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Multiplicative renormalizability of gluon and ghost propagators in QCD

J. C. R. Bloch
Institut für Theoretische Physik, Universita¨t Tübingen, Auf der Morgenstelle 14, D-72076 Tu¨bingen, Germany

~Received 4 June 2001; published 13 November 2001!

We reformulate the coupled set of continuum equations for the renormalized gluon and ghost propagators in
QCD, such that the multiplicative renormalizability of the solutions is manifest, independently of the specific
form of full vertices and renormalization constants. In the Landau gauge, the equations are free of renormal-
ization constants, and the renormalization point dependence enters only through the renormalized coupling and
the renormalized propagator functions. The structure of the equations enables us to devise novel truncations
with solutions that are multiplicatively renormalizable and agree with the leading order perturbative results. We
show that, for infrared power law behaved propagators, the leading infrared behavior of the gluon equation is
not solely determined by the ghost loop, as concluded in previous studies, but that the gluon loop, the
three-gluon loop, the four-gluon loop, and even massless quarks also contribute to the infrared analysis. In our
new Landau gauge truncation, the combination of gluon and ghost loop contributions seems to reject infrared
power law solutions, but massless quark loops illustrate how additional contributions to the gluon vacuum
polarization could reinstate these solutions. Moreover, a schematic study of the three-gluon and four-gluon
loops shows that they too need to be considered in more detail before a definite conclusion about the existence
of infrared power behaved gluon and ghost propagators can be reached.
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INTRODUCTION

In the standard model of the strong, weak and electrom
netic forces, the interactions are quantitatively described
gauge field theories. Quantum chromodynamics is a n
Abelian gauge theory, and the proof of its renormalizabil
@1# and discovery of ultraviolet asymptotic freedom@2# have
been milestones in its acceptance as the theory of the st
interaction. For large momenta, perturbation theory seem
appropriate calculational tool, as the coupling becom
small. However, for small momenta the coupling grows la
and adequate methods have to be used to study nonpert
tive phenomena such as confinement, chiral symmetry br
ing and fermion mass generation@3#. One such method is th
study of the Dyson-Schwinger equations@4#, and their phe-
nomenological applications to hadronic physics is a sub
of growing interest@5#. The gluon self-interaction and exis
tence of ghost fields are remarkable features of non-Abe
gauge theories, and the study of the infrared behavior of
gluon and ghost propagators and of the running coupling
become a major part in the quest to understand color c
finement in QCD.

Early studies of the Dyson-Schwinger equation for t
gluon propagator in the Landau gauge concluded that
gluon propagator is highly singular in the infrared@6–9#.
However, these studies neglected any contribution of
ghost fields, and moreover, required one to assume canc
tions of certain leading terms in the equations. It is theref
far from certain that these solutions have the correct Q
infrared behavior. That these solutions are at the origin
successful phenomenological applications can be unders
by observing that they can generate the necessary integr
strength in the kernels of the gap and Bethe-Salpeter e
tions @10#.

Recent studies of the coupled set of continuum Dys
Schwinger equations for the renormalized gluon and gh
0556-2821/2001/64~11!/116011~11!/$20.00 64 1160
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propagators, initiated by von Smekal, Hauck, and Alko
@11#, and later confirmed by Atkinson and Bloch@12,13#,
have shown that the coupling of ghost and gluon fields pl
a crucial role in the generation of a consistent infrared
havior of QCD. In the infrared the gluon and ghost propag
tors are power behaved, and the strong running coupling
an infrared fixed point. The leading infrared exponent is d
termined by requiring the power solutions to be consist
with both gluon and ghost equations. Although its prec
value depends on the vertexAnsätzeand other details of the
truncation, all the results showed that the ghost propagato
more divergent than its bare counterpart, while the glu
propagator is less divergent, and even vanishes as the
mentum goes to zero. Furthermore, another common fea
of these studies is that the leading infrared power in
gluon equation depends only on the ghost loop, and no
the gluon loop. One of our aims is to investigate whether t
is a characteristic of QCD or merely an artifact of the a
proximations.

Multiplicative renormalizability is an important feature o
gauge field theories, and it is ruined by the approximation
the renormalized vertices and to the vertex renormaliza
constants introduced in these studies. Furthermore, the
momentum behavior of the approximate solutions is gen
ally not in agreement with the results of perturbation theo
Herein we aim to develop a truncation scheme, which
spects multiplicative renormalizability, and has the corr
perturbative limit as well.

Let us first briefly discuss the approximations introduc
previously and the defects of their solutions. In Refs.@12,13#
bare vertices are used and the triple-gluon vertex renorm
ization constantZ1 is set to its bare value of one. This simp
approximation allows a straightforward basic analysis of
coupled set of ghost and gluon equations. As has been sh
in detail in Ref.@12#, this approximation violates the multi
plicative renormalizability of the solutions, and furthermor
©2001 The American Physical Society11-1
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neither the anomalous dimension of their logarithmic ult
violet behavior nor the leading order beta coefficient of
running coupling satisfy the results of perturbation theo
The authors were, however, not able to conclude if t
slight, but apparent, discrepancy with perturbation the
was due to an artifact of their approximation or if it could
a genuine feature of full QCD. In Ref.@11# more care was
given to the construction of the vertices, requiring the Wa
Takahashi identities to be satisfied to some extent. Howe
to force the solutions to have the correct perturbative beh
ior, the authors introduced a manipulation of the renorm
ization constantZ1, which again violates the multiplicative
renormalizability of the solutions.

In Secs. III–VIII of Ref. @12#, an intriguing truncation
was studied: based on symmetry ideas between the ghos
gluon equations only the ghost loop is retained in the glu
equation. The paper showed in detail that the solutions
this truncated set of equations are multiplicatively renorm
izable and that their high momentum behavior satisfies
perturbative results of this truncated theory. Although t
truncation is not consistent with QCD, as the gluon loop w
discarded, its solutions exhibit these important properties
pected from solutions of gauge field theories, thereby prov
ing insight into how multiplicative renormalizability of th
nonperturbative solutions is achieved, how the high mom
tum behavior of these solutions obey the leading order p
turbative results, and even how both features are entang
Section IX of Ref.@12# then went on to show how a naiv
treatment of the gluon loop destroys both multiplicati
renormalizability and agreement with perturbation theory

In addition to the above-mentioned approximations, Re
@11,12# also introduce angular approximations to make
analytical and numerical calculations more tractable. Th
angular approximations are satisfying for slowly varyi
functions@14#, like propagator functions in their perturbativ
regime. However, Ref.@13# showed that these angular a
proximations can introduce a significant error for regio
where the functions are power behaved. Although this me
that eventually the analysis of the asymptotic infrared pow
behavior will require the angular integrations to be p
formed exactly, the qualitative conclusions about multiplic
tive renormalizability and high momentum behavior of t
solutions are, however, not affected by the angular appr
mation.

