk at this conference [8].

A first comparison of lattice data with RMT predictions atµ 6= 0 was made in Ref. [9] using
staggered fermions. One issue with staggered fermions is that the topology of the gauge field is
only visible in the Dirac spectrum if the lattice spacing is small and various improvement and/or
smearing schemes are applied [10]. To avoid these issues, wewould like to work with a Dirac op-
erator that implements a lattice version of chiral symmetryand has exact zero modes at finite lattice
spacing [11]. The overlap operator [12] satisfies these requirements atµ = 0. In the following, we
show how the overlap operator can be modified to include a nonzero quark chemical potential1 [1].
We then study the spectral properties of this operator as a function of µ and compare data from
lattice simulations with RMT predictions. As we shall see, the overlap operator has exact zero
modes also at nonzeroµ , which allows us, for the first time, to test predictions of non-Hermitian
RMT for nontrivial topology.

We begin with the well-known definition of the Wilson Dirac operatorDW including a chemi-
cal potentialµ [15],

DW (µ) =
�
−κ

3

∑
i=1

(

T +
i + T−

i

)

−κ
(

eµT +
4 + e−µT−

4

)

,

(T±
ν )yx = (1± γν)U±ν(x)δy,x±ν̂ , (1)

whereκ = 1/(2mW +8) with the Wilson massmW , theU ∈ SU(3) are the lattice gauge fields, and
the γν are the usual Euclidean Dirac matrices. Unless displayed explicitly, the lattice spacinga is
set to unity.

The overlap operator is defined atµ = 0 by [12]

Dov(0) =
�
+ γ5ε(γ5DW (0)) , (2)

1See also Ref. [13] for a perfect lattice action atµ 6= 0 and Ref. [14] for an overlap-type operator atµ 6= 0 in
momentum space.
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whereε is the matrix sign function andγ5 = γ1γ2γ3γ4. mW must be in the range(−2,0) for Dov(0)

to describe a single Dirac fermion in the continuum. The properties ofDov(0) have been studied
in great detail in the past years. In particular, its eigenvalues are on a circle in the complex plane
with center at(1,0) and radius 1, its nonreal eigenvalues come in complex conjugate pairs, and it
can have exact zero modes without fine-tuning.Dov(0) satisfies a Ginsparg-Wilson relation [16] of
the form

{D,γ5} = Dγ5D . (3)

We now extend the definition of the overlap operator toµ 6= 0. The operatorDW (0) in Eq. (2)
is γ5-Hermitian, i.e.,γ5DW (0)γ5 = D†

W (0), and therefore the operatorγ5DW (0) in the matrix sign
function is Hermitian. However, forµ 6= 0, DW (µ) is no longerγ5-Hermitian. Defining the overlap
operator at nonzeroµ by

Dov(µ) =
�
+ γ5ε(γ5DW (µ)) , (4)

we now need the sign function of a non-Hermitian matrix. In general, a functionf of a non-
Hermitian matrixA can be defined by the contour integral

f (A) =
1

2πi

∮

Γ
dz f (z)(z

�
−A)−1 , (5)

where the spectrum ofA is enclosed by the contourΓ and the matrix integral is defined on an
element-by-element basis. A more convenient expression can be obtained ifA is diagonalizable. In
this case we can writeA =UΛU−1, whereU ∈Gl(N,C) with N = dim(A) andΛ = diag(λ1, . . . ,λN)

with λi ∈ C. Then, applying Cauchy’s theorem to Eq. (5),f (A) = U f (Λ)U−1, where f (Λ) is a
diagonal matrix with elementsf (λi). In particular, the matrix sign function can be defined by [17]

ε(A) = U sign(ReΛ)U−1 . (6)

This definition ensures thatε2(A) =
�

and gives the correct result ifΛ is real. An equivalent
definition is ε(A) = A(A2)−1/2 [18]. Eqs. (4) and (6) constitute our definition ofDov(µ). The
sign function is ill-defined if one of theλi lies on the imaginary axis. Also, it could happen that
γ5DW (µ) is not diagonalizable (one would then resort to a Jordan block decomposition). Both of
these cases are only realized if one or more parameters are fine-tuned, and are unlikely to occur in
realistic lattice simulations.

It is relatively straightforward to derive the following properties ofDov(µ):
• It is no longerγ5-Hermitian.

• It still satisfies the Ginsparg-Wilson relation (3) becauseof ε2(A) =
�
. Thus, we still have a

lattice version of chiral symmetry, and the operator has exact zero modes without fine-tuning.

• Its eigenvalues not equal to 0 or 2 no longer come in complex conjugate pairs, but every such
eigenvalueλ (with eigenvectorψ) comes with a partnerλ/(λ −1) (with eigenvectorγ5ψ).

• Its eigenvectors corresponding to eigenvalues 0 or 2 can be arranged to have definite chirality.

We now turn to our (quenched) lattice simulations. The computation of the sign function of
a non-Hermitian matrix is very demanding. We are currently investigating various approximation
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Figure 1: Spectrum ofDov(µ) for µ = 0 andµ = 0.3 for a typical configuration. The figure on the right is
a magnification of the region near zero.

schemes, but in this initial study we decided to compute the sign function and to diagonalizeDov(µ)

exactly using LAPACK. For the comparison with RMT we need high statistics, which restricts us
to a very small lattice size. We have chosen the same parameter set as in Ref. [19] to be able to
compare with previous results atµ = 0. The lattice size isV = 44, the coupling in the standard
Wilson action isβ = 5.1, the Wilson mass ismW = −2, and the quark mass ismq = 0.

