
PHYSICAL REVIEW D 66, 034032 ~2002!
Multiplicative renormalizability and quark propagator
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The renormalized Dyson-Schwinger equation for the quark propagator is studied, in the Landau gauge, in a
novel truncation which preserves multiplicative renormalizability. The renormalization constants are formally
eliminated from the integral equations, and the running coupling explicitly enters the kernels of the new
equations. To construct a truncation which preserves multiplicative renormalizability and reproduces the cor-
rect leading order perturbative behavior, nontrivial cancellations involving the full quark-gluon vertex are
assumed in the quark self-energy loop. A model for the running coupling is introduced with an infrared fixed
point in agreement with previous Dyson-Schwinger studies of the gauge sector, and with the correct logarith-
mic tail. Dynamical chiral symmetry breaking is investigated, and the generated quark mass is of the order of
the extension of the infrared plateau of the coupling, and about three times larger than in the Abelian approxi-
mation, which violates multiplicative renormalizability. The generated scale is of the right size for hadronic
phenomenology, without requiring an infrared enhancement of the running coupling.
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I. INTRODUCTION

In the standard model of the strong, weak, and elec
magnetic forces, the interactions are quantitatively descri
by gauge field theories. Quantum chromodynamics is a n
Abelian gauge theory, and the proof of its renormalizabil
@1# and discovery of ultraviolet asymptotic freedom@2# have
been milestones in its acceptance as the theory of the st
interaction. For large momenta the coupling becomes sm
and perturbation theory seems an appropriate calculati
tool. However, for small momenta the coupling grows lar
and adequate methods have to be used to study nonpert
tive phenomena such as confinement, dynamical chiral s
metry breaking, and bound state formation. One such me
is the study of the Dyson-Schwinger equations~DSE! @3#,
and their phenomenological applications to hadronic phy
is a subject of growing interest@4#.

Dynamical chiral symmetry breaking can be studied
means of the quark propagator DSE, also called the
equation. The quark equation is part of an infinite tower
integral equations relating all the Green’s functions of
quantum field theory, and a truncation is necessary to be
to solve it. The often used Abelian approximation introduc
an effective running coupling in the kernels of the qua
equation, based on features of QED. A number of studie
the gap equation were performed in this approximation w
effective strong couplings that are infrared enhanced@5–7#,
infrared vanishing@8,9#, infrared vanishing with large en
hancements in the intermediate region@10#, and infrared fi-
nite @11,12#. These studies all find that dynamical chiral sym
metry breaking can be triggered, provided some paramet
the model exceeds a critical value, and a large integra
strength is needed in the self-energy kernels to achieve l
enough ‘‘constituent’’ quark masses, needed for hadron p
nomenology@9#. The Ansatzof a strong infrared enhance
ment in the kernels of the quark DSE is therefore a ma
ingredient in phenomenological studies, and the search
the source of such an enhancement, coming from the g
propagator, quark-gluon vertex, or their combination is
0556-2821/2002/66~3!/034032~15!/$20.00 66 0340
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important field of investigation.
The kernel of the gap equation not only reflects the stro

interaction between quarks and gluons, but also embodies
complicated structure of the QCD vacuum, which in the co
tinuum contains self-interacting gluon fields as well as gh
fields. Understanding the infrared behavior of the gluon a
ghost propagators and of the running coupling is therefore
great importance for the study of dynamical mass genera
@13#.

Early studies of the Dyson-Schwinger equation for t
gluon propagator in the Landau gauge seemed to indi
that the gluon propagator could be highly singular in t
infrared @14–17#, possibly providing the above-mentione
infrared enhancement in the kernels of the gap equat
However, these gluon propagator studies neglected any
tribution of the ghost fields, and required thead hoccancel-
lations of certain leading terms in the equations. It is the
fore far from certain that these solutions reflect the corr
QCD infrared behavior.

More recently, studies of the coupled set of Dyso
Schwinger equations for the gluon and ghost propaga
@18–20# have shown that the coupling of ghost and glu
fields plays a crucial role in the generation of a consist
infrared behavior of QCD. In the infrared the gluon an
ghost propagators are power behaved, and the strong run
coupling has an infrared fixed point. Moreover, the lead
infrared power in the gluon vacuum polarization depen
only on the ghost loop, and not on the gluon loop nor a
other diagram in the gluon equation. Although the prec
values of the infrared powers depend on the vertexAnsätze
and other details of the truncation, all these studies sho
that the full ghost propagator is more divergent than its b
counterpart, while the full gluon propagator is less diverge
Recent lattice calculations also support the infrared propa
tor power laws and fixed point of the running coupling@21–
23#. As neither the gluon propagator nor the running co
pling are infrared enhanced in the Landau gauge, one se
to be at loss to explain how enough strength can be achie
when breaking the chiral symmetry in the gap equation. T
©2002 The American Physical Society32-1
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problem to reconcile the DSE results of the gauge se
with the need for a strong infrared enhancement in the ef
tive coupling might hint to a deficiency in the Abelian a
proximation to the gap equation. A first attempt to extend
study of dynamical chiral symmetry breaking beyond t
Abelian approximation, by solving the coupled set of DS
for the quark, gluon, and ghost propagators simultaneo
@24#, underlines this conundrum by finding a generated
mion scale that is a factor of 2 too small for phenomenolo
cal purposes. One can then wonder if the approximatio
introduced to solve the gap equation, violate some esse
property of quantum chromodynamics, such that the stren
of dynamical chiral symmetry breaking is significantly wea
ened? And if so, can we construct a truncation which p
serves this property, and would naturally generate a la
enough dynamical quark mass?

Multiplicative renormalizability~MR! is an important fea-
ture of gauge field theories, proven for perturbative ren
malization@1#, but believed to hold forany renormalization
scale, and it is often ruined by the approximations to
vertices and vertex renormalization constants introduce
DSE studies to truncate the infinite tower of equations. No
of the truncations introduced in the DSE studies mentio
above, on the quark, gluon, and ghost DSEs, preserve
tiplicative renormalizability.

In a recent paper@25# I discussed how the DSE studie
@18–20# of the gauge sector violate the multiplicative reno
malizability of the gluon and ghost propagators and I dev
oped a new truncation scheme which preserves multipl
tive renormalizability and showed how this induce
important changes in the equations. I investigated the co
quences for the analysis of the infrared behavior of
propagators, and found that the ghost loop, gluon lo
3-gluon, and 4-gluon diagrams allpotentially contribute to
the leading infrared power in the gluon propagator DS
which is at variance with the conclusions of Refs.@18–20#,
where only the ghost loop contributed to leading order.
though the combination of ghost and gluon loops alone d
not seem to allow infrared power solutions for the propa
tors @25#, there are strong indications that the infrared co
tribution of the 4-gluon diagram, also called squint diagra
is such that infrared power solutions do exist when all
diagrams are taken into account@26#.

In this paper I construct an MR preserving truncation
the quark DSE using an approach similar to that presente
Ref. @25# for the gauge sector, and investigate dynami
chiral symmetry breaking. I show that the preservation
multiplicative renormalizability in the truncated quark equ
tion can naturally generate a phenomenologically accept
mass scale, while being consistent with the properties of
gluon and ghost propagators known from the DSE studie
the gauge sector, without infrared enhancement of the str
running coupling.

I first reformulate the quark equations, such that the L
dau gauge equations are free of renormalization constant
this formulation the self-energy kernels are explicitly driv
by the running coupling, and the multiplicative renormal
ability of the quark dressing function and renormalizati
point invariance of the dynamical mass are manifest. T
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allows me to design a novel truncation scheme for th
formal equations, which respects both the multiplicati
renormalizability and the resummed perturbative limit of t
solutions. The full vertex is genuinely nonperturbative in th
truncation, and nontrivial cancellations in the self-energy
tegrals are assumed to strip the vertex from its comp
dressing, leaving only bare vertices in the truncated eq
tions.

