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Multiplicative renormalizability of gluon and ghost propagators in QCD
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We reformulate the coupled set of continuum equations for the renormalized gluon and ghost propagators in
QCD, such that the multiplicative renormalizability of the solutions is manifest, independently of the specific
form of full vertices and renormalization constants. In the Landau gauge, the equations are free of renormal-
ization constants, and the renormalization point dependence enters only through the renormalized coupling and
the renormalized propagator functions. The structure of the equations enables us to devise novel truncations
with solutions that are multiplicatively renormalizable and agree with the leading order perturbative results. We
show that, for infrared power law behaved propagators, the leading infrared behavior of the gluon equation is
not solely determined by the ghost loop, as concluded in previous studies, but that the gluon loop, the
three-gluon loop, the four-gluon loop, and even massless quarks also contribute to the infrared analysis. In our
new Landau gauge truncation, the combination of gluon and ghost loop contributions seems to reject infrared
power law solutions, but massless quark loops illustrate how additional contributions to the gluon vacuum
polarization could reinstate these solutions. Moreover, a schematic study of the three-gluon and four-gluon
loops shows that they too need to be considered in more detail before a definite conclusion about the existence
of infrared power behaved gluon and ghost propagators can be reached.
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INTRODUCTION propagators, initiated by von Smekal, Hauck, and Alkofer
[11], and later confirmed by Atkinson and Blo¢h2,13,

In the standard model of the strong, weak and electromadiave shown that the coupling of ghost and gluon fields plays
netic forces, the interactions are quantitatively described by crucial role in the generation of a consistent infrared be-
gauge field theories. Quantum chromodynamics is a nonhavior of QCD. In the infrared the gluon and ghost propaga-
Abelian gauge theory, and the proof of its renormalizabilitytors are power behaved, and the strong running coupling has
[1] and discovery of ultraviolet asymptotic freedd@] have  an infrared fixed point. The leading infrared exponent is de-
been milestones in its acceptance as the theory of the stroigrmined by requiring the power solutions to be consistent
interaction. For large momenta, perturbation theory seems anith both gluon and ghost equations. Although its precise
appropriate calculational tool, as the coupling becomesalue depends on the verténsazeand other details of the
small. However, for small momenta the coupling grows largetruncation, all the results showed that the ghost propagator is
and adequate methods have to be used to study nonperturbaere divergent than its bare counterpart, while the gluon
tive phenomena such as confinement, chiral symmetry brealpropagator is less divergent, and even vanishes as the mo-
ing and fermion mass generatif®]. One such method is the mentum goes to zero. Furthermore, another common feature
study of the Dyson-Schwinger equatio?y, and their phe- of these studies is that the leading infrared power in the
nomenological applications to hadronic physics is a subjecgluon equation depends only on the ghost loop, and not on
of growing interes{5]. The gluon self-interaction and exis- the gluon loop. One of our aims is to investigate whether this
tence of ghost fields are remarkable features of non-Abeliais a characteristic of QCD or merely an artifact of the ap-
gauge theories, and the study of the infrared behavior of thproximations.
gluon and ghost propagators and of the running coupling has Multiplicative renormalizability is an important feature of
become a major part in the quest to understand color corgauge field theories, and it is ruined by the approximations to
finement in QCD. the renormalized vertices and to the vertex renormalization

Early studies of the Dyson-Schwinger equation for theconstants introduced in these studies. Furthermore, the high
gluon propagator in the Landau gauge concluded that thexomentum behavior of the approximate solutions is gener-
gluon propagator is highly singular in the infrar¢é—9]. ally not in agreement with the results of perturbation theory.
However, these studies neglected any contribution of thélerein we aim to develop a truncation scheme, which re-
ghost fields, and moreover, required one to assume cancellapects multiplicative renormalizability, and has the correct
tions of certain leading terms in the equations. It is thereforgoerturbative limit as well.
far from certain that these solutions have the correct QCD Let us first briefly discuss the approximations introduced
infrared behavior. That these solutions are at the origin opreviously and the defects of their solutions. In R¢i2,13
successful phenomenological applications can be understodwhre vertices are used and the triple-gluon vertex renormal-
by observing that they can generate the necessary integratidzation constant, is set to its bare value of one. This simple
strength in the kernels of the gap and Bethe-Salpeter equapproximation allows a straightforward basic analysis of the
tions[10]. coupled set of ghost and gluon equations. As has been shown

Recent studies of the coupled set of continuum Dysonin detail in Ref.[12], this approximation violates the multi-
Schwinger equations for the renormalized gluon and ghosplicative renormalizability of the solutions, and furthermore,
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neither the anomalous dimension of their logarithmic ultra-ghost loop, the gluon loop, the three-gluon loop, the four-
violet behavior nor the leading order beta coefficient of thegluon loop and even on massless quark loops. The conse-
running coupling satisfy the results of perturbation theory.quences for the existence of infrared power behaved propa-
The authors were, however, not able to conclude if thisgators are investigated in the Landau gauge. We also briefly
slight, but apparent, discrepancy with perturbation theorydevelop the same ideas for the massless quark equation.
was due to an artifact of their approximation or if it could be

a genuine feature of full QCD. In Refll] more care was THE EQUATIONS

given to the construction of the vertices, requiring the Ward-
Takahashi identities to be satisfied to some extent. Howeve
to force the solutions to have the correct perturbative beha
ior, the authors introduced a manipulation of the renormal-