In Fig. 1 we show the spectrum ofDov(µ) for a typical configuration forµ = 0 andµ = 0.3.
As expected, we see that the eigenvalues move away from the circle asµ is turned on. Another
observation is that the number of zero modes ofDov(µ) for a given configuration can change as a
function ofµ , see Figure 2. This can be understood from the relation between the anomaly and the
index ofDov [20, 21],

− tr(γ5Dov) = 2index(Dov) , (7)

which we can show to remain valid atµ 6= 0. Using tr(γ5Dov) = tr[ε(γ5DW )] and the fact that
the eigenvalues of the sign function are+1 or−1, one has index(Dov) = (nW

− −nW
+ )/2, wherenW

±

denotes the number of eigenvalues ofγ5DW (µ) with real part≷ 0. Therefore the number of zero
modes for a given configuration is determined by the difference of the number of eigenvalues of
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Figure 2: Distribution of the number of zero mores ofDov(µ) for µ = 0,0.1,0.2,0.3,1.0, and number of
configurations (right table).
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Figure 3: Scatter plot of the projected eigenvaluesλ of Dov(µ) for µ = 0.1 (left pane) andµ = 0.3 (right
pane). The eigenvalues are projected usingλ → 2λ/(2−λ ). At µ = 0 this mapping projects the eigenvalues
from the GW-circle to the imaginary axis. Atµ 6= 0, the same mapping projects the eigenvalues onto a band
parallel to the imaginary axis. Asµ is increased the eigenvalues spread further into the complex plane.

γ5DW lying left and right of the imaginary axis. Asµ changes, an eigenvalue ofγ5DW can move
across the imaginary axis. As a result, index(Dov) changes by 1, which explains the observation.
We believe that this is a lattice artefact which will disappear in the continuum limit.

The spectral density ofDov(µ) is given byρov(λr,λi) = 〈∑k δ (λ − λk)〉 with λ = λr + iλi,
where the average is over configurations. The distribution of (projected) eigenvalues in the complex
plane is shown in Figure 3. The claim is that the distributionof the small eigenvalues ofDov(µ) is
universal and given by RMT. The chiral RMT model for the Diracoperator is [6]

DRMT(µ) =

(

0 iW + µ
iW † + µ 0

)

, (8)

whereW is a complex matrix of dimensionn× (n+ν) with no further symmetries (we takeν ≥ 0
without loss of generality). The matrix in Eq. (8) hasν eigenvalues equal to zero. The spectral
correlations ofDRMT(µ) on the scale of the mean level spacing were computed in Refs. [22, 23, 24].
In the quenched approximation, the result for the microscopic spectral density reads

ρRMT
s (x,y) =

x2 + y2

2πα
e

y2−x2

4α Kν

(

x2 + y2

4α

)

∫ 1

0
t dt e−2αt2

|Iν(tz)|2 , (9)

wherez = x + iy = λΣV , I andK are modified Bessel functions, andα = µ2 f 2
πV . Σ and fπ are

low-energy constants that can be obtained from a two-parameter fit of the lattice data to the RMT
prediction, Eq. (9). (The normalization is fixed by

∫

dxdyρov(x,y) = 12V and does not introduce
another parameter.) Forx � α , Eq. (9) becomes radially symmetric [25],

ρRMT
s (x,y) →

ξ
2πα

Kν (ξ ) Iν (ξ ) (10)

with ξ = |z|2/4α , and the fit only involves the single parameterΣ/ fπ .
In Fig. 4 we compare our lattice data to the RMT prediction. Wedisplay various cuts of the

eigenvalue density in the complex plane as explained in the figure captions. The data agree with
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Figure 4: Density of the small eigenvaluesz = x+ iy = λ ΣV of Dov(µ) in the complex plane (after projecting
λ → 2λ/(2−λ )) for (from left to right)µ = 0.1,0.2,0.3,1.0. The histograms are lattice data forν = 0 and
ν = 1, and the solid lines are the corresponding RMT prediction of Eq. (9), integrated over the bin size.
Top: cut along the imaginary axis, middle: cut along the realaxis, bottom: cut parallel to the real axis at
yc. Vertical lines indicate the fit interval. Forµ = 1.0 the distribution of the small eigenvalues is radially
symmetric up to|ξ | ∼ 0.7, with ξ = |z|2/4α, and therefore only the ratioΣ/ fπ can be determined from a fit
to Eq. (10). In the rightmost bottom plot the data are integrated over the phase.

µa Σa3 fπ a Σa3/ fπ a χ2/dof

0.0 0.0816(6) – – 1.10
0.1 0.0812(11) 0.261(6) 0.311(5) 0.67
0.2 0.0785(14) 0.245(5) 0.320(4) 0.78
0.3 0.0824(17) 0.248(5) 0.332(4) 1.03
1.0 – – 0.603(18) 0.42

Table 1: Fit results forΣ and fπ . For µ = 1.0 only Σ/ fπ
can be determined (see Figure 4).

the RMT predictions within our statistics.Σ and fπ were obtained by a combined fit to theν = 0
andν = 1 data for all three cuts and are displayed in Table 1. (These numbers have no physical
significance atβ = 5.1.)

In summary, we have shown how to include a quark chemical potential in the overlap operator.
The operator still satisfies a Ginsparg-Wilson relation andhas exact zero modes. The distribution
of its small eigenvalues agrees with predictions of non-Hermitian RMT for trivial and nontrivial
topology. Our initial lattice study should be extended to weaker coupling, larger lattices, and
better statistics. Work on approximation methods to enablesuch studies is in progress. For small
volumes, reweighting with the fermion determinant should allow us to test RMT predictions for
the unquenched theory [26].
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This work was supported in part by DFG. The simulations were performed on a QCDOC
machine in Regensburg using USQCD software and Chroma [27],and GotoBLAS optimized for
QCDOC.
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