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Abstract. The proton’s elastic electromagnetic form factors are calculated
using an ansatz for the nucleon’s Poincar�ee covariant Faddeev amplitude that
only retains scalar diquark correlations. A spectator approximation is employed
for the current. On the domain of q2 accessible in modern precision experi-
ments these form factors are a sensitive probe of nonperturbative strong inter-
action dynamics. The ratio of Pauli and Dirac form factors can provide realistic
constraints on models of the nucleon and thereby assist in developing an under-
standing of nucleon structure.

1 Introduction

The pion’s elastic electromagnetic form factor is accessible via a properly con-
structed six-point quark Schwinger function, a fact exploited with modest
success in lattice-QCD simulations, e.g., refs. [1–3]. This Schwinger function
is also the basis for continuum studies, among which those employing the
Dyson-Schwinger equations (DSEs) [4–6] are efficacious [7]. The proton’s form
factors are accessible through an analogous eight-point quark Schwinger func-
tion, which is the starting point for lattice simulations, e.g., refs. [8, 9]. The
fruitful extension of DSE methods to the calculation of this Schwinger function
is a contemporary goal. As we will explain, a simple truncation that corresponds
to a spectator approximation is currently in widespread use [10–12]. Manifest
covariance is a strength of this approach for it has long been apparent that in
order to obtain an internally consistent understanding of proton form factor
data at spacelike momentum transfers q20M2, where M is the proton’s mass,
a Poincar�ee covariant description of the scattering process is necessary [13, 14].
This has recently been reemphasized in the context of constituent-quark models
[15–20].



The same interaction which describes the structure and properties of colour-
singlet mesons also generates a quark-quark (diquark) correlation in the colour
antitriplet (�33) channel [21, 22]. Such correlations have recently been observed in
simulations of lattice-QCD [23]. While diquarks do not survive as asymptotic
states [24–26]; viz., they do not appear in the strong interaction spectrum, the
existence of strong quark-quark correlations provides a foundation for viewing
the nucleon as a quark-diquark composite. This picture can be realized via a
Poincar�ee covariant Faddeev equation [27], in which two quarks are always corre-
lated as a �33-diquark, and binding in the nucleon is effected by the iterated exchange
of roles between the dormant and diquark-participant quarks, and through the
action of a pion ‘‘cloud’’ [28].

Upon solving the Faddeev equation one obtains the nucleon’s mass, and also its
Faddeev amplitude which is a valuable intuitive tool. It is noteworthy that even a
rudimentary covariant Faddeev equation model, based on the presence of diquark
correlations within the nucleon, yields a matrix-valued amplitude that, in the
nucleon’s rest frame, corresponds to a relativistic wave function with a material
lower component; i.e., a wave function with ‘‘p-wave’’ and, indeed, ‘‘d-wave’’
correlations, too [29]. Nonzero quark orbital angular momentum in the nucleon
is a straightforward outcome of a Poincar�ee covariant description.

While some issues remain unresolved [30, 31], contemporary data [32–34]
suggest that a single dipole mass cannot simultaneously characterize the Q2-depen-
dence of both the proton’s electric and magnetic form factors. This possibility was
evident in the Faddeev-amplitude-based calculations of ref. [10], as emphasized in
ref. [11]. Moreover, it can be inferred from ref. [35] that this experimental
result is an essential consequence of a nonperturbative and Poincar�ee covariant
representation of the proton as a bound state. This may be exemplified through
the role played by pseudovector components of the pion’s Bethe-Salpeter ampli-
tude, which are connected with the presence of quark orbital angular momentum
in the pion. These pseudovector amplitudes are necessarily nonzero [36] and
responsible for the large-Q2 behaviour of the electromagnetic pion form factor
[37, 38].