In this paper we reformulate the coupled set of continu
equations for the renormalized gluon and ghost propaga
such that the Landau gauge equations are free of renor
ization constants, and depend on the renormalization p
only through the renormalized coupling and the renormali
propagator functions. In analogy to the ghost-loop only tru
cation of Ref.@12#, we see how the simple structure of th
equations makes the multiplicative renormalizability tran
parent, i.e. not hidden in renormalization constants or ren
malized vertices. We then introduce a novel truncat
scheme to these formal equations, which respects both
multiplicative renormalizability and the perturbative limit o
the solutions. We show that, for power law solutions, t
leading infrared behavior of the gluon equation no long
solely depends on the ghost loop, but rather depends on
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ghost loop, the gluon loop, the three-gluon loop, the fo
gluon loop and even on massless quark loops. The co
quences for the existence of infrared power behaved pro
gators are investigated in the Landau gauge. We also br
develop the same ideas for the massless quark equation

THE EQUATIONS

The QCD Dyson-Schwinger equations for the gluon a
ghost propagators are~provisionally neglecting the four-
gluon vertex and setting the number of quarks to zero!

@Dmn~p!#215@Dmn
0 ~p!#212~21!Ncg0

2

3E d4q

~2p!4
Gm

0 ~2r ,q!D~q!Gn~q,2r !D~2r !

2
1

2
Ncg0

2E d4q

~2p!4
Gma1a2

3g,0 ~2p,q,r !

3Da1b1~q!Gnb2b1

3g ~p,2r ,2q!Da2b2~r !, ~1!

@D~p!#215@D0~p!#212Ncg0
2E d4q

~2p!4
Gm

0 ~p,q!

3D~q!Gn~q,p!Dmn~r !, ~2!

whereg0 is the bare coupling,Dmn the gluon propagator,D
the ghost propagator,Gabg

3g the triple-gluon vertex,Gm the
ghost-gluon vertex, the zero superscript denotes bare qu
ties, andr 5p2q. Note that the contraction over color ind
ces has already been performed, and the extra factor (21) in
front of the ghost loop is due to the Fermi statistics of t
ghost field.

The general expressions for the full gluon and gh
propagators in a covariant gaugej can be written as

Dmn~p!52 i F S gmn2
pmpn

p2 D F~p2!

p2
1j

pmpn

p4 G , ~3!

D~p!5
iG~p2!

p2
, ~4!

and we shall refer to the scalar functionsF(p2) andG(p2)
as the gluon and ghost form factors.

Although we do not know the correct expressions for t
full triple-gluon and gluon-ghost vertices, we can always f
mally rewrite Eqs.~1!, ~2!, for arbitrary vertices, as

1

F~x!
512

Ncg0
2

8p3 E0

L2E
0

p

dy duy sin2u @M ~x,y,z!G~y!G~z!

1Q~x,y,z!F~y!F~z!#, ~5!

1

G~x!
512

Ncg0
2

8p3 E0

L2E
0

p

dy duy sin2u T~x,y,z!G~y!F~z!,

~6!
1-2



ic

n

la

ns
ns

on
a

B

le-

iant

-
u

p
s in

or-
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where we first contracted Eq.~1! with 2 iP mn(p)/3p2, where
P mn(p)5gmn24pmpn/p2, thus avoiding spurious quadrat
ultraviolet divergences@9#, and multiplied Eq.~2! with i /p2.
Subsequently we applied a Wick rotation to both equatio
which introduces an imaginary factori for each four dimen-
sional momentum integration, evaluated two trivial angu
integrations, and setx5p2, y5q2, z5r 2. The kernels
M ,Q,T depend on the full vertices, and are defined by

M ~p2,q2,r 2!5
1

3p2q2r 2
P mn~p!Gm

0 ~2r ,q!Gn~q,2r !,

~7!

Q~p2,q2,r 2!52
1

6p2q2r 2
P mn~p!Gma1a2

3g,0 ~2p,q,r !

3Gnb2b1

3g ~p,2r ,2q!

3Fg
'

a1b1~q!g
'

a2b2~r !

1jS g
'

a1b1~q!
r a2r b2

r 2F~r 2!

1g
'

a2b2~r !
qa1qb1

q2F~q2!
D

1j2
qa1qb1

q2F~q2!

r a2r b2

r 2F~r 2!
G , ~8!

T~p2,q2,r 2!52
1

p2q2r 2 Fg'
mn~r !1j

r mr n

r 2F~r 2!
G

3Gm
0 ~p,q!Gn~q,p!, ~9!

where g'
mn(q)5gmn2qmqn/q2. Note that the full vertices

will depend on the propagator functionsF and G by the
intermediary of the three-point Dyson-Schwinger equatio

The full, regularized, unrenormalized Green’s functio
are potentially divergent as we take the ultraviolet cutoffL
to infinity, and we therefore introduce renormalized glu
and ghost fields, and a renormalized coupling. The renorm
ized gluon and ghost form factorsFR and GR satisfy the
following multiplicative renormalization condition:

F~p2,L2!5Z3~m2,L2!FR~p2,m2!,

G~p2,L2!5Z̃3~m2,L2!GR~p2,m2!, ~10!

where FR(m2,m2)5GR(m2,m2)[1 and Z3 , Z̃3 are the
renormalization constants for the gluon and ghost fields.
cause of gauge invariance the renormalized couplingg satis-
fies
11601
s,

r
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g~m2!5
Z3

3/2~m2,L2!

Z1~m2,L2!
g0~L2!