In the new truncated quark equations, the running c
pling is the only object carrying information about the no
perturbative effects in the gauge sector. The back reactio
the quarks on the running coupling could in principle
included through a self-consistent study of the coup
quark-gluon-ghost DSEs. However, to perform a first qu
titative calculation of dynamical chiral symmetry breaking
introduce a model running coupling based on prior know
edge about its infrared fixed point, acquired from the gho
gluon DSE@20,25#, the resummed leading order perturbati
behavior, and the qualitative features of the transition
tween both regions@19#.

Dynamical chiral symmetry breaking is then investigat
using this model running coupling in the MR truncation
the quark DSE. Although the equations in my new truncat
look very similar to those in the Abelian approximation, th
slight modifications ensuring MR yield important quantit
tive differences: the dynamically generated mass in the
truncation is boosted by about a factor of 3 compared to
Abelian approximation with the same running coupling. T
new findings show that no infrared enhancement, nor fi
tuning of the strong running coupling is needed: a runn
coupling having a reasonably valued infrared fixed po
(a0'2.6), which smoothly bends over into the perturbati
logarithmic tail, is able to generate masses allowing for
alistic hadron phenomenology.

II. THE QUARK EQUATION

Starting from the spinor quark DSE@3#, I derive two sca-
lar equations for the mass function and renormalized qu
dressing function, using the definitions of renormalized fie
and coupling. The ensuing quark equations are part of
infinite tower of integral equations relating all the Green
functions of QCD, and a truncation is necessary to be abl
solve them. I briefly discuss the Abelian approximatio
which violates multiplicative renormalizability, before con
structing a novel truncation which preserves the multiplic
tive renormalizability of the quark solutions.

The Dyson-Schwinger equation for the quark propaga
in QCD, formulated in Euclidean space, is

@SF~p!#215@SF
0~p!#212CFg0

2E d4q

~2p!4
Gm

qg,0~p,q,r !SF~q!

3Gn
qg~q,p,2r !Dmn~r !, ~1!

where SF and SF
0 are the full and bare quark propagator

Dmn is the full gluon propagator,Gm
qg,0 andGn

qg are the bare
2-2
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and full quark-gluon vertices, the color factorCF5(Nc
2

21)/2Nc54/3 for Nc53, g0 is the bare coupling, andr
5p2q.

The most general expression for the full quark propaga
can be written as

SF~p!5
Z~p2!

ip•g1M ~p2!
, ~2!

whereZ(p2) is the quark dressing function, andM (p2) is
the mass function. The bare propagator for a quark with b
massm0 is

SF
0~p!5

1

ip•g1m0
. ~3!

The full gluon propagator in a general covariant gauge
given by

Dmn~p!5S dmn2
pmpn

p2 D F~p2!

p2
1j

pmpn

p4
, ~4!

whereF(p2) is the gluon dressing function, and for futu
use I also give the general form of the full ghost propaga

D~p!52
G~p2!

p2
, ~5!

whereG(p2) is the ghost dressing function.
After substituting the propagators~2! – ~4! in Eq. ~1!, one

can derive a set of two coupled equations for the quark dr
ing function and the mass function by multiplying Eq.~1!,
respectively, by2 ip•g andI 4, and taking the trace in spino
space:

1

Z~p2,L2!
511

CF

16p4
g0

2~L2!E d4qZ~q2,L2!

3
F~r 2,L2!

q21M2~q2!
UZ~p2,q2,r 2,L2!, ~6!

M ~p2!

Z~p2,L2!
5m0~L2!

2
CF

16p4
g0

2~L2!E d4qZ~q2,L2!M ~q2!

3
F~r 2,L2!

q21M2~q2!
UM~p2,q2,r 2,L2!, ~7!

where
03403
r

re

s

r:

s-

UZ~p2,q2,r 2,L2!5
1

4p2r 2
Tr@p•gGm

qg,0~p,q,r !

3~q•g1 iM ~q2!!Gn
qg~q,p,2r ,L2!#

3Fd'
mn~r !1

j

F~r 2,L2!

r mr n

r 2 G , ~8!

UM~p2,q2,r 2,L2!5
1

4r 2
TrFGm

qg,0~p,q,r !S 12 i
q•g

M ~q2!
D

3Gn
qg~q,p,2r ,L2!G

3Fd'
mn~r !1

j

F~r 2,L2!

r mr n

r 2 G , ~9!

with d'
mn(r )5gmn2r mr n/r 2, and the kernelsUZ andUM also

depend implicitly onZ and M through the full quark-gluon
vertexGn

qg . The vector and scalar quark self-energy integr
are herein regulated with an ultraviolet cutoffL, yielding a
L2 dependence of the regularized dressing functions, and
L2 dependence of the bare massm0(L2) is such thatM (p2)
is finite and independent ofL2.

A. Renormalization

The full, regularized Green’s functions are potentially d
vergent when the ultraviolet cutoffL is taken to infinity, and
they are renormalized by applying the principles of multip
cative renormalization. The quark field is renormalized by

Z~p2,L2!5Z2~m2,L2!ZR~p2,m2!, ~10!

whereZR is the renormalized quark dressing function,Z2 is
the quark field renormalization constant, and at the renorm
ization pointZR(m2,m2)[1.

When addressing mass renormalization it is importan
observe that each choice of bare mass parameterm0(L2)
defines a different physical theory@27#, and for QCD each
quark flavor corresponds to a different valuem0

q(L2). The
running mass functionM (p2) is renormalization point in-
variant as it is unambiguously determined bym0(L2). The
bare mass parameter is chosen such that the running
function M (p2) is finite, and takes the valueM (m2)5mm ,
where the renormalized mass parametermm is determined, in
practice, by matching the calculated value of some mass
pendent observable to its measured value. Note that
speak of massparameterinstead of mass to emphasize th
the quarks are confined and have therefore no pole mas

The renormalization of the quark-gluon vertex introduc
a vertex renormalization constantZ1 f , which is related to the
renormalization of the strong coupling by

g~m2!5
Z3

1/2~m2,L2!Z2~m2,L2!

Z1 f~m2,L2!
g0~L2!, ~11!
2-3
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whereg(m2) is the value of the renormalized coupling at t
renormalization scale. Gauge invariance of the renormali
theory ensures the universality of the renormalized coup
for the quark-gluon, ghost-gluon, and triple-gluon intera
tion, such that also

g~m2!5
Z3

1/2~m2,L2!Z̃3~m2,L2!

Z̃1~m2,L2!
g0~L2!

5
Z3

3/2~m2,L2!

Z1~m2,L2!
g0~L2!,

~12!

whereZ̃1 andZ1 are the ghost-gluon and triple-gluon verte
renormalization constants.Z3 andZ̃3 are the renormalization
constants for the gluon and ghost fields,

F~p2,L2!5Z3~m2,L2!FR~p2,m2!,
~13!

G~p2,L2!5Z̃3~m2,L2!GR~p2,m2!,

where the renormalized gluon and ghost dressing funct
are defined such thatFR(m2,m2)5GR(m2,m2)[1.

Now that all the necessary renormalized quantities h
been defined, I multiply Eqs.~6! and ~7! by Z2, such that
their left-hand sides become finite, and introduce the ren
malized dressing functions using Eqs.~10!, ~13!, and the
renormalized couplingg(m2) using Eq.~11!:

1

ZR~p2,m2!
5Z2~m2,L2!1

CF

4p3
a~m2!Z1 f

2 ~m2,L2!

3E d4qZR~q2,m2!
FR~r 2,m2!

q21M2~q2!