Herein we calculate the proton’s elastic electromagnetic form factors, using a
product ansatz for the proton’s Faddeev amplitude and a spectator approximation
to describe elastic electromagnetic scattering from the nucleon. We describe the
model in Sect. 2, and present and discuss the results in Sect. 3. Sect. 4 is an
epilogue. The study furnishes a means by which we may explore and illustrate
the points outlined above. It will become apparent that existing precision data on
the form factor ratios F

p
2ðq2Þ=F

p
1ðq2Þ and G

p
Eðq2Þ=G

p
Mðq2Þ are a sensitive probe of

nonperturbative aspects of the proton’s structure.

2 Model Elements

2.1 Dressed Quarks

There are three primary elements of our model and to begin with its specifi-
cation we note that quarks within bound states are described by a dressed
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propagator1

SðpÞ ¼ �i� � p�Vðp2Þ þ �Sðp2Þ ¼ 1

i� � p Aðp2Þ þ Bðp2Þ ¼
Zðp2Þ

i� � pþMðp2Þ : ð1Þ

It is a longstanding, model-independent DSE prediction that the wave function
renormalization Zðp2Þ and mass function Mðp2Þ exhibit significant momentum
dependence for p292 GeV2 whose origin is nonperturbative [4–6]. This behaviour
was recently verified in numerical simulations of quenched QCD [39], and the
connection between this and the full theory is analyzed in ref. [40].

The mass function is enhanced at infrared momenta, a feature that is an essen-
tial consequence of the dynamical chiral symmetry breaking (DCSB) mechanism.
It is also the origin of the constituent-quark mass. With increasing spacelike p2, on
the other hand, the mass function evolves to reproduce the asymptotic behaviour
familiar from perturbative analyses and that behaviour is manifest for p2010 GeV2

[41].
While numerical solutions for the dressed-quark propagator are readily

obtained from a model of QCD’s gap equation, the utility of an algebraic form
for SðpÞ, when calculations require the evaluation of numerous multidimensional
integrals, is self-evident. An efficacious parametrization, which exhibits the features
described above and has been used extensively [4–6], is expressed via

���SðxÞ ¼ 2�mmFð2ðxþ �mm2ÞÞ þ Fðb1xÞ Fðb3xÞ ½b0 þ b2Fð�xÞ�; ð2Þ

���VðxÞ ¼
1

xþ �mm2

�
1� Fð2ðxþ �mm2ÞÞ

�
; ð3Þ

with x ¼ p2=�2, �mm ¼ m=�,

FðxÞ ¼ 1� e�x

x
; ð4Þ

���SðxÞ ¼ � �Sðp2Þ and ���VðxÞ ¼ �2 �Vðp2Þ. The mass-scale, � ¼ 0:566 GeV, and
parameter values2

�mm b0 b1 b2 b3

0:00897 0:131 2:90 0:603 0:185
; ð5Þ

were fixed in a least-squares fit to light-meson observables [42]. The dimensionless
u ¼ d current-quark mass in Eq. (5) corresponds to

m ¼ 5:1 MeV: ð6Þ

The parametrization yields a Euclidean constituent-quark mass

ME
u;d ¼ 0:33 GeV; ð7Þ

1 We employ a Euclidean metric wherewith the scalar product of two four-vectors is a � b ¼
P4

i¼1 aibi,

and Hermitean Dirac-� matrices that obey f��; ��g ¼ 2���
2 � ¼ 10�4 in Eq. (2) acts only to decouple the large- and intermediate-p2 domains
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defined as the solution of p2 ¼ M2ðp2Þ [41], whose magnitude is typical of that
employed in constituent-quark models [43]. This is an expression of DCSB, as is
the vacuum quark condensate

�h�qqqi1 GeV2

0 ¼ �3 3

4�2

b0

b1 b3

ln
1 GeV2

L2
QCD

¼ ð0:221 GeVÞ3; ð8Þ

LQCD ¼ 0:2 GeV. The condensate is calculated directly from its gauge invariant
definition [36] after making allowance for the fact that Eqs. (2) and (3) yield a chiral-
limit quark mass function with anomalous dimension �m ¼ 1. This omission of the
additional lnðp2=L2

QCDÞ-suppression that is characteristic of QCD is merely a prac-
tical simplification.