The QCD Dyson-Schwinger equations for the gluon and
host propagators aréorovisionally neglecting the four-
gluon vertex and setting the number of quarks to xero

ization constan¥Z,, which again violates the multiplicative [D,.,(p)] 1—[D (p)] - 1)Ncg§
renormalizability of the solutions.
In Secs. llI-VIII of Ref.[12], an intriguing truncation d*q
was studied: based on symmetry ideas between the ghost and f 2 )4G2(— r,a)A(q)G,(q,—r)A(—=r)
a

gluon equations only the ghost loop is retained in the gluon
equation. The paper showed in detail that the solutions of 1 g4
this truncated set of equations are multiplicatively renormal- - —Ncgéf a r39° (—p,q,r)
izable and that their high momentum behavior satisfies the (2m)* Fuasa
perturbative results of this truncated theory. Although this s 39 B
truncation is not consistent with QCD, as the gluon loop was XDUP(Q)Tp 6, (P, — T, —q)D*2%2(r), (1)
discarded, its solutions exhibit these important properties ex-
pected from solutions of gauge field theories, thereby provid- . 0 . 5
ing insight into how multiplicative renormalizability of the ~ [A(pP)] "=[A"(p)] _Ncgof 2 ydCh
nonperturbative solutions is achieved, how the high momen- (2m)
tum behavior of these solutions obey the leading order per- X A(Q)G,(q,p)D*"(r), 2)
turbative results, and even how both features are entangled.
Section IX of Ref.[12] then went on to show how a naive wheregy is the bare couplngM,, the gluon propagatof\
treatment of the gluon loop destroys both multiplicativethe ghost propagatol?aﬁy the triple-gluon vertexG,, the
renormalizability and agreement with perturbation theory. ghost-gluon vertex, the zero superscript denotes bare quanti-
In addition to the above-mentioned approximations, Refsties, andr =p—q. Note that the contraction over color indi-
[11,17 also introduce angular approximations to make theces has already been performed, and the extra faeta) (n
analytical and numerical calculations more tractable. Thesgront of the ghost loop is due to the Fermi statistics of the
angular approximations are satisfying for slowly varying ghost field.
functions[14], like propagator functions in their perturbative The general expressions for the full gluon and ghost
regime. However, Refl13] showed that these angular ap- propagators in a covariant gaugecan be written as
proximations can introduce a significant error for regions
where the functions are power behaved. Although this means ' PLP, F(p?) PP,
that eventually the analysis of the asymptotic infrared power Du(P)=—il|gu— > > tE—
behavior will require the angular integrations to be per- p P P
formed exactly, the qualitative conclusions about multiplica-
tive renormalizability and high momentum behavior of the v iG(p%) 4
solutions are, however, not affected by the angular approxi- (P)= p2 (4)
mation.
In this paper we reformulate the coupled set of continuumand we shall refer to the scalar functiofigép?) and G(p?)
equations for the renormalized gluon and ghost propagatorgs the gluon and ghost form factors.
such that the Landau gauge equations are free of renormal- Although we do not know the correct expressions for the
ization constants, and depend on the renormalization poirfy|| triple-gluon and gluon-ghost vertices, we can always for-

only through the renormalized coupling and the renormalizegnally rewrite Eqs(1), (2), for arbitrary vertices, as
propagator functions. In analogy to the ghost-loop only trun-

cation of Ref.[12], we see how the simple structure of the 1 Cgo
equations makes the multiplicative renormalizability trans-—— F(x ) -
parent, i.e. not hidden in renormalization constants or renor-

malized vertices. We then introduce a novel truncation

scheme to these formal equations, which respects both the FRXY.2FYF)], ©
multiplicative renormalizability and the perturbative limit of

the solutions. We show that, for power law solutions, the_ ~ 1 _ _ Cgof J dy déy sirfd T(x,y,2)G(y)F(2),
leading infrared behavior of the gluon equation no IongerG(X)

solely depends on the ghost loop, but rather depends on the (6)

4

G2(p,q)

)

j f dy dgy sirf6 [M(x,y,z)G(y)G(2)
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where we first contracted E¢L) with —i P#*(p)/3p?, where 3/2(M 2)

PHY(p)=g**—4ptp”/p?, thus avoiding spurious quadratic g(u?)= go(A?)

ultraviolet divergencef9], and multiplied Eq(2) with i/p2. Zi(u?A?)

Subsequently we applied a Wick rqtation to both equations, 2172 23 (42 A2

which introduces an imaginary factofor each four dimen- _s (w5 A Z5(u”, A7) (A?) (11)
sional momentum integration, evaluated two trivial angular Z(u? A?) 0

integrations, and sek=p?, y=q? z=r2. The kernels

M,Q,T depend on the full vertices, and are defined by ~ L )
whereZ,, Z, are the renormalization constants for the triple-

gluon and gluon-ghost vertices. From Eq0), (11) it is
easy to se¢l2] that the product

M(p2,q%r?) = 3p2q2r27>w<p)ei(—r,q>Gy<q,—r>,
2 2
" a(x Az)— (M ) Z3(u? A?)FR(X, u?) GR(X, %)
Q(pZ,qzirZ):_ 6p2]c']2 zpﬂv(p)ri%?ag( p,d,r) :a(,u,z,AZ)FR(X,,LLZ)GzR(Xyﬂz) (12
XF?,% 5.(p,—T,—0Q) is renormalization group invariant, Le. independenjuof
2 We know from Taylor[15] that Z;(u?,A%)=1 in the
Landau gauge, and there the renormalization group invariant
gflﬁl(Q)ngﬁz(r) quantity a(x,A?) of Eq. (12) is independent ofA?, and
nothing else but the running coupling(x) = g?(x)/4. Al-
r @2p B though all our formal derivations will be valid for any cova-
+§( gllﬁl(q) (2 riant gauge, in the following we will focus on the Landau
rEF(r) gauge and systematically replaeéx,A?) by a(x), keeping
arp a1gP1 in mind thatc}(x,Az) is the correct renormalization group
+9,27A(r )?qz)) invariant quantity to be used when studying the equations in

an arbitrary covariant gauge.
After introducing renormalized quantities in E®) using
(8) Egs.(10), (11), (12), we find the following equation for the
renormalized ghost form factor:

qeight  reerhz
9°F(q?) r?F(r?) ]’

§2

r#r? 1
2F( ) GR(X)

XGo(p,a)G,(d,p), (9) XT(x,y,2)Gr(Y)Fgr(2), (13)

:23(,“2,/\

1
T(p?,0%r?)=— o 2{91”( N+é—

where «,, denotes the valuer(?) of the coupling at the
renormalization point.