3UZ~p2,q2,r 2,L2!, ~14!

M ~p2!

ZR~p2,m2!
5Z2~m2,L2!m0~L2!

2
CF

4p3
a~m2!Z1 f

2 ~m2,L2!

3E d4qZR~q2,m2!M ~q2!
FR~r 2,m2!

q21M2~q2!

3UM~p2,q2,r 2,L2!, ~15!

where I defineda(m2)[g2(m2)/4p. Note that the integrals
in the renormalized equations are preceded by a renorma
tion factorZ1 f

2 (m2,L2), originating from the renormalization
of the coupling. Although it is customary to absorb oneZ1
factor in the full unrenormalized vertex in order to renorm
ize it, I deliberately do not proceed like this here, so that
full vertex depends on the momenta flowing in the vert
and onL, but not onm. The self-energy integrals have aL
dependence consistent with perturbation theory, which
03403
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cancelled by the seeds of Eqs.~14! and~15! to yield a finite
dressing functionZR and mass functionM.

B. Abelian approximation

A truncation often used in previous studies to decou
the quark equations~14! and ~15! from the infinite tower of
DSEs is the bare vertex, Abelian approximation. There, gh
field contributions are neglected, and one introduces the s
stitution

a~m2!Z1 f
2 FR~r 2,m2!Gm

qg,0Gn
qg→aeff~r 2!Gm

qg,0Gn
qg,0 ,

~16!

based on QED gauge invariance properties and on the
sumption that the bare vertex approximation might be app
priate in the Landau gauge. In this approximationaeff(r 2)
can be considered as aneffectiverunning coupling. In the
Abelian approximation the quark equations~14! and ~15!
become

1

ZR~p2,m2!
5Z2~m2,L2!1

CF

4p3

3E d4qZR~q2,m2!
aeff~r 2!

q21M2~q2!

3UZ
0~p2,q2,r 2!, ~17!

M ~p2!

ZR~p2,m2!
5Z2~m2,L2!m0~L2!2

CF

4p3

3E d4qZR~q2,m2!M ~q2!
aeff~r 2!

q21M2~q2!

3UM
0 ~p2,q2,r 2!, ~18!

whereUZ
0 andUM

0 are calculated by replacing the full, regu
larized, unrenormalized quark-gluon vertexGn

qg by the bare
vertex,Gn

qg,05 ign , in Eqs.~8! and ~9!.
It is easy to convince oneself that Eqs.~17! and ~18! of

the Abelian approximation violate multiplicative renormali
ability, and this will be illustrated further in Sec. IV.

C. MR truncation

The aim of this paper is to derive a novel truncati
scheme, which preserves the multiplicative renormalizabi
of the solutions, starting from the exact renormalized eq
tions ~14! and ~15!. This will be achieved by specific ma
nipulations of the renormalization constantZ1 f and by as-
suming nontrivial cancellations involving the full quark
gluon vertex in the quark self-energy loop, as specified in
remainder of this section.

The nonperturbative expression for the quark-gluon v
tex renormalization constantZ1 f is not known, but it can be
eliminated from the equations using Eqs.~11! and ~12!,
which state the universality of the strong coupling:
2-4
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Z1 f~m2,L2!5
Z2~m2,L2!

Z̃3~m2,L2!
Z̃1~m2,L2!. ~19!

It is interesting to note the similarity between the QCD re
tion ~19! and the QED analog,Z1 f5Z2, in a theory without
ghost fields.

As Z1 f is independent of the integration momentum, t
factor Z1 f

2 can be moved inside the self-energy integrals
Eqs.~14! and~15! and factorized in aL and am dependent
part by applying Eq.~19!, and consequently using the de
nitions ~10! and ~13! to replaceZ2 and Z̃3 by ratios of un-
renormalized to renormalized dressing functions at mome
of our choice:

Z1 f~m2,L2!5
Z~q2,L2!

G~r 2,L2!

GR~r 2,m2!

ZR~q2,m2!
Z̃1~m2,L2!, ~20!

where I have chosen to use the quark momentum of
self-energy loop to rewriteZ2, and the gluon momentum fo
Z̃3. After substituting the square of Eq.~20! in the quark
equations~14! and ~15! one finds

1

ZR~p2,m2!
5Z2~m2,L2!1

CF

4p3
a~m2!Z̃1

2~m2,L2!

3E d4q
1

ZR~q2,m2!

FR~r 2,m2!GR
2~r 2,m2!

q21M2~q2!

3F Z2~q2,L2!

G2~r 2,L2!
UZ~p2,q2,r 2,L2!G , ~21!

M ~p2!

ZR~p2,m2!
5Z2~m2,L2!m0~L2!2

CF

4p3
a~m2!Z̃1

2~m2,L2!

3E d4q
M ~q2!

ZR~q2,m2!

FR~r 2,m2!GR
2~r 2,m2!

q21M2~q2!

3F Z2~q2,L2!

G2~r 2,L2!
UM~p2,q2,r 2,L2!G . ~22!

From Eqs.~12! and ~13! it is easy to see that the product

â~q2,m2,L2![a~m2!Z̃1
2~m2,L2!FR~q2,m2!GR

2~q2,m2!

~23!

can also be written in terms of unrenormalized quantit
only:

â~q2,m2,L2!5
g0

2~L2!

4p
F~q2,L2!G2~q2,L2!, ~24!

which shows thatâ(q2,m2,L2) is renormalization group in-
variant, i.e., independent ofm2. Therefore â(q2,m2,L2)
5â(q2,q2,L2), and taking into account the renormalizatio
conditions forFR and GR , and the fact thatZ̃1[1 in the
03403
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Landau gauge@28#, we see that, in that gauge, the produ
â(q2,m2,L2) defined in Eq.~23! is nothing else but the run
ning couplinga(q2) ~see also Refs.@14,18,19#!. One can
identify the product~23! in Eqs. ~21! and ~22!, and in the
Landau gauge these equations become

1

ZR~p2,m2!
5Z2~m2,L2!1

CF

4p3

3E d4q
1

ZR~q2,m2!

a~r 2!

q21M2~q2!

3F Z2~q2,L2!

G2~r 2,L2!
UZ~p2,q2,r 2,L2!G , ~25!

M ~p2!

ZR~p2,m2!
5Z2~m2,L2!m0~L2!2

CF

4p3

3E d4q
M ~q2!

ZR~q2,m2!

a~r 2!

q21M2~q2!

3F Z2~q2,L2!

G2~r 2,L2!
UM~p2,q2,r 2,L2!G . ~26!

In numerical calculations the seeds of the equations will
eliminated in the usual way by subtracting each equation
two different momenta and imposing the renormalizati
conditions. Note that, except for the seeds of the integ
equations~25! and ~26!, the renormalization point depen
dence only enters through the renormalized quark dres
function ZR , so that the multiplicative renormalizability o
the dressing function and renormalization point invariance
the mass function are manifested in a very clear way by
1/ZR structure on both sides of the equations. Furtherm
these equations are still exact as no approximations h
been introduced in their derivation, and this shows how
running coupling explicitly enters the self-energy kerne
and drives the mass function, in a non-Abelian gauge the

The kernelsUZ and UM , defined in Eqs.~8! and ~9!,
contain the full, unrenormalized quark-gluon vertex, th
coupling the propagator equations~25! and~26! to the higher
order DSEs, and in order to perform a numerical calculat
I introduce an approximation which decouples the qu
equations from the vertex DSE.

A simple truncation which preserves the MR properties
the solutions and reproduces the leading order renorma
tion group equation~RGE! improved perturbative behavio
consists in assuming that the factorsZ2/G2 in the square
brackets of Eqs.~25! and ~26! cancel both the nonperturba
tive vertex and loop corrections in the self-energy integra
This truncation is analogous to the one introduced in
DSE for the gluon propagator in Ref.@25#. The kernels be-
tween square brackets in Eqs.~25! and~26! are thus approxi-
mated by
2-5
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Z2~q2,L2!