2.2 Product Ansatz for the Faddeev Amplitude

We represent the proton as a composite of a dressed-quark and nonpointlike,
Lorentz-scalar quark-quark correlation (diquark), and exhibit this via a product
ansatz for the Faddeev amplitude

C0þ

3 ðpi; 	i; 
iÞ ¼
�
G0þ
�

1
2

p½12�; K
��
1
2

	1	2
D0þðKÞ ½Sð‘; PÞuðPÞ�
3

	3
; ð9Þ

wherein ðpi; 	i; 
iÞ are the momentum, spin, and isospin labels of the quarks con-
stituting the nucleon; the spinor satisfies

�uuðPÞ ði� � PþMÞ ¼ 0 ¼ ði� � PþMÞ uðPÞ; ð10Þ
with P ¼ p1 þ p2 þ p3 the nucleon’s total momentum, and it is also a spinor
in isospin space with ’þ ¼ colð1; 0Þ for the proton and ’� ¼ colð0; 1Þ for the
neutron; and K ¼ p1 þ p2 ¼: pf12g, p½12� ¼ p1 � p2, ‘ :¼ ð�pf12g þ 2p3Þ=3.

In Eq. (9), D0þðKÞ is a pseudoparticle propagator for the scalar diquark formed
from quarks 1 and 2, and G0þ is a Bethe-Salpeter-like amplitude describing their
relative momentum correlation. These functions can be obtained from an analysis
of the quark-quark scattering matrix, as explained in ref. [28]. However, we have
already chosen to simplify our calculations by parametrizing SðpÞ, and hence we
follow refs. [10, 11] and also employ that expedient herein, using

D0þðKÞ ¼ 1

m2
0þ
FðK2=!2

0þÞ; ð11Þ

G0þðk; KÞ ¼ 1

N 0þ
H Ci�5 i
2Fðk2=!2

0þÞ; ð12Þ

with F defined in Eq. (4), C ¼ �2�4 the charge conjugation matrix, 
2 the 2� 2
Pauli isospin matrix, and ðHc3Þc1c2

¼ �c1c2c3
, c1;2;3 ¼ 1; 2; 3, describing the complete-

ly antisymmetric colour structure of a �33 diquark.3 The parameters are a width, !0þ ,
and a pseudoparticle mass, m0þ , which have ready physical interpretations: The
length l0þ ¼ 1=!0þ is a measure of the mean separation between the quarks in

3 In Eq. (12), N 0þ
is a calculated normalization constant which ensures that a ðudÞ-diquark has

electric charge fraction ð1=3Þ for K2 ¼ �m2
0þ. NC, to appear in Eq. (15), is analogous: It is the

calculated normalization constant that ensures the proton has unit charge
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the scalar diquark; and the distance �0þ ¼ 1=m0þ represents the range over which a
diquark correlation in this channel can persist inside the nucleon.

With the elements described hitherto it is possible to derive a Poincar�ee covar-
iant Faddeev equation whose solution yields S, a 4� 4 Dirac matrix that describes
the relative quark-diquark momentum correlation. The complete nucleon ampli-
tude then follows:

C ¼ C1 þC2 þC3; ð13Þ
where the subscript identifies the dormant quark and, e.g., C1;2 are obtained from
C3 by a uniform, cyclic permutation of all the quark labels. The general form of S
is discussed at length in ref. [29] with the conclusion that the positive energy
solution can be written

Sð‘; PÞ ¼ f1ð‘; PÞ ID þ
1

M

�
i� � ‘� ‘ � P̂P ID

�
f2ð‘; PÞ; ð14Þ

where ðIDÞrs ¼ �rs, P̂P2 ¼ �1. In the nucleon’s rest frame, f1;2, respectively, describe
the upper, lower component of the spinor amplitude Sð‘; PÞ uðPÞ.