5
Z3

1/2~m2,L2!Z̃3~m2,L2!

Z̃1~m2,L2!
g0~L2!, ~11!

whereZ1 , Z̃1 are the renormalization constants for the trip
gluon and gluon-ghost vertices. From Eqs.~10!, ~11! it is
easy to see@12# that the product

â~x,L2![
g2~m2!

4p
Z̃1

2~m2,L2!FR~x,m2!GR
2~x,m2!

5â~m2,L2!FR~x,m2!GR
2~x,m2! ~12!

is renormalization group invariant, i.e. independent ofm.
We know from Taylor @15# that Z̃1(m2,L2)51 in the

Landau gauge, and there the renormalization group invar
quantity â(x,L2) of Eq. ~12! is independent ofL2, and
nothing else but the running couplinga(x)5g2(x)/4p. Al-
though all our formal derivations will be valid for any cova
riant gauge, in the following we will focus on the Landa
gauge and systematically replaceâ(x,L2) by a(x), keeping
in mind that â(x,L2) is the correct renormalization grou
invariant quantity to be used when studying the equation
an arbitrary covariant gauge.

After introducing renormalized quantities in Eq.~6! using
Eqs.~10!, ~11!, ~12!, we find the following equation for the
renormalized ghost form factor:

1

GR~x!
5Z̃3~m2,L2!2

Ncam

2p2 E0

L2E
0

p

dy du y sin2u

3T~x,y,z!GR~y!FR~z!, ~13!

where am denotes the valuea(m2) of the coupling at the
renormalization point.

In an analogous way we derive an equation for the ren
malized gluon form factor from Eq.~5!:

1

FR~x!
5Z3~m2,L2!2

Ncg
2~m2!

8p3 E
0

L2E
0

p

dy du y sin2u

3@ Z̃1
2~m2,L2!M ~x,y,z!GR~y!GR~z!

1Z1
2~m2,L2!Q~x,y,z!FR~y!FR~z!#. ~14!

From Eq.~11! we see that

Z1~m2,L2!5
Z3~m2,L2!

Z̃3~m2,L2!
Z̃1~m2,L2!, ~15!

and after using Eq.~10! we can write this as
1-3



o

e
q

t-

to

ti
e

th
d,

th

an
n

-

al-
he
his

f

le

r-
an

z-
as
u-

at
t to
ion
d
e
a-
ct

n
e
ory
s in
op
ua-

for
ily

are
-
a-

r-

J. C. R. BLOCH PHYSICAL REVIEW D 64 116011
Z1~m2,L2!5
F~v,L2!

FR~v,m2!

GR~w,m2!

G~w,L2!
Z̃1~m2,L2!,

for arbitrary v,w<L2. ~16!

This expression enables us to factorizeZ1 in a m and aL

dependent part in the Landau gauge (Z̃151). Although Z1
depends only onm andL, we can always write it as the rati
~16! with arbitrary momentav andw. We eliminate the fac-
tor Z1

2 in Eq. ~14! by substituting Eq.~16! twice, once choos-
ing v5w[y, and once withv5w[z. Hence,

1

FR~x!
5Z3~m2,L2!2

Ncam

2p2 E0

L2E
0

p

dy du y sin2u

3R~x,y,z!GR~y!GR~z!, ~17!

where we have introduced the notation

R~x,y,z!5M ~x,y,z!1
F~y,L2!F~z,L2!

G~y,L2!G~z,L2!
Q~x,y,z!.

~18!

When introducing the renormalized couplingg(m2) in the
gluon loop of Eq.~14! we found it most logical to use theZ1
identity of Eq.~11!. An equivalent, more direct, way is to us
the Z̃1 identity instead. Obviously the same equation, E
~17!, results.

The two remaining renormalization constantsZ3 and Z̃3
in Eqs.~13!, ~17! can now easily be eliminated by subtrac
ing each of the equations at two different momenta:

1

FR~x!
5

1

FR~s!
2

Ncam

2p2 E0

L2E
0

p

dy du y sin2u

3@„R~x,y,z!GR~y!GR~z!…2~x↔s!#, ~19!

1

GR~x!
5

1

GR~s!
2

Ncam

2p2 E0

L2E
0

p

dy du y sin2u

3@„T~x,y,z!GR~y!FR~z!…2~x↔s!#, ~20!

where the momentums can, but does not have to be taken
coincide with the renormalization pointm. Let us now have a
closer look at Eqs.~19!, ~20!. First of all we observe that, in
the Landau gauge, the equations are free of renormaliza
constants, and that the only renormalization point dep
dence comes through the renormalized couplingam and the
renormalized propagator functionsFR(*, m2) andGR(*, m2).
Indeed, as can be seen from Eqs.~7!, ~8!, ~9!, ~18!, the un-
specified kernelsR(x,y,z) andT(x,y,z) are to be calculated
using the triple-gluon and ghost-gluon vertices, and
gluon and ghost form factors, all in their full, regularize
unrenormalized form, and are therefore independent ofm.

On the other hand, we also know that, except for
upper integration limit, the kernelsR and T are the only
L-dependent factors remaining in the equations in the L
dau gauge. If multiplicative renormalizability is to be a ge
11601
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eral nonperturbative feature of gauge theories, thenFR(x)
andGR(x) will remain finite asL is taken to infinity. There-
fore the kernels of the integrals in Eqs.~19!, ~20! are such
that after subtraction and integration theL dependence van
ishes asL is taken to infinity. Moreover, theL dependences
of the integrals in the unsubtracted equations, Eqs.~13!, ~17!,

correspond to those ofZ̃3 and Z3 known from perturbation
theory. This can easily be verified from theL dependence of
the various elements in the equations given by the renorm
ization group equations. Any relevant approximation to t
propagator equations will obviously have to respect t
property.

Let us show how the multiplicative renormalizability o
the solutions to Eqs.~19!, ~20! is satisfied. From Eq.~10! we
see that for solutions to be multiplicatively renormalizab
they have to satisfy

FR~x,n2!5
FR~x,m2!

FR~n2,m2!
, GR~x,n2!5

GR~x,m2!