G2~r 2,L2!
UZ~p2,q2,r 2,L2!→UZ

0~p2,q2,r 2!, ~27!

Z2~q2,L2!

G2~r 2,L2!
UM~p2,q2,r 2,L2!→UM

0 ~p2,q2,r 2!,

~28!

whereUZ
0 andUM

0 are calculated by replacing the full, regu
larized, unrenormalized quark-gluon vertexGn

qg by the bare
vertex,Gn

qg,05 ign , in Eqs.~8! and~9!. After substituting the
Ansätze ~27! and ~28! in Eqs.~25! and ~26! we find

1

ZR~p2,m2!
5Z2~m2,L2!1

CF

4p3

3E d4q
1

ZR~q2,m2!

a~r 2!

q21M2~q2!

3UZ
0~p2,q2,r 2!, ~29!

M ~p2!

ZR~p2,m2!
5Z2~m2,L2!m0~L2!2

CF

4p3

3E d4q
M ~q2!

ZR~q2,m2!

a~r 2!

q21M2~q2!

3UM
0 ~p2,q2,r 2!, ~30!

where the Landau gauge kernels (j50) are given by

UZ
0~p2,q2,r 2!5

1

p2r 2 F3p•q2
2@p2q22~p•q!2#

r 2 G ,

~31!

UM
0 ~p2,q2,r 2!52

3

r 2
. ~32!

Let us verify that this truncation preserves the multiplicat
renormalizability of the solutions. From Eq.~10! one can
show that multiplicative renormalization is satisfied if sol
tions renormalized atm2 andn2 are related by

ZR~p2,n2!5
ZR~p2,m2!

ZR~n2,m2!
,

~33!
Z2~n2,L2!5ZR~n2,m2!Z2~m2,L2!.

Now assume one has found solutionsZR(p2,m2), M (p2) of
Eqs.~29! and~30!, for all p2, renormalized at a scalem2, i.e.,
with Z2(m2,L2) such thatZR(m2,m2)51. If one multiplies
both equations~29! and ~30! by ZR(n2,m2), it is clear that
ZR(p2,n2) of Eq. ~33! and the original mass functionM (p2)
are solutions of the new equations, satisfyingZR(n2,n2)51,
and with renormalization constantZ2(n2,L2) obeying Eq.
~33!. The ability to construct the solutions renormalized atn2

starting from the solutions renormalized atm2, following the
03403
principles of multiplicative renormalization defined in E
~10!, demonstrates that the novel truncation respects the m
tiplicative renormalizability of the solutions. Such a co
struction is not possible for Eqs.~17! and ~18! of the bare
Abelian approximation, hence showing its violation of mu
tiplicative renormalizability.

Also note that the solutions of the truncated equatio
~29! and ~30! satisfy the leading order resummed perturb
tive results. This feature was demonstrated earlier for
Abelian case@11,29#, and even though the newly propose
equations differ from the former in theirZ dependence, thei
UV limits are identical, asZR(p2)51 to leading order in the
Landau gauge, and hence, their mass functions have
same UV behavior. For systems whereZR(p2)Þ1 the Abe-
lian approximation does not reproduce the correct pertur
tive behavior for the quark functions, while truncations sim
lar to Eqs.~27! and ~28! still do. This has previously been
shown for the gluon and ghost dressing functions in QC
@25#, which obey similar equations. Also note that a trunc
tion of the fermion equation in QED3 @30#, constructed in
order to reproduce the correct perturbative behavior, featu
a similar linearity in the dressing functionZ which, as was
shown above, is sufficient to achieve multiplicative ren
malizability. The treatment of QCD is, however, significant
different from QED, as the running coupling only enters t
equations after introducing appropriate ghost field corr
tions as proposed in Eqs.~27! and ~28!.

The fact that the simple truncation~27! and ~28! satisfies
these two important features of gauge theories is not a m
accident. Similarly to our work on the gluon equation in R
@25#, the cancellations assumed in ourAnsatzcan be related
to the cancellation of the quantum corrections coming fr
both the full quark-gluon vertex and the integral over t
DSE kernel, in a way similar to Mandelstam’s work on th
gluon equation@14#. Indeed, the quark-gluon vertex Slavno
Taylor identity, which is a consequence of gauge invarian
is

~p2k!mGm~p,k;p2k!5G@~p2k!2#@SF
21~k!2SF

21~p!#,

~34!

which shows that the bare vertex receives nonperturba
corrections proportional toG/Z. Although the Slavnov-
Taylor identity does not constrain the transverse part of
vertex, multiplicative renormalizability requires the comple
full vertex to have corrections of a similar nature. Furth
more, Mandelstam also showed in Ref.@14# how perturba-
tive loop corrections to the propagators in fact introduce
doubleG/Z correction, and I herein assume that this is n
just a perturbative feature, but rather a true nonperturba
one, engendered by the integrations over the full Gree
functions in the self-energy integrals. Hence, in this analy
one factorZ/G is assumed to cancel the quantum correctio
of the full vertex, and the other factorZ/G to cancel the
nonperturbative corrections generated by the integrals o
the kernels. This nonperturbativeAnsatzis consistent with
perturbation theory at large momenta, hence yielding the
rect resummed perturbative behavior of the quark functio
but moreover it preserves the multiplicative renormalizab
2-6
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MULTIPLICATIVE RENORMALIZABILITY AND QUARK . . . PHYSICAL REVIEW D 66, 034032 ~2002!
ity of the solutions for any choice of renormalization poin
Note that, even though the full vertex has not been c
structed explicitly, it is genuinelynonperturbativein this
truncation. However, the final equations contain bare vert
only, as a consequence of the nontrivial cancellations
sumed in theAnsatz.

The main aim of this study is to investigate the realizat
of dynamical chiral symmetry breaking in the proposed M
preserving truncation, where the kernel is explicitly driv
by the running coupling. From the derivation of Eqs.~29!
and~30! we note that the running coupling in these equatio
is the true QCD running coupling, and not an effective co
pling as was the case in the Abelian approximation, Eqs.~17!
and ~18!. The running coupling connects the quark equat
to the gauge sector, and in the next section I discuss
strong running coupling in more detail.

III. THE STRONG RUNNING COUPLING

Formally the truncated quark equations~29! and~30! have
to be solved in a coupled system together with the equat
for the gluon and ghost propagators presented in Ref.@25#,
such that the back reaction of the quarks on the glu
vacuum polarization be taken into account correctly in
truncation that preserves multiplicative renormalizabili
However, as shown in Ref.@25#, the pure gauge gluon-ghos
system itself is not yet fully understood, and one can circu
vent this complicated analysis, and postpone the study of
coupled equations to a later stage, by introducing a real
model for the running coupling, thus decoupling the qua
equations from the gluon-ghost system.

I will construct a model running coupling using informa
tion originating from perturbation theory, from Dyson
Schwinger studies of the coupled ghost-gluon system,
from recent lattice calculations.

A. Asymptotic behavior

Renormalization group equation improved leading or
perturbation theory yields the asymptotic ultraviolet behav
of the running coupling, including the quark contribution
the vacuum polarization:

a~q2!;
UV 4p

b0 log~q2/LQCD
2 !

, ~35!

where

b05
11Nc22Nf

3
, ~36!

with Nc colors andNf flavors, and where the leading ord
LQCD can be determined from some high energy experim
Note that this leading order resummed behavior is also
produced in the solutions of the nonperturbative DSEs, w
computed using the truncation described in Ref.@25#, which
preserves multiplicative renormalizability.