In an analogous way we derive an equation for the renor-
malized gluon form factor from Eq5):

where g“*(q) =g*’—g*q*/q?. Note that the full vertices
will depend on the propagator functioks and G by the
intermediary of the three-point Dyson-Schwinger equations.

The full, regularized, unrenormalized Green’s functions
are potentially divergent as we take the ultraviolet cutoff
to infinity, and we therefore introduce renormalized gluon 1 5 o ng(,u 2
and ghost fields, and a renormalized coupling. The renormal- £ _(x) =Za(p A ) — —— f f dy doy sint¢
ized gluon and ghost form factofsgy and Gy satisfy the

following multiplicative renormalization condition: ><[Z 2(u2, A?)M(X,Y,2)Gr(y)Gr(2)

F(p? A2)=Z4(u2 A2)Fr(p2 u2), +Z3(u* A?)Q(xY, 2)Fr(Y)FR(2)]. (14)

~ From Eq.(11) we see that
G(p?,A?)=Z5(u? A?)GRr(p? 1?), (10)
- (u?A%)5

where Fr(u? 12 =Ggr(n? p?)=1 and Z;, Z; are the Zi(p? A% = 3—22 (1% A?), (15
renormalization constants for the gluon and ghost fields. Be- Zg(u",A%)
cause of gauge invariance the renormalized couisgtis-
fies and after using Eq10) we can write this as
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Zy(u?A?

F(v,A2) Gr(w,u?)- o eral nonpert.urbativg fgqture of.gauge theprigg, tRe(x)
= 5 5 Z1(u A7), andGg(x) will remain finite asA is taken to infinity. There-
Fr(v,u) G(w,A) fore the kernels of the integrals in Eq4.9), (20) are such
for arbitrary v,w=A2. (16) that after subtraction and integration thedependence van-

ishes as\ is taken to infinity. Moreover, thd dependences

This expression enables us to factorizgin a w and aA  of the integrals in the unsubtracted equations, Et®, (17),
dependent part in the Landau gaudgh €1). AlthoughZ, correspond to those df; andZ; known from perturbation
depends only om andA, we can always write it as the ratio theory. This can easily be verified from thedependence of
(16) with arbitrary momenta andw. We eliminate the fac-  the various elements in the equations given by the renormal-
tor Z in Eq. (14) by substituting Eq(16) twice, once choos-  ization group equations. Any relevant approximation to the

ing v=w=y, and once withv =w=z. Hence, propagator equations will obviously have to respect this
. N property.
@y (A2 . Let us show how the multiplicative renormalizability of
=y =2 Z,Az—ﬂj fd P € P
Fr(x) 3l ) 272 Jo Jo y oy sirto the solutions to Eqg19), (20) is satisfied. From Eq10) we
see that for solutions to be multiplicatively renormalizable
XR(X,y,2)Gr(Y)Gr(2), (17 they have to satisfy
where we have introduced the notation
2 2
F(y,A?)F(z,A?) a2 FrX,u%) 2 Gr(X,u%)
R(X,Y,2)=M(X,y,z)+ X,Y,Z). FriX,v9)=——F—-, Gr(X,v)=—"—F—,
( y ) ( y ) G(y,AZ)G(z,Az) Q( y ) FR(VZ!IU/Z) GR(VZ!/-LZ)
(18) (21

When introducing the renormalized coupliggu?) in the

gluon loop of Eq(14) we found it most logical to use th®& ~ when renormalized at different scalgs® and v2. It is

identity of Eq.(11). An equivalent, more direct, way is to use straightforward to see, using E(l2), thatif Fg(x,x?) and

the Z, identity instead. Obviously the same equation, Eq.Gg(x,u?) are solutions of the set of equatiofis9), (20)

(17), results. renormalized aj.?, thenindeedFz(x,»%) andGg(x,v?) de-
The two remaining renormalization constad@gandZ,  fined by Eq.(21) will satisfy the same equations now renor-

in Egs.(13), (17) can now easily be eliminated by subtract- malized at?. It is precisely using this reasoning that one can

ing each of the equations at two different momenta: show that the approximations introduced in R¢id—13 to
treat the gluon loop are violating multiplicative renormaliz-
1 1 Nea, (a2 (7 , ability. Note thatany momentum scale can be chosen as
= - dy dd y sirfe N AT :
Fr(X) Fr(o) 242 )0 Jo renormalization point; it is not restricted to the small cou-

pling region of perturbation theory.
X[(R(X,Y,2)Gr(Y)GRr(2))— (X 0a)], (19 Of course, the new gluon equation, EG.7), is com-
pletely equivalent to the original one, Ed.4), both having
1 1 Nea, (A2 (= 2 the same multiplicatively renormalizable solutions. So what
Gr(X) Grl0) 242 Jo jo dy & ysing are the advantages of the new formulation? In contrast to
previous studies, we have eliminated the renormalization
X[(T(X,y,2)Gr(Y)Fr(2))—(x<0c)], (200  constantZ; without introducing any approximation yet, and
therefore multiplicative renormalizability is preserved. We
where the momenturar can, but does not have to be taken towill show how this allows us to devise tractable approxima-
coincide with the renormalization poipt. Let us now have a tions to the equations, having solutions that will still respect
closer look at Eqs(19), (20). First of all we observe that, in  multiplicative renormalizability. With the new approximation
the Landau gauge, the equations are free of renormalizatiowe will then try to answer the following questions. Do the
constants, and that the only renormalization point depennew nonperturbative solutions agree with perturbation theory
dence comes through the renormalized couplingand the  for high momenta? Do the solutions behave as power laws in
renormalized propagator functiofig(*, x?) andGg(*, u?).  the infrared, and is it indeed so that only the ghost loop
Indeed, as can be seen from E@®, (8), (9), (18), the un-  contributes to the leading infrared power in the gluon equa-
specified kernel®(x,y,z) andT(x,y,z) are to be calculated tion as deduced in Ref$11-13? In fact, from Eqgs(19),
using the triple-gluon and ghost-gluon vertices, and thg20) one can introduce novel truncations to the equations for
gluon and ghost form factors, all in their full, regularized, the renormalized gluon and ghost propagator that will readily
unrenormalized form, and are therefore independent.of  contradict this statement. Although we know that the bare
On the other hand, we also know that, except for thevertex approximation from Ref12] does not preserve mul-
upper integration limit, the kernelR and T are the only tiplicative renormalizability, we can now define an alterna-
A-dependent factors remaining in the equations in the Lantive bare truncation using Eq§l9), (20) that will preserve
dau gauge. If multiplicative renormalizability is to be a gen-both multiplicative renormalizability and the correct pertur-
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bative limit by simply taking the bare approximation to the bative limit, the approximation also ensures that the unsub-
complete kernel® andT. The bare approximation is defined tracted equation$l3), (17) yield the correctA dependence