Again, calculations are simplified if one employs an algebraic parametrization
of S, and the form [44]

Sð‘; PÞ ¼ 1

NC
Fð‘2=!2

qfqqgÞ
�

ID � R

M

�
i� � ‘� ‘ � P̂P ID

��
ð15Þ

is efficacious. In writing this one exploits results of the Faddeev equation calcula-
tions reported in refs. [28, 29], which establish the fidelity of the approximations
f2ð‘; PÞ � R f1ð‘; PÞ and f1ð‘; PÞ � f1ð‘2; P2Þ. The ansatz involves two parameters:
a width !qfqqg and ratio R. The former can be associated with a length-scale
lqfqqg ¼ 1=!qfqqg, which measures the quark-diquark separation. The latter gauges
the importance of the lower component of the positive energy nucleon’s spinor
amplitude. Its magnitude increases with increasing R. (The strength of the lower
component of the nucleon’s Faddeev wave function is determined by R but does not
vanish for R¼ 0.) In realistic Faddeev equation studies of the nucleon lqfqqg> l0þ=2 �
0:2 fm and R� 0:5 [28].

2.3 Dressed-Quark-Photon Coupling

A calculation of the electromagnetic interaction of a composite particle cannot
proceed without an understanding of the coupling between the photon and the
bound state’s constituents. If those constituents are dressed then the coupling is
not pointlike. Indeed, it is readily apparent that with quarks dressed as described in
Sect. 2.1, only a dressed-quark-photon vertex, G�, can satisfy the vector Ward-
Takahashi identity:

q� iG�ð‘1; ‘2Þ ¼ S�1ð‘1Þ � S�1ð‘2Þ; ð16Þ
where q ¼ ‘1 � ‘2 is the photon momentum flowing into the vertex. This is illus-
trated with particular emphasis in refs. [38, 45–50], which consider effects asso-
ciated with the Abelian anomaly. The Ward-Takahashi identity is only one of many
constraints that apply to G� in a renormalizable quantum field theory and these
have been explored extensively in refs. [51, 52].
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The dressed-quark-photon vertex, a three-point Schwinger function, can be
obtained by solving an inhomogeneous Bethe-Salpeter equation. This was the
procedure adopted in the DSE calculation [7] that successfully predicted the elec-
tromagnetic pion form factor [53]. For our purposes, however, it is enough to
follow ref. [42] and employ the algebraic parametrization [54]

iG�ð‘1; ‘2Þ ¼ iSAð‘2
1; ‘

2
2Þ �� þ ð‘1 þ ‘2Þ�

h
1
2

i� � ð‘1 þ ‘2ÞDAð‘2
1; ‘

2
2Þ þ DBð‘2

1; ‘
2
2Þ
i
;

ð17Þ
with

SFð‘2
1; ‘

2
2Þ ¼ 1

2
½Fð‘2

1Þ þ Fð‘2
2Þ�; DFð‘2

1; ‘
2
2Þ ¼

Fð‘2
1Þ � Fð‘2

2Þ
‘2

1 � ‘2
2

; ð18Þ

where F ¼ A;B; i.e., the scalar functions in Eq. (1). It is critical that G� in Eq. (17)
satisfies Eq. (16) and very useful that it is completely determined by the dressed-
quark propagator. Improvements to this ansatz modify results by 910%, as illus-
trated, e.g., in refs. [55, 56].

Eq. (17) entails that dressed-quarks do not respond as point particles to low
momentum transfer probes. This observation qualitatively supports an assumption
employed in some relativistic constituent quark models [13, 15, 57]. An unambig-
uous quantitative connection is difficult because the definition of constituent-quark
degrees of freedom depends on a model’s formulation. It may nevertheless be
worth noting that quark dressing disappears with increasing spacelike q2 in
QCD. Hence, in the ultraviolet, the dressed-quark’s Dirac form factor must
approach one (with only ln q2 corrections) and its Pauli form factor must vanish;
viz., the interaction becomes pointlike in this limit. With the parameter values in
Eq. (5), this evolution of the Dirac and Pauli form factors may be characterized by
monopole ranges r1 � 0:25 fm and r2 � 0:35 fm, respectively.