From an analysis of the coupled ghost and gluon D
system, von Smekalet al. @18# showed that, in a specific
03403
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truncation scheme, the gluon and ghost propagators o
power laws in the infrared region, and the running coupli
has an infrared fixed point. Furthermore, the leading infra
behavior of the gluon equation is completely determined
the ghost loop contribution to the vacuum polarizatio
These results were confirmed by studies of Atkinson a
Bloch @19,20# using different vertexAnsätzeand angular ap-
proximations. However, the various truncations used in th
studies all violate the principle of multiplicative renormali
ability, and Ref.@25# proposed a truncation where multipl
cative renormalizability is respected, and which posses
the distinctive feature that all diagrams contribute to t
leading infrared behavior of the gluon equation. A rece
investigation of the contributions of the two-loop diagram
to the gluon vacuum polarization@26# in this MR truncation
reveals a relatively large infrared contribution of the fou
gluon orsquintdiagram which is essential, when combine
with the ghost and gluon loop contributions@25#, to ensure
the existence of the propagator power laws, and of an in
red fixed point for the strong running coupling. This is
satisfying observation as the infrared power law solutions
both the gluon and the ghost propagators and the infra
fixed point of the strong coupling are also supported by
number of recent lattice calculations@21–23#.

B. The model

Taking into account all this evidence, I herein build
model running coupling which has an infrared fixed poi
and a constraint on its value can be derived from the gh
DSE only, as shown in the Appendix, independently of t
details of the gluon DSE. From Eq.~A11! one computes that
for SU~3!, the fixed point satisfies 2p/3,a0,4p/3, de-
pending on the precise value of the exponentk of the propa-
gator power laws~A3!, and combining with recent lattice
results givingk'0.5 @21–23#, I assume a preferred valu
a055p/6'2.6.

Even though I pinned down the leading asymptotic beh
ior of the running coupling at large and small momenta, o
still needs to know the behavior of the running coupling f
all momenta in order to solve the quark equations~29!, ~30!.
To model the intermediate momentum region, where the c
pling evolves from the infrared fixed point into the logarit
mic tail, I use information collected from the study, Re
@19#, of the coupled ghost-gluon system. The numerical
sults and the analytically calculated infrared asymptotic
ries in that study showed that the coupling remains v
close to the infrared fixed point almost up toq25LQCD

2 ,
crosses the leading order perturbative curve, and there
drops quite rapidly to rejoin the perturbative curve, fro
above, aroundq2510LQCD

2 .
I propose a functional expression for the running coupl

which satisfies the various constraints mentioned abo
making use of rational polynomial approximations multipl
ing the required asymptotic behaviors. In its simplest fo
the approximation contains only one, dimensionless, par
eterc0 apart from the infrared fixed pointa0 and the intrin-
sic scaleLQCD,
2-7
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a~q2![a~ tLQCD
2 !

5
1

c01t2 Fc0a01
4p

b0
S 1

log t
2

1

t21D t2G , ~37!

wheret5q2/LQCD
2 @43#. The first term in the square bracke

of Eq. ~37! is responsible for the infrared fixed point, whi
the term between round brackets yields the correct lead
order logarithmic tail, where the simple pole atLQCD has
been subtracted to make the coupling analytic for all spa
like momenta@31#. To match the intermediate region wit
the results of Ref.@19#, I choosec0515, and I illustrate this
model for the running coupling in Fig. 1. Note that in co
trast to the effective coupling often used in the application
DSE to hadron phenomenology, the running coupling~37!
does not have any infrared enhancement and can be co
ered as a smoothened version of the concatenation of
infrared fixed point with the leading order logarithmic ta
where the smoothening is performed in a way suggested
previous studies of the gauge sector. The meaning and d
mination of the intrinsic QCD scaleLQCD in the model~37!
will be discussed in Sec. IV.

IV. NUMERICAL RESULTS

I now study how dynamical chiral symmetry breakin
gets realized in Eqs.~29! and ~30! with kernels driven by
a(q2) of Eq. ~37!. Note thata(q2) possesses an intrinsi
scaleLQCD, with which all momenta are scaled, and hen
all momenta and masses in the quark equations can be
pressed hereinafter in units ofLQCD. The equations are
solved numerically for the chiral case, and the results, wh
satisfy MR, are compared with those computed in the M
violating Abelian approximation. I investigate the sensitiv
of the generated mass scale to the parameters of the m
coupling and discuss the determination ofLQCD of the
model. I also show the results of the quark equation in
massive case.

FIG. 1. Running couplinga(q2), as given by Eq.~37! with
a052.6 andc0515, andq2 given in unitsLQCD

2 . The coupling has
an infrared fixed pointa0 and an ultraviolet behavior consiste
with resummed leading order perturbation theory.
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The seeds of Eqs.~29! and ~30! depend on the unknown
renormalization constantZ2 and bare massm0 and they are
eliminated in the usual way by subtracting each equation
the renormalization pointm2 from that atp2, and imposing
the renormalization conditionsZR(m2)51, M (m2)5mm .
All integrals in the subtracted equations are finite, and
ultraviolet regulator can be taken to infinity. After introdu
ing spherical coordinates, and performing two trivial angu
integrations, one finds

1

ZR~x!
511

CF

2p2E0

`

dy
1

ZR~y!

y

y1M2~y!
E

0

p

du sin2 u

3H S a~z!

x F3Ayx cosu

z
2

2xy sin2 u

z2 G D
2~x↔m2!J , ~38!

M ~x!

ZR~x!
5mm1

3CF

2p2E0

`

dy
M ~y!

ZR~y!

y

y1M2~y!

3E
0

p

du sin2 uF S a~z!

z D2~x↔m2!G , ~39!

with x5p2, y5q2 and z5x1y22Axy cosu. Note that
from now on the renormalization point dependence ofZR
will be implicitly understood,ZR(x)[ZR(x,m2).

A. Chiral case

In the chiral case the mass equation~30! is homogeneous
asZ2m0[0, and no subtraction is needed for the mass eq
tion. Equation~39! is replaced by

M ~x!

ZR~x!
5

3CF

2p2E0

`

dy
M ~y!

ZR~y!

y

y1M2~y!
E

0

p

du sin2 u
a~z!

z
.

~40!

I substitute the model running coupling~37! in the quark
equations~38! and ~40! and compute the solutions of thes
equations using a numerical procedure first constructed
study dynamical chiral symmetry breaking in strong co
pling QED @32# and later also applied to solve the coupl
gluon-ghost equations@19#. The method uses Chebyshe
polynomials to approximate the unknown functions a
solves for the polynomial coefficients using the quadratica
convergent Newton iterative method.

The evolution ofM (x) and ZR(x) as a function of mo-
mentum is shown in Fig. 2, for 1025<x/LQCD

2 <105, and
renormalization pointm25LQCD

2 . The mass function is ex
pressed in units ofLQCD, which sets the scale in the runnin
coupling~37!. Note that, in my MR preserving truncation,
different choice of renormalization point will merely mult
ply the whole functionZR(x) by a finite, constant factor ove
the complete momentum range and will leave the mass fu
2-8
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FIG. 2. Solutions for the mass functionM (x) and quark dressing functionZR(x), from Eqs. ~38! and ~40!, renormalized atm2

5LQCD
2 , usinga(x) given by Eq.~37!, with a052.6 andc0515, in the chiral case. Preservation of multiplicative renormalizability me

that a different choice of renormalization point will merely multiplyZR(x) by a constant factor, and leaveM (x) unchanged.
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tion M (x) unchanged. The strength of the dynamical chi
symmetry breaking can be characterized by the value of
mass function at the origin:

M ~0!'1.057LQCD. ~41!