by substituting for Z; andZ,.
5 - o Next we analyze the infrared behavior of E¢59), (20)
5%,=T,, G.=G,, F=Fo=1, G=Gy=1 in our bare approximation. Following the arguments of Ref.

(22 [13] we deduce that, as before, both gluon and ghost equa-
. o tions are individually satisfied by propagators which behave
in Egs.(7), (8), (9), (18), hence yielding as power laws in the infrared,

R(X,Y,2)~Ro(X,y,2) =M(X,y,2) + Qo(X,Y,2), Fr(X)~Xx?<,  Ggr(X)~X"*, a(x)—const, (25

23) and, because of E¢l12), these power laws lead to an infra-

T 1 ’ %T 1 ) - . . . .
(x.¥,2)=To(x.y.2) red fixed point for the running coupling,

The expressions fdR, and T, are given in Eqs(Al), (A2).

For the gluon loop the approximation amounts to assume that

the ratio of unrenormalized form factors

F(y)F(2)/G(y)G(2) in Eq. (18) cancels the full unrenor-  After substitution of the power law&5) in Egs. (19),

malized corrections to the bare triple-gluon vertex to a good20), the ghost and gluon equations each vyield a relation

approximation, at least after contraction and integration. Irbetween the infrared fixed poiat, and the leading infrared

fact this could be considered as an extension to the approxéexponentx:

mation introduced by Mandelstaf]. There the Ward iden-

tity was used to simplify the product of full vertex and full 1 1

propagators. Our study now also includes the renormaliza- Nc“0:m7 Ncaozmv (27)

tion aspects of the gluon loop, which were omitted before. g g

We propose to analyze the validity of our assumption in awhich are derived by equating the coefficients of the leading

study of the 3-point Dyson-Schwinger equation in futurepower of x for x—0 on both sides of each equation, and

work. where xgn(), xgi(«) are computed by solving the loop in-
In Sec. IX of Ref[12] it was shown that consistency with tegrals as detailed in Reff13]. A consistent infrared power

perturbation theory in the high momentum region is not trivi- solution requires the gluon and ghost equations to be satis-

ally satisfied in a naive treatment of the gluon loop: even iffied simultaneously,

the truncation leaves invariant the perturbative expansion of

the equations, the high momentum limit of the nonperturba- Xgh(K) = Xgi(K). (28

tive solutions usually does not agree with the results of per-

turbation theory. However, the same study pointed out thatlhe solution of this equation yields the value of the leading

in the bare vertex “ghost-loop only” truncation, the structure infrared exponeni, and the corresponding, can then be

of the loop integrands ensuring multiplicative renormaliz-computed from Eq(27).

ability is exactly what is needed such that the high momen- It is important to note that, in contrast to the studig$—

tum limit of the nonperturbative solutions be consistent with13], the gluon loop now also contributes to the leading order

the results of perturbation theory, i.e. it yields the correctinfrared power of the gluon equation, E4.9), and hence to

values for the anomalous dimensions of the gluon and ghostgi(«), in our novel truncation. The expressions fgJi(«),

propagators, and for the leading order beta coefficient of thag(«) resulting from the leading infrared analysis in the

running coupling. All these arguments now also apply to thedare approximation are expressed in terms of generalized

bare approximation to Eqé19), (20), which now include the hypergeometric functions, and are given in E@é11),

gluon loop, and the nonperturbative solutions do agree witfA12). Numerical evaluation, uSiNQUATHEMATICA, has

the leading order perturbative results in the high momentunshown thaty(«) <0 for any « for which the integrals con-

region, as is illustrated in more detail in the Appendix. Theverge. This disagrees with the ghost equation for which

nonperturbative solutions have a leading ultraviolet logarith-xygn(«) >0, and hence no consistent solution ferexists,

o= lim &, Fr(X) GA(X). (26)

x—0

mic behavior and power laws are not infrared asymptotic solutions of Egs.
(19), (20) in the bare approximation. Note that in previous
4 studieg11-13, in which the gluon loop was subleading and
Fr(x)~l0g”x, Gg(x)~log’x, a(x)~ — only the ghost loop contributed to the gluon vacuum polar-
Bologx/Agqcp ization, the power law solutions were consistent and the