GR~n2,m2!
,

~21!

when renormalized at different scalesm2 and n2. It is
straightforward to see, using Eq.~12!, that if F R(x,m2) and
GR(x,m2) are solutions of the set of equations~19!, ~20!
renormalized atm2, thenindeedFR(x,n2) andGR(x,n2) de-
fined by Eq.~21! will satisfy the same equations now reno
malized atn2. It is precisely using this reasoning that one c
show that the approximations introduced in Refs.@11–13# to
treat the gluon loop are violating multiplicative renormali
ability. Note thatany momentum scale can be chosen
renormalization point; it is not restricted to the small co
pling region of perturbation theory.

Of course, the new gluon equation, Eq.~17!, is com-
pletely equivalent to the original one, Eq.~14!, both having
the same multiplicatively renormalizable solutions. So wh
are the advantages of the new formulation? In contras
previous studies, we have eliminated the renormalizat
constantZ1 without introducing any approximation yet, an
therefore multiplicative renormalizability is preserved. W
will show how this allows us to devise tractable approxim
tions to the equations, having solutions that will still respe
multiplicative renormalizability. With the new approximatio
we will then try to answer the following questions. Do th
new nonperturbative solutions agree with perturbation the
for high momenta? Do the solutions behave as power law
the infrared, and is it indeed so that only the ghost lo
contributes to the leading infrared power in the gluon eq
tion as deduced in Refs.@11–13#? In fact, from Eqs.~19!,
~20! one can introduce novel truncations to the equations
the renormalized gluon and ghost propagator that will read
contradict this statement. Although we know that the b
vertex approximation from Ref.@12# does not preserve mul
tiplicative renormalizability, we can now define an altern
tive bare truncation using Eqs.~19!, ~20! that will preserve
both multiplicative renormalizability and the correct pertu
1-4



e
d

th
s
-
o

. I
o

ll
iz
re

re

h
vi

i
n
ba
e

ha
re
iz
en
ith
ec
ho
th

th

i
tu
he
ith

r-
an
ie
ur

ub-

ef.
ua-
ve

-

ion

ing
d
-
r
atis-

ing

er

e
ized

ich

qs.
s
d

ar-
the
the
ject
be
the
an
the

um

MULTIPLICATIVE RENORMALIZABILITY OF GLUON . . . PHYSICAL REVIEW D 64 116011
bative limit by simply taking the bare approximation to th
complete kernelsR andT. The bare approximation is define
by substituting

Gabg
3g 5Gabg

3g,0 , Gm5Gm
0 , F5F051, G5G051

~22!

in Eqs.~7!, ~8!, ~9!, ~18!, hence yielding

R~x,y,z!'R0~x,y,z!5M0~x,y,z!1Q0~x,y,z!,

T~x,y,z!'T0~x,y,z!. ~23!

The expressions forR0 andT0 are given in Eqs.~A1!, ~A2!.
For the gluon loop the approximation amounts to assume
the ratio of unrenormalized form factor
F(y)F(z)/G(y)G(z) in Eq. ~18! cancels the full unrenor
malized corrections to the bare triple-gluon vertex to a go
approximation, at least after contraction and integration
fact this could be considered as an extension to the appr
mation introduced by Mandelstam@6#. There the Ward iden-
tity was used to simplify the product of full vertex and fu
propagators. Our study now also includes the renormal
tion aspects of the gluon loop, which were omitted befo
We propose to analyze the validity of our assumption in
study of the 3-point Dyson-Schwinger equation in futu
work.

In Sec. IX of Ref.@12# it was shown that consistency wit
perturbation theory in the high momentum region is not tri
ally satisfied in a naive treatment of the gluon loop: even
the truncation leaves invariant the perturbative expansio
the equations, the high momentum limit of the nonpertur
tive solutions usually does not agree with the results of p
turbation theory. However, the same study pointed out t
in the bare vertex ‘‘ghost-loop only’’ truncation, the structu
of the loop integrands ensuring multiplicative renormal
ability is exactly what is needed such that the high mom
tum limit of the nonperturbative solutions be consistent w
the results of perturbation theory, i.e. it yields the corr
values for the anomalous dimensions of the gluon and g
propagators, and for the leading order beta coefficient of
running coupling. All these arguments now also apply to
bare approximation to Eqs.~19!, ~20!, which now include the
gluon loop, and the nonperturbative solutions do agree w
the leading order perturbative results in the high momen
region, as is illustrated in more detail in the Appendix. T
nonperturbative solutions have a leading ultraviolet logar
mic behavior

FR~x!; loggx, GR~x!; logdx, a~x!;
4p

b0 logx/LQCD
2

,

~24!

with b0511Nc/3, g5213Nc/6b05213/22, and d
523Nc/4b0529/44, thus reproducing the correct pertu
bative results for the anomalous dimensions of the gluon
ghost propagators, and for the leading order beta coeffic
of the running coupling. Note that by satisfying the pert
11601
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bative limit, the approximation also ensures that the uns
tracted equations~13!, ~17! yield the correctL dependence
for Z̃3 andZ3.

Next we analyze the infrared behavior of Eqs.~19!, ~20!
in our bare approximation. Following the arguments of R
@13# we deduce that, as before, both gluon and ghost eq
tions are individually satisfied by propagators which beha
as power laws in the infrared,

FR~x!;x2k, GR~x!;x2k, a~x!→const, ~25!

and, because of Eq.~12!, these power laws lead to an infra
red fixed point for the running coupling,

a05 lim
x→0

amFR~x!GR
2~x!. ~26!

After substitution of the power laws~25! in Eqs. ~19!,
~20!, the ghost and gluon equations each yield a relat
between the infrared fixed pointa0 and the leading infrared
exponentk:

Nca05
1

xgh~k!
, Nca05

1

xgl~k!
, ~27!

which are derived by equating the coefficients of the lead
power of x for x→0 on both sides of each equation, an
wherexgh(k), xgl(k) are computed by solving the loop in
tegrals as detailed in Ref.@13#. A consistent infrared powe
solution requires the gluon and ghost equations to be s
fied simultaneously,

xgh~k!5xgl~k!. ~28!

The solution of this equation yields the value of the lead
infrared exponentk, and the correspondinga0 can then be
computed from Eq.~27!.