The generated quark mass is of the order of the extensio
the infrared plateau of the coupling, and the absence of fi
tuning in the coupling, to obtain such a mass scale, point
a certain naturalness in the MR truncation.

In the chiral case the ultraviolet behavior of the dynami
mass function satisfies the well-known asymptotic form
@33,34#:

M ~x!;
2p2gm

3

2^q̄q&0

xF1

2
log~x/LQCD

2 !G12gm
, ~42!

with gm512/(3322Nf). A large momentum fit yields the
value for the renormalization-point independent vacu
quark condensate, which is also representative for
strength of dynamical chiral symmetry breaking:

2^q̄q&0'~0.70LQCD!3. ~43!

B. Abelian approximation

An important part of my analysis is to evaluate the infl
ence of the multiplicatively renormalizable approach on
dynamically generated mass scale. The only difference
tween the MR Eqs.~29! and ~30! and Eqs.~17! and ~18! of
the bare vertex, Abelian approximation, is the factorZR(y)
which appears in the denominator of the integration kern
in the former, while it is found in their numerator in th
latter, in a way violating MR. Using the model running co
pling ~37! as effective coupling in the Abelian approxim
tion, I find a dynamically generated mass that strongly
pends on the renormalization point, as can be seen in Tab
The value which is usually quoted in Abelian studies is t
03403
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of the unrenormalized case, for which the dynamical mas
M (0)'0.326LQCD, about three times smaller than in th
herein presented MR preserving truncation. My MR trunc
tion clearly disagrees with the use of a bare quark-glu
vertex, and the implicit dressing of the vertex assumed in
MR truncation is essential. The violation of MR, and hen
the renormalization point dependence of the generated m
scale makes the bare vertex Abelian truncation ill-defined

One furthermore observes that the mass scale generat
the MR truncation depends very little on the momentum e
lution of Z. To show this, it suffices to decouple the ma
equation ~40! from the Z-equation ~38! by forcing ZR(x)
[1 for all x in the mass equation. The generated mas
then M (0)51.082LQCD, only 2% off the value of the
coupled system of equations.

C. Model sensitivity

I now study the sensitivity of the solutions of the M
truncated quark equations to the features of the model~37!
for the running coupling.

First, I examine which part of the kinematical regime
the running coupling~37! mainly contributes to the dynami
cal mass in the MR truncation. I substitute the solutions

TABLE I. Dynamically generated massM (0), in units of
LQCD, versus renormalization pointm2 ~in LQCD

2 ) in MR-violating
Abelian approximation, compared with MR solution.

m2 M (0)

MR any 1.057

Abelian unrenormalized 0.326
105 0.327
103 0.355
1 1.262

1023 1.398
1025 1.398
2-9
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J. C. R. BLOCH PHYSICAL REVIEW D66, 034032 ~2002!
Eqs.~38! and~40!, shown in Fig. 2, in the right-hand side o
Eq. ~40! and calculate the mass integral for varying values
the upper integration limitLUV

2 . The results are given in
Table II, and one finds that slightly more than half of t
dynamical mass is generated by the infrared fixed point
gion of the coupling,p2,LQCD

2 . Most of the remaining mas
is generated in the transition region,LQCD

2 ,p2,10LQCD
2 ,

while the logarithmic tail only contributes about 1%. Hen
the dynamical mass is mainly generated in the nonpertu
tive region of the coupling, and is virtually independent of
precise ultraviolet behavior. It is therefore not essential,
the context of dynamical chiral symmetry breaking, that
ultraviolet behavior of the coupling~37! only reproduces the
RGE improved leading order perturbative results.

Next, I investigate the sensitivity of the results to the p
rameters of the model coupling~37!. As shown in the Ap-
pendix the value of the fixed point depends on the details
the infrared analysis of the gluon-ghost DSE system, w
bounds 2p/3,a0,4p/3, and preferred value 5p/6. In Fig.
3 I show how the generated mass changes as one varie
value of the fixed point over a slightly wider range, 1<a0
<12, and some of the main values are also tabulated in T
III. In the figure I also plot the corresponding results for t
unrenormalized, bare vertex, Abelian case discussed ea
As could be expected there is a critical valuea0

crit'0.90~for
c0515) below which chiral symmetry is not spontaneou
broken. However, the fixed point value dictated by the QC

TABLE II. Dynamically generated massM (0), in units of
LQCD, versus upper integration limitLUV

2 ~in LQCD
2 ) in Eq. ~40!.

LUV
2 M (0)

0.1 0.076
1 0.562
10 1.044
100 1.057
103 1.057

FIG. 3. Variation of the generated massM (0), in units of
LQCD, with varying a0 in Eq. ~37!, andc0515, for my MR trun-
cation scheme, and in the Abelian approximation. The vertical
shows the preferred valuea052.6.
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equations is well above this value, and the quarks do acq
an appropriately sized dynamical mass in the MR truncati

When constructing the model coupling~37!, the shape of
its drop in the intermediate region,LQCD

2 ,p2,10LQCD
2 ,

where the coupling flows from the infrared asymptotic b
havior into its perturbative logarithmic tail, was inferre
from the numerical results of Ref.@19#. Even though I am
confident that the qualitative features of this study will r
main valid outside the scope of its specific truncations~an-
gular approximation, violation of MR, disregard of qua
loop and two-loop diagrams!, more will be learned about the
intermediate regime when solving the coupled quark-glu
ghost set of equations in an MR preserving truncation, a
plan to do in future work. However, the sensitivity of th
generated mass scale with respect to a change in interme
behavior can already be studied by varying the parametec0
of the model coupling~37!. The behavior of the running
coupling, asc0 is varied, is illustrated in Fig. 4, and th
dynamically generated mass is tabulated in Table IV, for
lected values ofc0. The parameterc0 is related to the posi-
tion of the transition region, where the running couplin
drops from its fixed point to rejoin the perturbative curv
and the dynamical mass gradually increases with increa
c0.

Note that another approach yielding a finite infrared va
of the running coupling can be derived from an analytic co

TABLE III. Sensitivity of the dynamically generated mas
M (0), in units of LQCD, to changes in the infrared fixed point o
the coupling,a0 of Eq. ~37!, with c0515.

a0 M (0)

1.0 0.028
1.8 0.548
2.6 1.057
3.4 1.494
4.2 1.874

e

FIG. 4. Running couplinga(x), given by Eq.~37! with a0

52.6, for a range ofc0’s. To focus on the influence ofc0 on the
intermediate momentum region the plotted momentum range
taken as 0.1<x/LQCD

2 <1000.
2-10
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MULTIPLICATIVE RENORMALIZABILITY AND QUARK . . . PHYSICAL REVIEW D 66, 034032 ~2002!
tinuation of the perturbative coupling as shown in Ref.@31#.
In contrast to the model used above, the coupling derive
that approach has no infrared plateau, and is exactly give
expression~37! with c050, yielding a finite infrared value
a(0)51.51, forNf54. This running coupling does not yiel
enough integration strength in the gap equation, as the c
puted dynamical fermion massM (0)50.036LQCD is clearly
too small for hadronic applications.

D. Determining LQCD

As the running couplinga(q2) of Eq. ~37! is a function of
q2/LQCD

2 , all mass scales in the quark equations are
pressed in units ofLQCD, and the value ofLQCD has to be
determined by matching theory with experiment.

DeterminingLQCD of the model by matchinga in the
perturbative region is not a reliable procedure, as the pe
bative behavior of the model coupling~37! only agrees with
perturbation theory up to resummed leading order, and sm
changes ina in the logarithmic region will have a big impac
on the value ofLQCD, and on all related hadronic masses,
can be inferred from Eqs.~41! and ~43!.