(24)  value of x varied between 0.7 and 1.0 depending on the

truncation. In our study the gluon equation seems to reject

with  Bo=1IN./3, y=-—13N//6B,=—13/22, and 6 the power law solutions, and although this could at first be
=—3N//4B,=—9/44, thus reproducing the correct pertur- seen as a setback, we do not believe that this invalidates the
bative results for the anomalous dimensions of the gluon andeneral ideas of our approach. We rather believe it is an
ghost propagators, and for the leading order beta coefficierdrtifact of the truncation, and more care has to be taken in the
of the running coupling. Note that by satisfying the pertur-analysis of the various contributions to the gluon vacuum
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polarization, as we will show below. A case can be made for Z(p?%, A% =Zy(u? A Zr(p? u?), (32
the eventual survival of infrared power laws by observing

that x4n(x), determined from the ghost equation, can bewhere Z,;, Z, are the renormalization constants for the
identified with the reciprocal of the infrared fixed point of quark-gluon vertex and the quark field, aid is the renor-
the running couplingusing Eq.(27)], and that its numerical malized quark form factor, witlg(u?, x?)=1.

values can be considered physical foin the convergence The contribution of the quark-loop to Eq14) for the
region of the integrals, e.qg. it varies from 0.87 to 0.24 #or renormalized gluon form factor is computed from Eg0),

varying from 0.2 to 1. after contraction, Wick rotation, and multiplication wigy.
Several contributions to the gluon vacuum polarization|t can always be written as
were neglected in the gluon equation, Et), and we now

extend the scope of our investigation by considering its com- 92(n?) A2 (7
plete form: TR(X) =~ Ni=—— zif(MZ,AZ)JO JO dy dd ysiré
-1_1noO -1_,.gh _ 9 _ -39
[D,.,(P)] ™ =[P}, (P)] = wEi(p) — 7, (P) — m,5(P) VY. B ZeY) 2l D). 33
—m,8(P)— mi(p)— L, (P), (29

where we introduced renormalized quantities using (B2),
including the contributions from the ghost loop, gluon loop,and

three-gluon loop, four-gluon loop, tadpole diagram and

quark loop. First, we will show that massless quarks can ., . ,

contribute to the leading infrared power analysis, and howV(P%0%r%)=— 60202 > PH(p)Tr

they can affect the existence of a consistent infrared behav- par

) . 0
ior. Althpugh quark_masses will most probably altc_ar these x[Fng (—r,q,—p)q- y['%%q,—r,p)r- ],
conclusions, the main purpose of this exercise is to illustrate,

in a simple way, that the absence of a consistent leading (34)

infrared powerx, resulting from the multiplicatively renor-
malizable treatment of the gluon loop, does not have to b : . . :
definitive; other contributions, overlooked till now, may re- g_Iuon_ vefrtex |sfcog1ta_|neltzj n tzhge l;errvi)INote tQat tgedm.'”“ﬁ
verse this situation. In fact, the hope is that this will be real-S/9" In front 0, v 1N G- (29) has been absorbed in the
ized by the three-gluon and four-gluon loops, both involvingdefinition of 7. Similarly to the treatment of the gluon
the four-gluon vertex. Although no numerical calculation 0P, we €liminate the renormalization constahy; using
could yet be performed, we will schematically show thatEds-(10), (11), (32), expressing the equality of the renormal-
these loops can also contribute to leading order in the infraized quark-gluon and ghost-gluon couplings, and find
red, even though they are only subleading in the ultraviolet.
nsider th rk | ntribution to the gluon v m a, (A2 .
Consider the quark loop contribution to the gluon vacuu q(X):_Zsz f dy & y sir?6
m=Jo 0

én the massless case. All the information about the full quark-

polarization in Eq.(29): TR

Z(y,A?)Z(z,A?)
" G(y,A)G(z,A?)
X Se(q)T99(q, —1,p)Se(—1)], (30) (35

where St is the quark propagatof; ¢ is the quark-gluon Hence, Eq(17) remains valid, provided we replace the defi-
vertex, the factor £ 1) signifies that the extra minus sign is hition (18) for the kernelR by
due to the fermionic character of the quark loop, and the
trace over color indices has already been performed. F(y,A%)F(z,A?)
The most general expression for the full quark propagator ~ R(%.Y,2)=M(x,y,2)+ 2 2. Q(xY,2)
. G(y,A%)G(z,A%)
can be written as

V(X,Y,2)

N d*
7,(p)=(—1 %géf . Tr9%%(~r,q,—p) Gr(Y)Gr(2).

(2m)*

N¢ Z(y,A%)Z(z,A?)

s(p=_2P) 31 Ne G(y,A2)G(z,A2
o)== (31 (¥.A2)G(z,A?)

V(X,Y,2). (36)

2 As before theu dependence enters only through the
wherze we hshall refer td(.p ) as the quark form factor, and renormalized coupling and the renormalized gluon and ghost
M(p°) is the mass fupctlor_1. Lo form factors, and the\ dependence oY is such that the

. Bgcause of gauge invariance and multiplicative renormalTntegrals are finite. We herein study the caséNpfmassless
izability we know that quarks, thereby avoiding the complications introduced by the
732 142 A2)Z,(uP,A2) presence of explicit and dynamically generated mass terms.

3 W 2K Jo(A?) Again we introduce the bare approximati®j to Eq. (36),

Z1¢(u?,A?) ’ defined by Eq(22) supplemented with

g(u?)=

116011-6



MULTIPLICATIVE RENORMALIZABILITY OF GLUON . .. PHYSICAL REVIEW D 64 116011

1 - - - - - - thus potentially restoring the existence of infrared power so-
lutions for the gluon and ghost form factors. Of course, we
know that the real world QCD does not contain such a large
number of massless quarks, and the results of the infrared
analysis will be altered, even in the bare approximation, by
the presence of explicit quark masses. Further study is
needed to investigate how massive quarks, with either ex-
plicit or dynamically generated quark masses, will influence
these results. This will be done in future work in conjunction
with a simultaneous solution of the quark Dyson-Schwinger
equation. Note however, that the above-mentioned results
might be of importance in the study of Yang-Mills grand
unified theories, which could contain a large number of
02 0.3 0.4 0.5 0.6 0.7 08 0.9 massless quarks.
X More importantly, the previous calculation enabled us to
see that, even though the multiplicatively renormalizable

FIG. 1. Determination of the infrared exponentas the inter- — yeaiment of the gluon loop seemed to disprove the existence

section of the left and right hand sides of the consistency condition, ¢ : ; :
of infrared power law solutions, these can be reinstated b
Eq. (38), computed from the ghost equati@ashed lingand gluon P y

equation forN; = 6.8,9,10(full lines) additional contributions to the vacuum polarization. As
R : shown in the gluon equation, ER9), even the pure gauge
theory, without quarks, contains additional diagrams. The
three-gluon and four-gluon loop contributions have been ne-
glected until now, based merely on perturbative arguments.
We now schematically show that this is not justified, and that
these diagrams can also contribute to the leading infrared

1/og(x)

ri9=r99°  z=7,=1, (37

such thatRy=My+ Qq+ V,, with the quark loop component
V, given in Eq.(A13).