2.4 Commentary

We have completely specified a covariant model of the nucleon as a bound state of
a dressed-quark and nonpointlike scalar quark-quark correlation. This algebraic
ansatz has four parameters: m0þ and !0þ introduced in Eqs. (11) and (12) to
characterize the diquark; and !qfqqg and R in Eq. (15), which express prominent
features of the nucleon’s spinor. The dressed-quark propagator and dressed-quark-
photon vertex are fixed.

In contemplating such a model one may ask whether it can supply an accurate
description of the nucleon’s electromagnetic form factors. A priori, the answer is
unknown but it is supplied by straightforward calculations.

A more important question, however, is whether the model should be accurate.
In this case the answer is no. Reference [28] emphasizes that no picture of the
nucleon is veracious if it neglects axial-vector diquark correlations and the
nucleon’s pion ‘‘cloud.’’ Thus our simple model must be incomplete. Fortunately,
estimates exist of the contributions made by these terms to the nucleon’s electro-
magnetic properties [12, 58–60], and in the following they are used to inform the
model’s application.
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3 Calculated Form Factors

The nucleon’s electromagnetic current is

J�ðP0;PÞ ¼ ie �uuðP0ÞL�ðq;PÞ uðPÞ; ð19Þ

¼ ie �uuðP0Þ
�
��F1ðq2Þ þ 1

2M
��� q� F2ðq2Þ

�
uðPÞ; ð20Þ

where q ¼ P0 � P and L� is the nucleon-photon vertex described in the Appendix.
In Eq. (20), F1 and F2 are, respectively, the Dirac and Pauli electromagnetic form
factors. They are the primary calculated quantities, from which one obtains the
nucleon’s electric and magnetic form factors

GEðq2Þ ¼ F1ðq2Þ � q2

4M2
F2ðq2Þ; GMðq2Þ ¼ F1ðq2Þ þ F2ðq2Þ: ð21Þ

To proceed with the illustration we select two values of R, namely, R¼ 0:25,
0.50. This choice is motivated by Faddeev equation studies, in which the smaller
value is obtained by calculations that retain scalar and axial-vector diquark corre-
lations but neglect the pion cloud, while the latter is obtained if the estimated effect
of that cloud is incorporated [28]. Then, in each case, we fix the remaining three
parameters by requiring a least-squares fit to

G
p
Eðq2Þ ¼ 1=ð1þ q2=m2

dÞ
2; ð22Þ

with md ¼ 1:1 GeV. This value of the dipole mass corresponds to a proton charge
radius rp ¼ 0:62 fm; i.e., � 30% smaller than the experimental value, and therefore
leaves room deliberately for additional contributions to the nucleon’s electromag-
netic structure from axial-vector diquark correlations and a meson ‘‘cloud.’’ While
the leading nonanalytic contribution to rp can alone repair the discrepancy [58, 60],
that does not alter the quiddity of our scheme because the scale of the effect is clear
and redistributing strength between complementary contributions can be achieved
merely by fine-tuning the model’s parameters.

In Table 1 we list the parameter values produced by this fitting procedure along
with the calculated values of proton and neutron static properties. The proton’s

Table 1. Fitted model parameters and calculated nucleon static properties. The values indicate:

�0þ ¼ 1=m0þ � 1
3

fm, l0þ ¼ 1=!0þ � 1
7

fm, lqfqqg ¼ 1=!qfqqg � 2
3

fm. For comparison, the third

row lists values of the parameters determined in ref. [28] by solving the Faddeev equation with the

inclusion of axial-vector diquark correlations and allowing for a pion cloud contribution; and the last