In perturbation theoryLQCD corresponds to the positio
of the pole in the logarithmic expansion of the running co
pling, and depends on the renormalization scheme, and
the mass threshold matching procedure@35#. In the MS̄
scheme its five flavor value determined from experimen
LMS

(5)
5208223

125 MeV @35#. However,LQCD changes as flavo
thresholds are crossed, and the running of the perturba
coupling should be calculated using the appropriateLQCD

(Nf ) .

Taking into account mass thresholds, one findsLMS
(4)

5309230
133 MeV below the b-quark mass, andLMS

(3)

5377233
135 MeV below the c-quark threshold~as long as per-

turbation theory remains valid!.
The nonperturbative model~37! has no perturbative pole

and thereLQCD is uniquely related to the evolution of th
coupling ~37!, and corresponds to the scale where the c
pling starts its descent off the infrared plateau towards
perturbative regime~see Fig. 1!. As this definition ofLQCD is
at variance with the perturbative definition, a straightforwa
identification of its value with the perturbative values is n
possible. My aim herein is to investigate nonperturbative
fects, like dynamical chiral symmetry breaking, henceLQCD
of the model should be determined by matching some n
perturbative quantity related to the scale of hadronic phys

TABLE IV. Sensitivity of the dynamically generated mas
M (0), in units ofLQCD, to changes in the parameterc0 of Eq. ~37!,
with a052.6.

c0 M (0)

5 0.824
10 0.964
15 1.057
20 1.129
40 1.325
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For LQCD5330 MeV in the model coupling~37!, the MR
truncation generates a dynamical quark massM (0)
'350 MeV and a chiral condensate2^q̄q&0'(230 MeV)3,
according to Eqs.~41! and~43!, which are of the right order
of magnitude for hadron phenomenology. Moreover, t
value of LQCD is consistent with the above-mentioned pe
turbative values, taking into account their different defin
tions, as the coupling grows strong in the same momen
window.

Furthermore, for such a value ofLQCD, the model cou-
pling ~37!, whose ultraviolet behavior is only modeled up
leading order in perturbation theory, yields a perturbat
value a(MZ)50.134 (MZ591.187 GeV). Particle physic
phenomenology gives a world-averageas(MZ)50.118 for
the strong coupling@35#, and the leading order contributio
to this value, computed from perturbation theory,
as

12 loop(MZ)50.135, including mass-threshold effects@36#.
I can thus conclude that the model coupling produces res
which are consistent with both nonperturbative and pertur
tive physics.

The numerical results obtained herein can also be c
pared with some of the latest lattice results on the qu
propagator in the Landau gauge~with Nf50) @37#. Figure 5
shows the lattice data and the DSE results with the phen
enologically preferred valueLQCD5330 MeV, and also with
LQCD5550 MeV, which yields a better agreement with th
lattice points in the intermediate momentum regim
(3 GeV2,x,50 GeV2). Note that below 3 GeV2 the lattice
results have a slower increase of the mass function an
steeper decrease of the dressing function. It is this disc
ancy at small momenta that affects the value ofLQCD when
matching the DSE results with the lattice data. Possible
gins are lattice artifacts, vertex truncations, or inaccuracie
the modeling of the coupling~37! in the intermediate mo-
mentum regime. As the size of the dynamically genera
mass is crucial for hadronic physics, this disparity should
investigated further.

E. Massive case

Next I extend my analysis to the massive case,Z2m0Þ0
in the mass equation~30!, or in practicemm.mm

chiral in Eq.
~39!, wheremm

chiral5M chiral(m2). In Figure 6 I plot the mass
and quark dressing functions for varying renormalized ma
mm /LQCD50.0001,0.001,0.01,0.1,1, together with the chi
case ~with renormalization pointm2/LQCD

2 5105). In the
massive case the logarithmic behavior satisfies the RGE
proved perturbative result

M ~p2!5mmFa~p2!

am
Ggm

5
m̂

@ log~p2/LQCD
2 !#gm

, ~44!

where m̂5mm@ log(m2/LQCD
2 )#gm and gm512/(3322Nf),

which is the correct anomalous dimension of the mass fu
tion. Observe that the log-tail of the mass function sets
2-11
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FIG. 5. Comparison of the Dyson-Schwinger solutions for the mass functionM (x) and quark dressing functionZR(x) in the chiral case,
with the lattice results of Ref.@37# ~chiral extrapolation!. The Dyson-Schwinger solutions are computed from Eqs.~38! and~40!, usinga(x)
given by Eq.~37!, with a052.6, c0515, and withLQCD5330 and 550 MeV~see text!. The lattice results of Ref.@37# are plotted as a
function of the kinematic lattice momentum.
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for ever smaller momenta as the renormalized mass is tu
above the chiral value. Note again that the preservation
multiplicative renormalizability allows us to choose an ar
trary renormalization point, without altering the physic
content of the results: changing the renormalization po
merely multipliesZR(x) by a constant factor at all momen
and leaves the mass functionM (x) unchanged.

F. Discussion

As shown before, the Abelian approximation, which vi
lates MR, requires a strong infrared enhancement of the
fective coupling to achieve a strong enough breaking of
chiral symmetry, and such an enhancement seems inco
tent with the characteristics of the gauge sector. A first
tempt to extend the DSE studies beyond the Abelian appr
mation by solving a truncated set of DSEs for the qua
gluon and ghost propagators simultaneously@24# finds a dy-
03403
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namically generated chiral condensate of (122 MeV)3 ~with
Nf54), which is about a factor of 2 too small for phenom
enological purposes, apparently confirming the problem
find the necessary integration strength in the quark equat
The study uses a QCD analog@38# of the quenched QED
Curtis-Pennington vertex@39# in an attempt to preserve
gauge invariance and MR. This is, however, not sufficie
the vertex renormalization constantZ1 f is constructed such
that the solutions to the equations have the correct lead
order perturbative behavior, but it is not consistent with t
chosen nonperturbative vertexAnsatz, and its renormaliza-
tion point dependence violates multiplicative renormalizab
ity.

In Ref. @40# a method was presented to solve the ren
malized quark equations in an MR truncation of quench
QED. There the explicit construction ofZ1 f is circumvented
by eliminating the renormalization constants from the eq
tions. It is, however, not clear if and how the method cou
s

FIG. 6. Mass function and quark dressing function solutions from Eqs.~38! and ~39! usinga(x) given by Eq.~37!, with a052.6 and

c0515, for various values of renormalized quark massmm , with renormalization pointm2/LQCD
2 5105. Note the influence of the quark mas

on the onset of the logarithmic tail inM (x).
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be extended to QCD. Moreover, in contrast to my MR tru
cation, their method requires an explicit construction o
nonperturbative vertexAnsatzsatisfying the Ward-Takahash
identity and conditions of MR, and the two truncatio
schemes are not equivalent.

The MR truncation scheme presented in this paper le
to solutions that satisfy the principles of multiplicative reno
malizability in an elegant way, without explicit construction
of full vertices or renormalization constants, while natura
producing a large enough dynamical breaking of chiral sy
metry in QCD. In a next step, the MR truncation derived
the gluon-ghost system@25# should be combined with tha
proposed herein to solve the coupled set of DSEs for qu
gluon, and ghost propagators, thus avoiding the explicit c
struction of a model running coupling. Consequently, an M
preserving truncation scheme for the Bethe-Salpeter e
tion, describing hadronic bound states, should be constru
in a way consistent with the quark equation derived here
which respects the Goldstone boson nature of the pion.