The ultraviolet analysis can be done completely analo .
gously to that presented for the quarkless case in the Appe|rt’—‘3havIor of the gluon an_d g_host propagators.
dix, and it again leads to the high momentum behavior The three-gluon contribution to the unrenormalized gluon

shown in Eq.(24), but now with Bo=(1IN.—2N{)/3, v equation, Eq(29), is

=(—13N./2+2N;)/3B,, and 6= —3N_/48,, thus correctly 5 4 4
reproducing the leading order perturbative results. 739 (p)= &g4f dq d*k [0 (o akin)
From the structure of Eq35) it is clear that massless e 6 ~° (2m)4) (2m)4 %% T

quark loops will also contribute to the leading infrared power

in the gluon equation in our bare approximation, in the as- X D “1P1(q) D *2P2(k)D *sP3(r)
sumption of infrared power behaved gluon and ghost form < T4 Cr ok 39
factors. The consistency conditid@8) is now modified as Vﬂsﬁzﬂl(p’ r.—k.—a), (39)
the gluon equation gets an extra term from B§), propor-

tional to N¢ times the quark loop contributiogd(«) given ~ Wwhere r=p—qg—k. After contraction, Wick rotation, and
in Eq. (A14): multiplication withZ; of Eq. (39), the additional three-gluon

contribution to Eq(17) for the renormalized gluon form fac-
Nexgn( &) =Nexgi(x)+ Nf)(g|(;<). (38) tor can be written in the form

We analyze the effect of the quark loop contribution on
the right hand side of E(38), and observe that its contri- ng(x)z _Z3N§géf
bution is positive. In Fig. 1, we show how it increases as we
increase the number of massless quarks, and how it eventu-
ally compensates the negative value from the gluon loop
(with N.=3) such that Eq(38) be satisfied. There is a criti-
cal valueN;~8.9 for which a consistent infrared behavior
can first be foundk~0.76. Then, when we increadg fur-
ther, two possible values af satisfy the consistency condi-
tion, EQ.(38). For Ny=9 we find xk=0.69 and 0.82, folN;

4

d'q [ d%
(277)4f (27T)4Q3(p'q’k)

XF(z1)F(z2)F(z3), (40

wherez, ,z,,z; are the squared momenta of the gluons in the
loop. Introducing the renormalized coupling using Etfl),
we can rewrite this as

=4 4 4
=10: k=0.49 and 0.90, foN{=11: x=0.37 and 0.93, for 39,0y N2 2y S d*q
N;=12: k=0.28 and 0.94. As we keep increasiNg— <, TR (¥) = ~Neg™(p )Z 74) (2m)* (277)4Q3(p,q,k)
. . 343
the two solutions fork go to 0 and 1, the corresponding
values fora, are then 0 and #/3. XF(z1)F(22)F(z3). (41)

We conclude that, in the bare approximation, massless
quarks do contribute to the leading infrared power of theAs before, we replace all the renormalization constants by
gluon equation, and that a consistent power behavior can ltde ratios of the corresponding unrenormalized and renor-
found if the number of quarks is sufficiently largl{=9),  malized form factors, and find

116011-7



J. C. R. BLOCH PHYSICAL REVIEW D 64 116011

d“q d*k d“q d*k
30y — _ 202 12 49/ — _ 202
TR (X) 16m°NZa j(Z’IT) (2 TR(X) 167 Ncaﬂf 2m) 2
F(z2)F(z3) Qs(p.q,k) Fo(2,)G2(2,) F(z2)F(z3) Qa(p.q,k)F(z4)
G(z)G(z5) G(z) | T 0 G(2)G(z3)  G2(zy)
Gr(22)Gr(z3). (42) X a(21)Gr(22)Gr(za), (46)

. . _ ) and this diagram too can potentially contribute to the leading
Using Eq.(12) we recognize the running coupling at mo- 4 qar infrared power.

_ 2

mentumzy, «(z1) = @,Fr(21)Gr(21), and can therefore re-  an infrared power law analysis of the gluon equation in-

write this as cluding the three-gluon and four-gluon contributions, Egs.
(43), (46), will yield a condition

d*q d*k

(Neao) xgi( k) + (Neag) 2xgP (k) =1, (47)
(2m*) (2m)*

m(X) = —16772N§aﬂf

for the pure gauge theory, whe;@?"‘g is to be calculated
(2,)Gr(22)Gr(2s). fro_m E_qs.(43), (46). Thls condition replgces the second re-

lation in Eq.(27), and is now quadratic ilN.aq. The solu-
tion of Eq. (47) for N.«y, together with the first part of Eq.
(27), will yield a new consistency equation

F(z3)F(z3) Qs3(p.q.k)
G(2,)G(z3) GX(zy)

(43

One of the effects of our manipulations has been to change 3
one of the constant renormalized couplirgsin front of the Xgh(K)= 3 (Xg'(K)+ Vxai() +4xgh ¥(x)), - (48)
integral into a momentum dependent running couptitg; )

inside the integral. In the assumption of infrared power lawsyeplacing Eq.(28). The contributions of Eqs43), (46) in-