It is important to note that, in contrast to the studies@11–
13#, the gluon loop now also contributes to the leading ord
infrared power of the gluon equation, Eq.~19!, and hence to
xgl(k), in our novel truncation. The expressions forxgh(k),
xgl(k) resulting from the leading infrared analysis in th
bare approximation are expressed in terms of general
hypergeometric functions, and are given in Eqs.~A11!,
~A12!. Numerical evaluation, usingMATHEMATICA , has
shown thatxgl(k),0 for anyk for which the integrals con-
verge. This disagrees with the ghost equation for wh
xgh(k).0, and hence no consistent solution fork exists,
and power laws are not infrared asymptotic solutions of E
~19!, ~20! in the bare approximation. Note that in previou
studies@11–13#, in which the gluon loop was subleading an
only the ghost loop contributed to the gluon vacuum pol
ization, the power law solutions were consistent and
value of k varied between 0.7 and 1.0 depending on
truncation. In our study the gluon equation seems to re
the power law solutions, and although this could at first
seen as a setback, we do not believe that this invalidates
general ideas of our approach. We rather believe it is
artifact of the truncation, and more care has to be taken in
analysis of the various contributions to the gluon vacu
1-5
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polarization, as we will show below. A case can be made
the eventual survival of infrared power laws by observi
that xgh(k), determined from the ghost equation, can
identified with the reciprocal of the infrared fixed point
the running coupling@using Eq.~27!#, and that its numerica
values can be considered physical fork in the convergence
region of the integrals, e.g. it varies from 0.87 to 0.24 fork
varying from 0.2 to 1.

Several contributions to the gluon vacuum polarizat
were neglected in the gluon equation, Eq.~1!, and we now
extend the scope of our investigation by considering its co
plete form:

@Dmn~p!#215@Dmn
0 ~p!#212pmn

gh~p!2pmn
g ~p!2pmn

3g ~p!

2pmn
4g ~p!2pmn

tad~p!2pmn
q ~p!, ~29!

including the contributions from the ghost loop, gluon loo
three-gluon loop, four-gluon loop, tadpole diagram a
quark loop. First, we will show that massless quarks c
contribute to the leading infrared power analysis, and h
they can affect the existence of a consistent infrared beh
ior. Although quark masses will most probably alter the
conclusions, the main purpose of this exercise is to illustr
in a simple way, that the absence of a consistent lead
infrared powerk, resulting from the multiplicatively renor
malizable treatment of the gluon loop, does not have to
definitive; other contributions, overlooked till now, may r
verse this situation. In fact, the hope is that this will be re
ized by the three-gluon and four-gluon loops, both involvi
the four-gluon vertex. Although no numerical calculatio
could yet be performed, we will schematically show th
these loops can also contribute to leading order in the in
red, even though they are only subleading in the ultravio

Consider the quark loop contribution to the gluon vacu
polarization in Eq.~29!:

pmn
q ~p!5~21!

Nf

2
g0

2E d4q

~2p!4
Tr@Gm

qg,0~2r ,q,2p!

3SF~q!Gn
qg~q,2r ,p!SF~2r !#, ~30!

where SF is the quark propagator,Gm
qg is the quark-gluon

vertex, the factor (21) signifies that the extra minus sign
due to the fermionic character of the quark loop, and
trace over color indices has already been performed.

The most general expression for the full quark propaga
can be written as

SF~p!5
iZ~p2!

p•g2M ~p2!
, ~31!

where we shall refer toZ(p2) as the quark form factor, an
M (p2) is the mass function.

Because of gauge invariance and multiplicative renorm
izability we know that

g~m2!5
Z3

1/2~m2,L2!Z2~m2,L2!

Z1 f~m2,L2!
g0~L2!,
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Z~p2,L2!5Z2~m2,L2!ZR~p2,m2!, ~32!

where Z1 f , Z2 are the renormalization constants for th
quark-gluon vertex and the quark field, andZR is the renor-
malized quark form factor, withZR(m2,m2)[1.

The contribution of the quark-loop to Eq.~14! for the
renormalized gluon form factor is computed from Eq.~30!,
after contraction, Wick rotation, and multiplication withZ3.
It can always be written as

pR
q~x!52Nf

g2~m2!

8p3
Z1 f

2 ~m2,L2!E
0

L2E
0

p

dy du ysin2u

3V~x,y,z!ZR~y!ZR~z!, ~33!

where we introduced renormalized quantities using Eq.~32!,
and

V~p2,q2,r 2!52
1

6p2q2r 2
P mn~p!Tr

3@Gm
qg,0~2r ,q,2p!q•gGn

qg~q,2r ,p!r •g#,

~34!

in the massless case. All the information about the full qua
gluon vertex is contained in the kernelV. Note that the minus
sign in front of pmn

q in Eq. ~29! has been absorbed in th
definition of pR

q . Similarly to the treatment of the gluon
loop, we eliminate the renormalization constantZ1 f using
Eqs.~10!, ~11!, ~32!, expressing the equality of the renorma
ized quark-gluon and ghost-gluon couplings, and find

pR
q~x!52

am

2p2E0

L2E
0

p

dy du y sin2u

3FNf

Z~y,L2!Z~z,L2!

G~y,L2!G~z,L2!
V~x,y,z!GGR~y!GR~z!.

~35!

Hence, Eq.~17! remains valid, provided we replace the de
nition ~18! for the kernelR by

R~x,y,z!5M ~x,y,z!1
F~y,L2!F~z,L2!

G~y,L2!G~z,L2!
Q~x,y,z!

1
Nf

Nc

Z~y,L2!Z~z,L2!

G~y,L2!G~z,L2!
V~x,y,z!. ~36!

As before them dependence enters only through t
renormalized coupling and the renormalized gluon and gh
form factors, and theL dependence ofV is such that the
integrals are finite. We herein study the case ofNf massless
quarks, thereby avoiding the complications introduced by
presence of explicit and dynamically generated mass ter
Again we introduce the bare approximationR0 to Eq. ~36!,
defined by Eq.~22! supplemented with
1-6
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Gm
qg5Gm

qg,0 , Z5Z051, ~37!

such thatR05M01Q01V0, with the quark loop componen
V0 given in Eq.~A13!.