row provides experimental values of the static quantities

Parameters Calculated Static Properties

R m0þ ðGeVÞ !0þ !qfqqg ðr2
pÞ

2 ðfm2Þ ðr2
nÞ

2 �p (�N) �n

0.25 0.75 1.50 0.33 ð0:65Þ2 �ð0:38Þ2 2.58 �1:39

0.50 0.77 1.42 0.29 ð0:61Þ2 �ð0:37Þ2 2.52 �1:37

Ref. [28] 0.54 0.74 0.45 0.44

Obs. ð0:87Þ2 �ð0:34Þ2 2.79 �1:91
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charge radius is precisely that for which we aimed. However, the values of the
remaining static properties point to the deficiencies of a model that retains only a
scalar diquark correlation. They confirm that in this case one is unable to obtain a
quantitatively accurate picture of the nucleon. This is reassuring because, in con-
tributing to nucleon observables, axial-vector diquark correlations primarily inter-
fere constructively with the pion cloud; e.g., they both provide additional binding
and hence act to reduce the nucleon’s mass [28], and they both act to increase
j�p;nj, jr2

p;nj [12, 58–60]. Hence a model that ignores these contributions but suc-
ceeds in fitting experimental data is likely to possess spurious degrees of freedom.4

In the table’s third row we list values of this model’s parameters that were deter-
mined differently; viz., in a study [28] that allows for pion cloud contributions to
the nucleon’s mass and solves a Faddeev equation whose kernel admits axial-
vector diquark correlations. In comparing these values with those in the first two
rows it is apparent that only the value of !0þ is materially different. One may
therefore conclude that attempting to fit physical observables with a scalar diquark
alone leads to a correlation that is too pointlike; i.e., l0þ ¼ 1=!0þ is too small. The
improvements necessary to make the model more realistic are therefore plain. In
their absence it is nevertheless possible to illustrate important points.

A first observation relates to what may be called the nucleon’s ‘‘quark core.’’ In
an internally consistent model it is always possible to identify the relative strength
of various contributions to a physical observable. For example, ref. [28] employs a
rainbow-dressed quark and ladder-bound meson basis, within which the quark core
contributes approximately 85% of the nucleon’s mass. In the present case an esti-
mate of the core’s spatial extent is afforded by lqfqqg ¼ 1=!qfqqg � 2

3
fm, which is

commensurate with our calculated core contribution to the proton’s charge radius,
Table 1. It will also be evident that this scale is consistent with estimates of the
magnitude of meson-loop contributions to the proton’s charge radius determined
from lattice-QCD simulations [58, 60].

We depict the proton’s Dirac form factor in the left panel of Fig. 1, wherein it is
clear that the shift in parameter values has little observable impact. That is also true
for the Pauli form factor, which is plotted in the right panel. These two functions
together give the proton’s electric form factor, via Eq. (21), and that is shown in
Fig. 2.

We plot the calculated ratio: F2=�F1, � ¼ �p � 1, in Fig. 3, along with modern
experimental data [32, 34]. In addition, we draw the calculated result for this ratio
obtained using the parameter values of the scalar diquark ansatz employed in ref.
[10]. These values: R¼ 0:0, and (in GeV) m0þ ¼ 0:63, !0þ ¼ 1:4, !qfqqg ¼ 0:2,
were fixed via a least-squares fit to Eq. (22) but with md ¼ 0:84 GeV, which gives
rp ¼ 0:87 fm. The figure illustrates that the ratio decreases smoothly with increas-
ing R, bracketing the data, and thereby suggests that even the rudimentary ansatz is
capable of accurately describing the data. Indeed, the R¼ 0:25 parameter set might

4 The implementation of current conservation in the one-body current described in the Appendix is too

simple to allow a fair description of Gn
E. In this case it misses important cancellations and hence we

report anomalously large values for jr2
n j. A realistic description requires a more complex current

which includes fully-fledged seagull terms [12]. The simple current is adequate for the remaining

form factors because such destructive interference is either absent or markedly less important [10]
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Fig. 1. Left panel: Calculated proton Dirac form factor. Right panel: Calculated proton Pauli

form factor. Solid line, R¼ 0:25; dashed, R¼ 0:50. The associated model parameters are listed in

Table 1

Fig. 2. Calculated proton electric form factor: solid line, R¼ 0:25; dot-dashed, R¼ 0:50 –

the associated model parameters are listed in Table 1. For comparison, the lighter dashed

line is G
p
Eðq2Þ ¼ 1=ð1þ q2=m2

emp�pÞ
2
, memp�p ¼ 0:84 GeV; viz., a dipole fit to available proton

data
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even be considered a good representation. However, this is not the conclusion we
draw. Rather, the result demonstrates that the available data on this ratio is sensitive
to model-dependent details.