Eq. (25), the running coupling has an infrared fixed point, yolve the computation of two-loop integrals, and the ap-
and hence, the infrared structure of the integrand in(E8.  proximations to the kernels have to be devised and investi-
is very similar to that of Eq(17), andm22(x) will potentially  gated carefully. Note that these kernels too are independent
contribute to the leading infrared power analysis of the gluorof 4 and are such that all integrals in the subtracted equa-

equation. ' tions are finite. It is crucial for the survival of the power law
We follow the same steps in the treatment of the four-solutions as infrared asymptotic behavior of the ghost and
gluon loop. Its contribution to Eq29) is gluon propagators, that a leading infrared exponents

found which satisfies the condition, E&8). A more detailed
) A . analysis of Eqs(43), (46) will be performed in future work.
Ne 4J d’q d’k Finally, we briefly turn our attention to the quark Dyson-
(p)— (2m*) (2m)* Schwinger equation, in the massless case, and examine how
it transforms in our new approach. The equation is
xI590, . (—p.q.k,r)D*P(q)D*2P2(k)

pajazag

azf 39 1 1_ d4q
XD, 5 (—0,5,—K) [Se(p) ] =[SH(P)]” cpgof(z v
@ 3 _
XD fyp (P T ) 49 XT99%p,q,1) Se(a)T3%(,p, —1)DH(r),

(49
wherer=p—q—k, s=q-+k. After contraction, Wick rota-
tion and multiplication withZs, the four-gluon contribution  whereCg=(N2—1)/2N.=4/3, for N;=3.

to Eqg. (17) for the renormalized gluon form factor can be  After substituting Eq(31) in Eq. (49), we can derive the

written as following formula for the quark form factor:
1 Crg (A2
d'q [ d% =1 Of f dy d9 y sirfAU(x,y,z)Z(y)F(z
w000 =~ ZNigh [ — [~ Qup.ak) 2601 g y &y simeUtay. 2 Z(y)F(2),
2m)4) (2m) (50
X F(z1)F(z2)F(z3)F(z4). (45)

where the kerneU depends on the full quark-gluon vertex.
Multiplying Eq. (50) by Z,, and using Eq(11) to introduce
In analogy with Eq(43), we find the renormalized coupling, we obtain
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CONCLUSIONS

— 7 (2 A2)— Cro®(u?) 712, JAZJWd @
Zg(x) 2w A7) gn® 2,22 )0 Jo y We have reformulated the coupled set of continuum equa-

tions for the renormalized gluon and ghost form factors in

Xy sifou(x,y,2)Z(y)F(2). (5)  QCD, such that the multiplicative renormalizability of the

solutions is manifest, independently of the specific form of

As before, we remove all the renormalization constants irfull vertices and renormalization constants. In the Landau
the self-energy term: gauge, all the renormalization constants are eliminated, and
the renormalization point dependence is completely trans-

Cra, (A2 (= posed into the renormalized coupling and the renormalized

=Zo(uA%)— 5 2ﬂfo fo dy dv form factors.

Furthermore, the specific structure of the equations allows
) 1 us to devise novel approximations, necessary to make them

Fr(2)Gr(2)5 v tractable, with solutions which respect the principles of mul-

R tiplicative renormalizability and have the correct leading or-

(52)  der perturbative limit. This had not been achieved in a con-

sistent way before.

Similarly to the derivation of Eq(43), we recognize the  \we showed that the gluon and ghost equations are each

running couplinga(z) and find individually satisfied by infrared power behaved gluon and
ghost propagators. However, these infrared power solutions

_ N o P can only truly be identified with the QCD propagators if both
m_ZZ(“ AT+ 2_7Tzf0 fo dy & equations are satisfied simultaneously, thereby determining

the value of the leading infrared exponent and of the infrared

1 fixed point of the coupling.
a(Z)Z—(y)' (53 In contrast with previous research, our study shows that
R the leading infrared behavior of the gluon equatiom@t

. . . solely determined by the ghost loop. The new approach
Subtraction of this equation at two momenta allows us tQ y y 9 P bp

liminate th o lizati t3nt Not shows that the contributions of the gluon loop, the three-
eliminate the remaining renormalization cons a vote gluon loop, the four-gluon loop and even of massless quarks
that the multiplicative renormalizability of the solutions is

. ) . should be taken into account when performing the leadin
manifested in a very simple way by theZ}/ structure on P 9 9

both sides of the equation. In fact, the shape of the equatioOrder infrared analysis.

) hat o t of th | hed OE N Moreover, we showed that, in our new Landau gauge
IS somewhat reminiscent ot the massiess, quenche Q '?runcation, the gluon loop contribution to the gluon vacuum
fermion equation derived by Curtis and Penningf6] us-

) . tensiofi7! to the Ball-Chi (18 polarization removes the existence of a consistent infrared
INg a vertex ex en5|c_>[_1L 1to the af-thiu ver ex ],_con_—_ power solution. It is our hope that additional contributions to
structed using conditions of multiplicative renormalizability.

Although I detailed studv of th K i tthe gluon vacuum polarization will reinstate the power law
ough we leave a detaiied study ot the quark equation Q. ,ti5ns. As an illustration we showed how including a large

future yvorK, we already see that we can introduce a barg, e of massless quarks is one way to recover consis-
approxmatlon to Eq(53),_ n anal_ogy t_o th_e proced_ure ap- tency. The three-gluon and four-gluon loops will also con-
plledt_to the I?IL:_ont_equatlon, WP'Chb_‘l’_\f['” yield solutions re- tribute to the leading infrared power behavior in this approxi-
specting multiplicative renormalizabiiity. mation, but its quantitative treatment is more complicated

Furtherm2c>re, we anticipate that, in a _S|m|lar way,_the SCaund requires further investigation. We are therefore not yet
lar partM (p®) of the quark propagator will also be driven by able to conclude whether or not the gluon and ghost propa-

the. running coupling under the integral, and it will be intgr- gators are power behaved in the infrared.