The ultraviolet analysis can be done completely ana
gously to that presented for the quarkless case in the Ap
dix, and it again leads to the high momentum behav
shown in Eq.~24!, but now with b05(11Nc22Nf)/3, g
5(213Nc/212Nf)/3b0, andd523Nc/4b0, thus correctly
reproducing the leading order perturbative results.

From the structure of Eq.~35! it is clear that massles
quark loops will also contribute to the leading infrared pow
in the gluon equation in our bare approximation, in the
sumption of infrared power behaved gluon and ghost fo
factors. The consistency condition~28! is now modified as
the gluon equation gets an extra term from Eq.~35!, propor-
tional to Nf times the quark loop contributionxgl

q (k) given
in Eq. ~A14!:

Ncxgh~k!5Ncxgl~k!1Nfxgl
q ~k!. ~38!

We analyze the effect of the quark loop contribution
the right hand side of Eq.~38!, and observe that its contri
bution is positive. In Fig. 1, we show how it increases as
increase the number of massless quarks, and how it eve
ally compensates the negative value from the gluon lo
~with Nc53) such that Eq.~38! be satisfied. There is a criti
cal valueNf'8.9 for which a consistent infrared behavi
can first be found:k'0.76. Then, when we increaseNf fur-
ther, two possible values ofk satisfy the consistency cond
tion, Eq. ~38!. For Nf59 we findk50.69 and 0.82, forNf
510: k50.49 and 0.90, forNf511: k50.37 and 0.93, for
Nf512: k50.28 and 0.94. As we keep increasingNf→`,
the two solutions fork go to 0 and 1, the correspondin
values fora0 are then 0 and 4p/3.

We conclude that, in the bare approximation, mass
quarks do contribute to the leading infrared power of
gluon equation, and that a consistent power behavior ca
found if the number of quarks is sufficiently large (Nf>9),

FIG. 1. Determination of the infrared exponentk as the inter-
section of the left and right hand sides of the consistency condit
Eq. ~38!, computed from the ghost equation~dashed line! and gluon
equation forNf56,8,9,10~full lines!.
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thus potentially restoring the existence of infrared power
lutions for the gluon and ghost form factors. Of course,
know that the real world QCD does not contain such a la
number of massless quarks, and the results of the infra
analysis will be altered, even in the bare approximation,
the presence of explicit quark masses. Further study
needed to investigate how massive quarks, with either
plicit or dynamically generated quark masses, will influen
these results. This will be done in future work in conjuncti
with a simultaneous solution of the quark Dyson-Schwing
equation. Note however, that the above-mentioned res
might be of importance in the study of Yang-Mills gran
unified theories, which could contain a large number
massless quarks.

More importantly, the previous calculation enabled us
see that, even though the multiplicatively renormaliza
treatment of the gluon loop seemed to disprove the existe
of infrared power law solutions, these can be reinstated
additional contributions to the vacuum polarization. A
shown in the gluon equation, Eq.~29!, even the pure gauge
theory, without quarks, contains additional diagrams. T
three-gluon and four-gluon loop contributions have been
glected until now, based merely on perturbative argume
We now schematically show that this is not justified, and t
these diagrams can also contribute to the leading infra
behavior of the gluon and ghost propagators.

The three-gluon contribution to the unrenormalized glu
equation, Eq.~29!, is

pmn
3g ~p!5

Nc
2

6
g0

4E d4q

~2p!4E d4k

~2p!4
Gma1a2a3

4g,0 ~2p,q,k,r !

3Da1b1~q!Da2b2~k!Da3b3~r !

3Gnb3b2b1

4g ~p,2r ,2k,2q!, ~39!

where r 5p2q2k. After contraction, Wick rotation, and
multiplication withZ3 of Eq. ~39!, the additional three-gluon
contribution to Eq.~17! for the renormalized gluon form fac
tor can be written in the form

pR
3g~x!52Z3Nc

2g0
4E d4q

~2p!4E d4k

~2p!4
Q3~p,q,k!

3F~z1!F~z2!F~z3!, ~40!

wherez1 ,z2 ,z3 are the squared momenta of the gluons in
loop. Introducing the renormalized coupling using Eq.~11!,
we can rewrite this as

pR
3g~x!52Nc

2g4~m2!
Z̃1

4

Z3Z̃3
4E d4q

~2p!4E d4k

~2p!4
Q3~p,q,k!

3F~z1!F~z2!F~z3!. ~41!

As before, we replace all the renormalization constants
the ratios of the corresponding unrenormalized and ren
malized form factors, and find

n,
1-7
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pR
3g~x!5216p2Nc

2am
2 E d4q

~2p!4E d4k

~2p!4

3F F~z2!F~z3!

G~z2!G~z3!

Q3~p,q,k!

G2~z1!
GFR~z1!GR

2~z1!

3GR~z2!GR~z3!. ~42!

Using Eq.~12! we recognize the running coupling at m
mentumz1 , a(z1)5amFR(z1)GR

2(z1), and can therefore re
write this as

pR
3g~x!5216p2Nc

2amE d4q

~2p!4E d4k

~2p!4

3F F~z2!F~z3!

G~z2!G~z3!

Q3~p,q,k!

G2~z1!
Ga~z1!GR~z2!GR~z3!.

~43!

One of the effects of our manipulations has been to cha
one of the constant renormalized couplingsam in front of the
integral into a momentum dependent running couplinga(z1)
inside the integral. In the assumption of infrared power la
Eq. ~25!, the running coupling has an infrared fixed poin
and hence, the infrared structure of the integrand in Eq.~43!
is very similar to that of Eq.~17!, andpR

3g(x) will potentially
contribute to the leading infrared power analysis of the glu
equation.

We follow the same steps in the treatment of the fo
gluon loop. Its contribution to Eq.~29! is

pmn
4g ~p!5

Nc
2

4
g0

4E d4q

~2p!4E d4k

~2p!4

3Gma1a2a3

4g,0 ~2p,q,k,r !Da1b1~q!Da2b2~k!

3Da3b3~r !Gb1a4b2

3g ~2q,s,2k!

3Da4b4~s!Gnb3b4

3g ~p,2r ,2s!, ~44!

wherer 5p2q2k, s5q1k. After contraction, Wick rota-
tion and multiplication withZ3, the four-gluon contribution
to Eq. ~17! for the renormalized gluon form factor can b
written as

pR
4g~x!52Z3Nc

2g0
4E d4q

~2p!4E d4k

~2p!4
Q4~p,q,k!