V. CONCLUSIONS

I have reformulated the coupled set of continuum eq
tions for the quark dressing function and dynamical m
function in QCD, such that, in the Landau gauge, all ren
malization constants are eliminated, and the multiplicat
renormalizability of the quark dressing function and ren
malization point invariance of the mass function are ma
fest. The kernels of the equations explicitly depend on
momentum evolution of the strong running coupling. T
new formulation allowed me to construct a truncation wh
preserves these properties and also satisfies the leading
renormalization group equation improved perturbative
sults. This is achieved by assuming nontrivial cancellatio
involving the full quark-gluon vertex in the self-energy loo
such that no explicit construction of the full vertex and ve
tex renormalization constant are needed.

In order to perform numerical calculations of the dynam
cally generated mass scale, without solving the coup
quark-gluon-ghost DSE system, I decoupled the quark eq
tions from the gluon and ghost equations by introducing
model running coupling. This coupling satisfies the lead
order ultraviolet behavior known from perturbative QC
and its nonperturbative behavior was constrained using
most recent results of gluon-ghost DSE and lattice stud
The coupling has an infrared fixed point (a0'2.6), and its
behavior in the intermediate momentum region reprodu
the qualitative features of the numerical DSE studies.

The integral equations for the quark propagator are sol
numerically for the chiral and massive cases, and the ferm
mass and chiral condensate generated dynamically in the
preserving truncation is of the order of the extension of
infrared plateau of the coupling. The generated scale is a
three times larger than what is found using the MR-violatin
bare vertex, Abelian approximation, and of the right order
magnitude to perform hadron phenomenology, without inf
red enhancement in the strong coupling.
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APPENDIX: INFRARED BEHAVIOR OF THE STRONG
RUNNING COUPLING

I briefly show how the value of the infrared fixed pointa0
of the strong coupling should be determined from t
coupled Dyson-Schwinger equations for the gluon and gh
propagators. The contributions of the various diagrams in
gluon equation are, however, not yet fully understood, an
describe how the ghost equation alone can give us t
bounds on the value ofa0.

The DSE for the gluon propagator is

@Dmn~p!#215@Dmn
0 ~p!#212pmn

gh~p!2pmn
gl ~p!2pmn

3g ~p!

2pmn
4g ~p!2pmn

tad~p!2pmn
q ~p!, ~A1!

whereDmn
0 andDmn are the bare and full gluon propagator

and the vacuum polarization includes contributions from
ghost loop, gluon loop, three-gluon diagram, four-gluon d
gram, tadpole diagram, and quark loop. The DSE for
ghost propagator, in Euclidean space, is

@D~p!#215@D0~p!#21

2Ncg0
2E d4q

~2p!4
Gm

0 ~p,q!D~q!Gn~q,p!Dmn~r !,

~A2!

whereNc is the number of colors,g0 is the bare coupling,D0

and D are the bare and full ghost propagators,Gm
0 and Gm

the bare and full ghost-gluon vertices, andr 5p2q. The
general expressions for the full gluon and ghost propagat
defining the gluon and ghost dressing functionsF(p2) and
G(p2), were given in Eqs.~4! and ~5!.

As mentioned in the main body of this paper, the coup
equations Eqs.~A1! and ~A2! have been solved simulta
neously in a number of previous studies using various tr
cations, and there is convincing evidence thatF andG obey
power laws in the infrared, when all the diagrams in t
gluon equation are taken into account properly:

FR~x,m2!;x2k, GR~x,m2!;x2k, ~A3!

with x5p2, and whereFR and GR are the renormalized
gluon and ghost dressing functions defined in Eq.~13!.

Because of Eq.~23!, these power laws lead to an infrare
fixed point for the running coupling,

a05 lim
x→0

a~m2!FR~x,m2!GR
2~x,m2!→constant. ~A4!

As explained in detail in Ref.@25#, the ghost and gluon equa
tions each typically yield a relation between the infrar
fixed pointa0 and the leading infrared exponentk:

Nca05
1

xgh~k!
, Nca05

1

xgl~k!
, ~A5!
2-13
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when substituting the power laws~A3! in the coupled equa
tions~A1! and~A2! and equating the coefficients of the lea
ing power ofx for x→0 on both sides of the equations. Th
functions xgh(k), xgl(k) are computed from the vacuum
polarization integrals, and a consistent infrared power so
tion requires the gluon and ghost expressions in Eq.~A5! to
be satisfied simultaneously:

xgh~k!5xgl~k!. ~A6!

The solution of this equation yields the value of the lead
infrared exponentk, and the correspondinga0 can then be
computed from Eq.~A5!.

In a recent study@25# I have shown that the gluon func
tion xgl(k) is a complicated object as it requires the comp
tation of the nonperturbative loop integrals for all the glu
vacuum polarization diagrams in the infrared. Howeverif
the power laws are valid,thena consistent value ofk exists,
and the ghost equation can, on its own, provide very us
information. Indeed, the first identity of Eq.~A5! relates the
value of the infrared fixed pointa0 of the strong coupling to
the infrared exponentk of the dressing functions~A3!, with-
out needing additional information from the gluon identi
Therefore I now further analyze the infrared behavior of
ghost equation~A2! in the bare ghost-gluon vertex approx
mation, and computexgh .

In the Landau gauge, the bare vertex approximation
Eq. ~A2! for the renormalized ghost dressing function b
comes

1

GR~x,m2!
5Z̃3~m2,L2!2

Ncam

4p3

3E d4qT0~x,y,z!GR~y,m2!FR~z,m2!,

~A7!

where I introduced the full propagators~4! and~5!, the renor-
malized quantities~12! and~13!, usedZ̃1[1 ~in the Landau
gauge!, setx5p2, y5q2, z5r 2, and

T0~x,y,z!52S x

y
221

y

xD 1

4z2
1S 1

y
1

1

xD 1

2 z
2

1

4xy
.

~A8!

After substitution of the power laws~A3! in Eq. ~A7!, the
right-hand side yields a sum of integrals of the form

E d4qxaybzg, ~A9!

with a1b1g5k22. In Ref. @20# these integrals were
solved using spherical coordinates and the results were
pressed in terms of generalized hypergeometric function
more concise, equivalent expression can be derived@41# by
noting that integrals of type~A9! are typically encountered
when applying dimensional regularization in perturbat
calculations, and they are readily computed by introduc
Feynman parameters, yielding@42#
03403
-

g

-

ul

e

f
-

x-
A

g

I ~a,b!5E d4q

~2p!4

1

yazb

5
1

16p2

G~22a!G~22b!G~a1b22!

G~a!G~b!G~42a2b!
x22a2b.

~A10!

Both sides of Eq.~A7! yield a leading infrared powerxk, and
equating their coefficients gives

a05
2p

3Nc

G~322k!G~31k!G~11k!

G2~22k!G~2k!
, ~A11!

where the Gamma function recurrence relation was used
peatedly to bring the expression in its simplest form.

Expression~A11! gives the relation between the infrare
fixed point of the coupling and the infrared exponentk im-
posed by the ghost equation, and we illustrate this dep
dence for SU~3! in Fig. 7. As mentioned before, the gluo
equationwill be consistent with this expression for som
value ofk if the infrared power laws for the propagators a
valid. Previous DSE studies@18–20,41# yielded values fork
between 0.4 and 1.0, depending on the truncation, and re
lattice calculations@21,22# seem to indicate thatk is close to
0.5. Although the exact value ofk depends on the consis
tency condition~A6! between the ghost and gluon DSEs, w
see from Fig. 7 that the value ofa0 is tightly bound, and will
lie in the interval@2p/3,4p/3# for SU~3!, and the preferred
value used herein isa0(k50.5)55p/6'2.6. Note that the
large values for the fixed point,a0'10–12, mentioned in
some previous studies@18,19#, have been shown to be art
facts of angular approximations in the integration kern
@20#.

FIG. 7. Fixed pointa0 of the strong running coupling versu
infrared exponentk, as computed from the bare vertex approxim
tion to the ghost equation for SU~3!.
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