esting to study how dynamical chiral symmetry breaking™ \ye have also briefly shown, for the massless case, how
gets realized with a kernel proportional widl{z), which has o 4 ,ark equation can be treated in a similar way, and how
an mfra_tr_ed f|xe_d point if the !nfrare_d power laws, E(QS.)’_ the specific structure of the equation will allow us to con-
are verified. This will also be investigated in more detail in agyy ¢t tryncations with multiplicatively renormalizable solu-

further publication. :
tions for the quark propagator.
Note that we have used the running couplingx) q propag

= a,Fr(x,u?)Gi(x,x?) in the derivations of Eqs(43),
(46), (53), but we could as well introduce the more general
renormalization group invariant quantity a(X,y,z)

= a,Fr(X,u?)GRr(Y, #?)Gr(z,1?). Although this will | thank D. Atkinson, C. Fischer, K. Langfeld, C. D. Rob-
change the appearance of the equations, it will not changerts, S. M. Schmidt, and P. Watson for useful comments and
their solutions, as long as no approximations to the kerneldiscussions. | am grateful for the hospitality of Argonne Na-
are introduced. However, when devising truncations to theional Laboratory, where part of this work was completed.
kernels, the choice of momenta should be handled judiThis work was funded by Deutsche Forschungsgemeinschaft
ciously for the approximations to make sense. under project no. SCHM 1342/3-1.
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APPENDIX
1. Bare approximation

The bare approximation to Eq$19), (20), defined by
Egs.(22), (23), yields the following kernels:

X2 x(l 1) 1(15 34 15)

1
Ro(x,y,2)=~ 3 8y222+y_2 R B ¥ vz 2

8

R y2 y Z ZZ
1 (2> 6z 2
Tl AR YT R A ) (A1)
2%2 y2 y Z 2
- (X 5 y| 1 1 1)1 1
o(X,y,2)= vy X2 Ty T X 2 Ay
sirf
=— (A2)
z

2. Ultraviolet behavior

We follow the arguments of Refl12] Sec. VII to study
the ultraviolet behavior of Eq$19), (20) with kernels, Egs.
(A1), (A2). The leading ultraviolet order solutions satisfy

1 _ ag’u ,u2 fo )

FR(X)_l_EJX dy3 Gr(Y), (A3)
1 _ a, (#* Qo

GR(x)_l_EL dyVFR(y)GR(Y): (A4)

wheref, andg, are easily computed from the kernels. We
have chosen the renormalization scal@s subtraction point,
and bothx and u are in the perturbative region. It is easy to

see that this is solved by

. Boa’u X 4
FrX)=| 1+ ype IogE ,
)
Boa,u X
Gr(X)=| 1+ log— | , (A5)
4 w?

where Bo="fo+209, v=—1q/By, and 6=—gq/By. This
leads to a running coupling:

41

a(X)=a,Fr(X)G&(X)= “n -

,BOaM X
1+?Iog; Bolog

A(ZQCD
(A6)

where we define

PHYSICAL REVIEW D 64 116011

2 _
Ageo= prexp —

41
) (A7)

Boa,u.

to leading order. Hence, the solutio(5) can be rewritten
as

Fr(x,u?)= ( ao([x)) _7~Iog’x,
M
)
Gr(x,u?)= ( a(x)) ~log’x, (A8)
Xy

which is in agreement with the renormalization group equa-
tion results. In the bare approximation we fingd,
=1IN./3, y=-13N//6B8y=—13/22, and 6= —3N/48,
=—9/44.

3. Infrared behavior

In this section we give the results fagn(«) and xq(«)
of Eq. (27). They are determined from the coefficients of the
leading power of for x— 0, after substitution of the power
laws (25) in Egs.(19), (20), and solution of the integrals.
The angular and radial integrals are readily solved using
the method of Ref[13], and thex dependence of a typical
integral is given by

fAzdy ybfwde sin?) 22~H;(a,b)x®*?,  (A9)
0 0

with z=x+y—2./xy cosé, and

11
H](a,b)EB(]"-E,E)

1
——3F,(—a,—a—j,b+1;j+1b+2:1)

*or1

“arpriera~a-a-j—a-b-lj+l-a

—-b;1)

: (A10)

whereB is the Beta functiongF, is a generalized hypergeo-
metric function. The integrations are performed using the
integration formula(3.665.2 of Ref.[19] and the definition
of hypergeometric functiong20].

Using Eq.(A9) it is straightforward to see that the ghost
equation, Eq(20), with bare kernelA2), yields

1
Xgh(K)=——2H2(2K—2,1—K). (Al1)
2

The gluon equation, Eq19), with kernel (Al), gives a
similar expression:
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Xgi(K)= [Hi(=2—k,—1—k)—15H(—2—k,1— k) +2H(—2— Kk,2— k) +4H(—2— k,3— k)

487
+8H (=2~ K, = k) +8H (=1~ Kk, —1— k)= 22H;(— 1= k,1~ K) +24H (= 1~ k,2— k) = 34H,(— 1— k,~ k)
+2H (1 Kk, — 1= k) +24H; (1~ k,— k) +4H (2~ K, — 1= k) = 15H (— k,— 1~ k) = 56H 1 (— k,1— &)

—22H(—k,— x)]. (A12)

4. Including massless quarks
The bare, massless quark approximatiGy to the kernelV of Eq. (35), is given by

1 1) 2 (y z)
—+—=|-—=|==2+—].
y z] x?\z y

After substituting the power solutions, E®5), in the quark loop, Eq(35), and solving the angular and radial integrals, we
find a quark contribution

2
Vo(X,y,2)=— 3

1 1

A (A13)

1
Xg|(l<)=F[Hl(—l—K,l—K)—ZHl(—l—K,Z—K)+H1(—1—K,—K)—2H1(1—K,—K)+4H1(—K,1—K)
T

+Hi(—k,— k)] (A14)

per massless quark flavor.
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