3F~z1!F~z2!F~z3!F~z4!. ~45!

In analogy with Eq.~43!, we find
11601
e

,

n

-

pR
4g~x!5216p2Nc

2amE d4q

~2p!4E d4k

~2p!4

3F F~z2!F~z3!

G~z2!G~z3!

Q4~p,q,k!F~z4!

G2~z1!
G

3a~z1!GR~z2!GR~z3!, ~46!

and this diagram too can potentially contribute to the lead
order infrared power.

An infrared power law analysis of the gluon equation i
cluding the three-gluon and four-gluon contributions, E
~43!, ~46!, will yield a condition

~Nca0!xgl~k!1~Nca0!2xgl
3g,4g~k!51, ~47!

for the pure gauge theory, wherexgl
3g,4g is to be calculated

from Eqs.~43!, ~46!. This condition replaces the second r
lation in Eq. ~27!, and is now quadratic inNca0. The solu-
tion of Eq. ~47! for Nca0, together with the first part of Eq
~27!, will yield a new consistency equation

xgh~k!5
1

2
„xgl~k!1Axgl

2 ~k!14xgl
3g,4g~k!…, ~48!

replacing Eq.~28!. The contributions of Eqs.~43!, ~46! in-
volve the computation of two-loop integrals, and the a
proximations to the kernels have to be devised and inve
gated carefully. Note that these kernels too are indepen
of m and are such that all integrals in the subtracted eq
tions are finite. It is crucial for the survival of the power la
solutions as infrared asymptotic behavior of the ghost a
gluon propagators, that a leading infrared exponentk is
found which satisfies the condition, Eq.~48!. A more detailed
analysis of Eqs.~43!, ~46! will be performed in future work.

Finally, we briefly turn our attention to the quark Dyso
Schwinger equation, in the massless case, and examine
it transforms in our new approach. The equation is

@SF~p!#215@SF
0~p!#212CFg0

2E d4q

~2p!4

3Gm
qg,0~p,q,r !SF~q!Gn

qg~q,p,2r !Dmn~r !,

~49!

whereCF5(Nc
221)/2Nc54/3, for Nc53.

After substituting Eq.~31! in Eq. ~49!, we can derive the
following formula for the quark form factor:

1

Z~x!
512

CFg0
2

8p3 E0

L2E
0

p

dy du y sin2uU~x,y,z!Z~y!F~z!,

~50!

where the kernelU depends on the full quark-gluon verte
Multiplying Eq. ~50! by Z2, and using Eq.~11! to introduce
the renormalized coupling, we obtain
1-8
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1

ZR~x!
5Z2~m2,L2!2

CFg2~m2!

8p3

Z̃1
2Z2

Z3Z̃3
2 E0

L2E
0

p

dy du

3y sin2uU~x,y,z!Z~y!F~z!. ~51!

As before, we remove all the renormalization constants
the self-energy term:

1

ZR~x!
5Z2~m2,L2!2

CFam

2p2 E
0

L2E
0

p

dy du

3y sin2uF Z2~y!

G2~z!
U~x,y,z!GFR~z!GR

2~z!
1

ZR~y!
.

~52!

Similarly to the derivation of Eq.~43!, we recognize the
running couplinga(z) and find

1

ZR~x!
5Z2~m2,L2!1

CF

2p2E0

L2E
0

p

dy du

3y sin2uF Z2~y!

G2~z!
U~x,y,z!Ga~z!

1

ZR~y!
. ~53!

Subtraction of this equation at two momenta allows us
eliminate the remaining renormalization constantZ2. Note
that the multiplicative renormalizability of the solutions
manifested in a very simple way by the 1/ZR structure on
both sides of the equation. In fact, the shape of the equa
is somewhat reminiscent of the massless, quenched Q
fermion equation derived by Curtis and Pennington@16# us-
ing a vertex extension@17# to the Ball-Chiu vertex@18#, con-
structed using conditions of multiplicative renormalizabilit
Although we leave a detailed study of the quark equation
future work, we already see that we can introduce a b
approximation to Eq.~53!, in analogy to the procedure ap
plied to the gluon equation, which will yield solutions re
specting multiplicative renormalizability.

Furthermore, we anticipate that, in a similar way, the s
lar partM (p2) of the quark propagator will also be driven b
the running coupling under the integral, and it will be inte
esting to study how dynamical chiral symmetry breaki
gets realized with a kernel proportional witha(z), which has
an infrared fixed point if the infrared power laws, Eq.~25!,
are verified. This will also be investigated in more detail in
further publication.

Note that we have used the running couplinga(x)
5amFR(x,m2)GR

2(x,m2) in the derivations of Eqs.~43!,
~46!, ~53!, but we could as well introduce the more gene
renormalization group invariant quantity a(x,y,z)
5amFR(x,m2)GR(y,m2)GR(z,m2). Although this will
change the appearance of the equations, it will not cha
their solutions, as long as no approximations to the kern
are introduced. However, when devising truncations to
kernels, the choice of momenta should be handled ju
ciously for the approximations to make sense.
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CONCLUSIONS

We have reformulated the coupled set of continuum eq
tions for the renormalized gluon and ghost form factors
QCD, such that the multiplicative renormalizability of th
solutions is manifest, independently of the specific form
full vertices and renormalization constants. In the Land
gauge, all the renormalization constants are eliminated,
the renormalization point dependence is completely tra
posed into the renormalized coupling and the renormali
form factors.

Furthermore, the specific structure of the equations allo
us to devise novel approximations, necessary to make t
tractable, with solutions which respect the principles of m
tiplicative renormalizability and have the correct leading o
der perturbative limit. This had not been achieved in a c
sistent way before.

We showed that the gluon and ghost equations are e
individually satisfied by infrared power behaved gluon a
ghost propagators. However, these infrared power solut
can only truly be identified with the QCD propagators if bo
equations are satisfied simultaneously, thereby determin
the value of the leading infrared exponent and of the infra
fixed point of the coupling.