The ratio �pG
p
E=G

p
M is depicted in Fig. 4 and therein the last statement is

amplified. The proton’s electric form factor is a difference, Eq. (21), and that
accentuates its sensitivity. On the domain for which data is available, this ratio

Fig. 3. Calculated ratio F
p
2=ð�F

p
1Þ, � ¼ �p � 1: solid line, R¼ 0:25; dashed, R¼ 0:50 – the asso-

ciated model parameters are listed in Table 1. The short-dashed line was obtained with the model

parameters in ref. [10]: R¼ 0:0, and (in GeV) m0þ ¼ 0:63, !0þ ¼ 1:4, !qfqqg ¼ 0:2. Data: boxes,

ref. [32]; circles, ref. [34]

Fig. 4. Calculated ratio �pG
p
Eðq2Þ=G

p
Mðq2Þ: solid line, R¼ 0:25; dashed, R¼ 0:50 – the associated

model parameters are listed in Table 1. The lighter short-dashed line was obtained with the model

parameters in ref. [10]: R¼ 0:0, and (in GeV) m0þ ¼ 0:63, !0þ ¼ 1:4, !qfqqg ¼ 0:2. Data: boxes,

ref. [32]; diamonds, ref. [33]; circles, ref. [34]
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is particularly responsive to model details, a result also conspicuous in ref. [12]. It
is plain that three parameter sets, which are reasonable and differ modestly when
compared through the ratio F2=�F1, appear vastly different in the comparison
presented in Fig. 4. Moreover, because of continuity, it is clear that one could tune
the model parameters to fit the data on this ratio. However, what might be con-
sidered success in that endeavour could easily be achieved through results for G

p
E

and G
p
M individually which both disagree with the data.

4 Summary and Discussion

We calculated the proton’s elastic electromagnetic form factors using a rudimen-
tary ansatz for the nucleon’s Poincar�ee covariant Faddeev amplitude that represents
the proton as a composite of a confined quark and confined nonpointlike scalar
diquark. All such models give a Faddeev wave function that corresponds to a
nucleon spinor with a sizeable lower component in the rest frame.

This study indicates that on the domain of q2 accessible in modern precision
experiments these form factors are a sensitive probe of nonperturbative dynamics.
The calculated pointwise forms express a dependence on the length-scales that
characterize nonperturbative phenomena, such as bound state extent, dressing of
quark and gluon propagators, and meson cloud effects. This is precisely analogous
to the current status of the pion’s electromagnetic form factor, for which the behav-
iour predicted in a straightforward application of perturbative QCD is not unam-
biguously evident until q2015 GeV2 [38].

The ratio �pG
p
E=G

p
M is particularly sensitive to infrared dynamics because, as q2

increases, G
p
Eðq2Þ is a difference of small quantities. However, this ratio should not

be considered in isolation because it is possible to reproduce the experimental data
using a model that simultaneously provides a poor description of the individual
form factors. That is also true of the ratio F

p
2=�F

p
1 but this combination is less

responsive to model particulars because the Dirac and Pauli form factors are posi-
tive and fall uniformly to zero, with a momentum dependence at asymptotically
large momenta given by perturbative QCD [62, 63]. In the absence of a veracious
theoretical understanding of the nucleon, we view the latter ratio as a more sensible
constraint on contemporary studies.