In contrast with previous research, our study shows t
the leading infrared behavior of the gluon equation isnot
solely determined by the ghost loop. The new approa
shows that the contributions of the gluon loop, the thre
gluon loop, the four-gluon loop and even of massless qua
should be taken into account when performing the lead
order infrared analysis.

Moreover, we showed that, in our new Landau gau
truncation, the gluon loop contribution to the gluon vacuu
polarization removes the existence of a consistent infra
power solution. It is our hope that additional contributions
the gluon vacuum polarization will reinstate the power la
solutions. As an illustration we showed how including a lar
number of massless quarks is one way to recover con
tency. The three-gluon and four-gluon loops will also co
tribute to the leading infrared power behavior in this appro
mation, but its quantitative treatment is more complica
and requires further investigation. We are therefore not
able to conclude whether or not the gluon and ghost pro
gators are power behaved in the infrared.

We have also briefly shown, for the massless case, h
the quark equation can be treated in a similar way, and h
the specific structure of the equation will allow us to co
struct truncations with multiplicatively renormalizable sol
tions for the quark propagator.

ACKNOWLEDGMENTS

I thank D. Atkinson, C. Fischer, K. Langfeld, C. D. Rob
erts, S. M. Schmidt, and P. Watson for useful comments
discussions. I am grateful for the hospitality of Argonne N
tional Laboratory, where part of this work was complete
This work was funded by Deutsche Forschungsgemeinsc
under project no. SCHM 1342/3-1.
1-9



e
,
to

ua-

he
r

ing
l

-
the

st

J. C. R. BLOCH PHYSICAL REVIEW D 64 116011
APPENDIX

1. Bare approximation

The bare approximation to Eqs.~19!, ~20!, defined by
Eqs.~22!, ~23!, yields the following kernels:

R0~x,y,z!52
1

3 F x2

8y2z2
1

x

yzS 1

y
1

1

zD2
1

8 S 15

y2
1

34

yz
1

15

z2 D
1

1

4x S z

y2
2

11

y
2

11

z
1

y

z2D
1

1

2x2 S z2

y2
1

6z

y
2141

6y

z
1

y2

z2D G , ~A1!

T0~x,y,z!52S x

y
221

y

xD 1

4z2
1S 1

y
1

1

xD 1

2z
2

1

4xy

5
sin2u

z2
. ~A2!

2. Ultraviolet behavior

We follow the arguments of Ref.@12# Sec. VII to study
the ultraviolet behavior of Eqs.~19!, ~20! with kernels, Eqs.
~A1!, ~A2!. The leading ultraviolet order solutions satisfy

1

FR~x!
512

am

4p E
x

m2

dy
f 0

y
GR

2~y!, ~A3!

1

GR~x!
512

am

4p E
x

m2

dy
g0

y
FR~y!GR~y!, ~A4!

where f 0 and g0 are easily computed from the kernels. W
have chosen the renormalization scalem as subtraction point
and bothx andm are in the perturbative region. It is easy
see that this is solved by

FR~x!5S 11
b0am

4p
log

x

m2D g

,

GR~x!5S 11
b0am

4p
log

x

m2D d

, ~A5!

where b05 f 012g0 , g52 f 0 /b0, and d52g0 /b0. This
leads to a running coupling:

a~x!5amFR~x!GR
2~x!5

am

11
b0am

4p
log

x

m2

5
4p

b0 log
x

LQCD
2

,

~A6!

where we define
11601
LQCD
2 [m2expS 2

4p

b0am
D ~A7!

to leading order. Hence, the solutions~A5! can be rewritten
as

FR~x,m2!5S a~x!

am
D 2g

; loggx,

GR~x,m2!5S a~x!

am
D 2d

; logdx, ~A8!

which is in agreement with the renormalization group eq
tion results. In the bare approximation we findb0
511Nc/3, g5213Nc/6b05213/22, and d523Nc/4b0
529/44.

3. Infrared behavior

In this section we give the results forxgh(k) andxgl(k)
of Eq. ~27!. They are determined from the coefficients of t
leading power ofx for x→0, after substitution of the powe
laws ~25! in Eqs.~19!, ~20!, and solution of the integrals.

The angular and radial integrals are readily solved us
the method of Ref.@13#, and thex dependence of a typica
integral is given by

E
0

L2

dy ybE
0

p

du sin2 j za;H j~a,b!xa1b, ~A9!

with z5x1y22Axy cosu, and

H j~a,b![BS j 1
1

2
,
1

2D
3F 1

b11 3F2~2a,2a2 j ,b11; j 11,b12;1!

2
1

a1b11 3F2~2a,2a2 j ,2a2b21; j 11,2a

2b;1!G , ~A10!

whereB is the Beta function,3F2 is a generalized hypergeo
metric function. The integrations are performed using
integration formula~3.665.2! of Ref. @19# and the definition
of hypergeometric functions@20#.

Using Eq.~A9! it is straightforward to see that the gho
equation, Eq.~20!, with bare kernel~A2!, yields

xgh~k!52
1

2p2
H2~2k22,12k!. ~A11!

The gluon equation, Eq.~19!, with kernel ~A1!, gives a
similar expression:
1-10
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xgl~k!5
1

48p2
@H1~222k,212k!215H1~222k,12k!12H1~222k,22k!14H1~222k,32k!

18H1~222k,2k!18H1~212k,212k!222H1~212k,12k!124H1~212k,22k!234H1~212k,2k!

12H1~12k,212k!124H1~12k,2k!14H1~22k,212k!215H1~2k,212k!256H1~2k,12k!

222H1~2k,2k!#. ~A12!

4. Including massless quarks

The bare, massless quark approximationV0, to the kernelV of Eq. ~35!, is given by

V0~x,y,z!52
2

3 F 1

yz
1

1

x S 1

y
1

1

zD2
2

x2 S y

z
221

z

yD G . ~A13!

After substituting the power solutions, Eq.~25!, in the quark loop, Eq.~35!, and solving the angular and radial integrals, w
find a quark contribution

xgl
q ~k!5

1

3p2
@H1~212k,12k!22H1~212k,22k!1H1~212k,2k!22H1~12k,2k!14H1~2k,12k!

1H1~2k,2k!# ~A14!

per massless quark flavor.
th

-
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