It is apparent that much can be learnt about long-range dynamics in QCD from
existing and forthcoming accurate data on nucleon form factors. In constraining
systematic QCD-based calculations, one can hope, for example, to see an evolution
from the domain on which meson cloud effects are important to that whereupon
observables are dominated by the confined quark core. This could be elucidated by
improving the present study; viz., basing it on a solution of the Poincar�ee covariant
Faddeev equation with axial-vector diquark correlations, instead of using an ansatz
for the Faddeev amplitude, and explicitly including meson cloud contributions. The
form factors would then be tied directly to assumptions about the nature of quark-
gluon dynamics in the nucleon.
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Appendix A: Nucleon-Photon Vertex

We use an ansatz for C3 in the nucleon’s Faddeev amplitude, Eq. (13), from which a properly

antisymmetrized one-body vertex can be constructed via the method outlined in ref. [4],

L�ðq;PÞ ¼ L1
�ðq;PÞ þ 2

X5

i¼2

Li
�ðq;PÞ; ðA:1Þ

wherein

L1
�ðq;PÞ ¼ 3

ð
d4‘

ð2�Þ4
S
�
‘� 2

3
q; P

�
D0þðKÞ Sð‘; PÞLS

�ðp3 þ q; p3Þ; ðA:2Þ

with K ¼ ‘þ 2
3

P, p3 ¼ 1
3

P� ‘, LS
�ð‘1; ‘2Þ ¼ Sð‘1ÞGQ

� ð‘1; ‘2Þ Sð‘2Þ; and

L2
�ðq;PÞ ¼ 6

ð
d4k

ð2�Þ4
d4‘

ð2�Þ4
Oðp1 þ q; p2; p3ÞOðp1; p2; p3Þ trDF

�
LS
�ðp1 þ q; p1ÞSðp2Þ

�
Sðp3Þ; ðA:3Þ

where p1 ¼ 1
2

K þ k, p2 ¼ 1
2

K � k, 6 ¼ "c1c2c3
"c1c2c3

is the colour contraction, and

Oðp1; p2; p3Þ ¼ D0þðpf12gÞG0þ
�

1
2

p½12�; pf12g
�
S
�

1
3
½pf12g � 2p3�; P

�
: ðA:4Þ

L2
� describes the photon probing the structure of the scalar diquark correlation, and contributes equally

to both the proton and neutron. The remaining terms are

L3
�ðq;PÞ ¼ 6

ð
d4k

ð2�Þ4
d4‘

ð2�Þ4
Oðp1; p2; p3Þ

� Oðp1 þ q; p3; p2Þ Sðp2Þ ði
2ÞtLS
�ðp1; p1 þ qÞ ði
2Þ Sðp3Þ; ðA:5Þ

Fig. A.1. One-body current obtained from the product ansatz of Eq. (9). Solid line, dressed-quark

propagator SðpÞ; dashed line, diquark propagator D0þðKÞ. The amputated nucleon vertex is C0þ

3 in

every case
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where ‘‘t’’ denotes matrix transpose, and

L4
�ðq;PÞ ¼ 6

ð
d4k

ð2�Þ4
d4‘

ð2�Þ4
Oðp1; p3; p2 þ qÞOðp1; p2; p3ÞLS

�ðp2 þ q; p2Þ Sðp1Þ Sðp3Þ; ðA:6Þ

L5
�ðq;PÞ ¼ 6

ð
d4k

ð2�Þ4
d4‘

ð2�Þ4
Oðp1; p3 þ q; p2ÞOðp1; p2; p3Þ Sðp2Þ Sðp1ÞLS

�ðp3 þ q; p3Þ: ðA:7Þ

We illustrate these five terms in Fig. A.1. They are in one-to-one correspondence with those considered

in ref. [61], with the bottom two diagrams, representing L4;5
� , being progenitors of the ‘‘seagull’’ terms

exploited therein to ensure current conservation.

Our results are obtained by evaluating these integrals using Monte-Carlo methods and the input

specified in Eqs. (2), (3), (11), (12), (15), and (17).
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