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Selected nucleon form factors and a composite scalar diquark
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~Received 22 November 1999; published 22 May 2000!

A covariant, composite scalar diquark, Fadde’ev amplitude model for the nucleon is used to calculate
pseudoscalar, isoscalar- and isovector-vector, axial-vector and scalar nucleon form factors. The last yields the
nucleons term and on-shells-nucleon coupling. The calculated form factors are soft, and the couplings are
generally in good agreement with experiment and other determinations. Elements in the dressed-quark-axial-
vector vertex that are not constrained by the Ward-Takahashi identity contribute;20% to the magnitude of
gA . The calculation of the nucleons term elucidates the only unambiguous means of extrapolating meson-
nucleon couplings off the meson mass shell.

PACS number~s!: 24.85.1p, 14.20.Dh, 13.75.Gx
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I. INTRODUCTION

Current generation experiments probe hadrons and t
interactions on a truly dynamical domain where symmetr
alone are insufficient to characterize them. In this dom
phenomenologically accurate nucleon-nucleon potent
@1,2# and meson exchange models@3# are keys in the inter-
pretation of data. These models are tools via which the c
related quark exchange underlying hadron-hadron inte
tions is realized as a sum of the exchanges of elemen
mesonlike degrees of freedom,1 and their definition relies on
meson-nucleon form factors that sensibly provide sh
range cutoffs in the integrals that arise in calculations.

These form factors are interpreted as a manifestation
the hadrons’ internal structure. If this interpretation is rea
tic then they should be calculable in models that relia
describe hadron structure. This cannot mean that mode
hadron structure should exactly reproduce the momen
dependence and parameter values used in potential mo
In order to be phenomenologically successful, all mod
have hidden degrees of freedom, which make complicate
direct comparison between approaches. However, one
expect semiquantitative agreement, with large discrepan
being harbingers of model artefacts and defects.

An additional complication is that the mesons of t
strong interaction spectrum are bound states and hence
only unambiguously defined on-shell; i.e., at their pole po
tion in an n-point vertex function. Any reference to an of
shell meson isnecessarilymodel dependent. Therefore, th
only comparisons that can be model independent are th
between calculated meson-baryon coupling constants
on-shell couplings inferred from potential models beca
these comparisons do not involve thead hocdefinition of an
off-shell bound state.

1The extent to which these degrees of freedom are identified
the mesons of the strong interaction spectrum varies. In one-bo
exchange models@1# the identification is close, while in the Ar
gonne series of potentials@2# the short-range part is interpreted as
purely phenomenological parametrization.
0556-2813/2000/61~6!/065207~13!/$15.00 61 0652
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Primarily for this reason, the comparison between cal
lated and phenomenological form factors can only be qu
tative and should employ more than one off-shell extrapo
tion to provide reliable information. In spite of th
ambiguities, however, the calculation of meson-baryon fo
factors is an essential element of contemporary phenome
ogy. For example, it can expose difficulties in phenome
logical interpretations, as is well exemplified by the discu
sion ofr0-v mixing and its contribution to charge symmet
breaking inNN potentials@4#,2 and also provide guidance i
constraining meson exchange currents in light nuclear s
tems@6,7#.

The dominant mesonlike degrees of freedom employe
potential models are identified with thep, r, v and a light
scalar,s. Herein we calculate the associated meson-nucl
coupling constants and form factors using a covari
nucleon model@8#. It is motivated by quark-diquark solu
tions of a relativistic Fadde’ev equation@9–11# and while
only retaining a scalar diquark correlation is a limitation, t
model’s treatment of that as a nonpointlike, confined co
posite is a significant beneficial feature. That is illustrated
its application to the calculation of nucleon electromagne
form factors@8#, which semiquantitatively describes the rat
mpGE

p(q2)/GM
p (q2) recently observed at TJNAF@12#. In

Sec. II we review the model. Our results are described in
next four sections: Sec. III,pNN; Sec. IV, vNN- and
rNN-like interactions; Sec. V explores the nucleon’s axi
vector current; and Sec. VI focuses on the scalar-nucl
interaction. Section VII is a brief recapitulation and the A
pendix contains selected formulas.

II. NUCLEON MODEL

We represent the nucleon as a three-quark bound s
involving a nonpointlike diquark correlation and write i
Fadde’ev amplitude as

th
n-

2It is an important and model-independent result that vec
channel resonant quark exchange is described by a vacuum p
ization: Pmn(k), that vanishes atk250 @5,6#.
©2000 The American Physical Society07-1
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Ca
t ~p1 ,a1 ,t1;p2 ,a2 ,t2;p3 ,a3 ,t3!

5«c1c2c3
dtt3

daa3
c~p11p2 ,p3!

3D~p11p2!Ga1a2

t1t2
~p1 ,p2!, ~1!

where«c1c2c3
effects a singlet coupling of the quarks’ colo

indices, (pi ,a i ,t i) denote the momentum and the Dirac a
isospin indices for thei th quark constituent,a and t are
these indices for the nucleon itself,c( l 1 ,l 2) is a Bethe-
Salpeter-like amplitude characterizing the relativ
momentum dependence of the correlation between diqu
and quark,D(K) describes the propagation characteristics
the diquark, and

Ga1a2

t1t2
~p1 ,p2!5~Cig5!a1a2

~ i t2!t1t2
G~p1 ,p2! ~2!

represents the momentum dependence, and spin and is
character of the diquark correlation; i.e., it corresponds t
Bethe-Salpeter-like amplitude for the diquark. While co
plete antisymmetrization is not explicit inC, it is exhibited
in our calculations via the exchange of roles between
dormant and diquark-participant quarks, and gives rise
diquark ‘‘breakup’’ contributions to the form factors. This
not an afterthought, it merely reflects the simple manne
which we choose to order and elucidate our calculations

With the form of C in Eq. ~1!, we retain in the quark-
quark scattering matrix only the contribution of the sca
diquark, which has the largest correlation length@13#: l01

ª1/m0150.27 fm. We saw as anticipated in Ref.@8# that the
primary defect of Eq.~1! is the omission of the axial-vecto
correlation (l11'0.8l01). Nevertheless, theAnsatzyielded
much about the electromagnetic nucleon form factors
was quantitatively reliable and qualitatively informativ
Hence, we employ it again herein as an exploratory, intuit
building tool.

The amplitude in Eq.~1! is fully determined with the
specification of the scalar functions:

c~ l 1 ,l 2!5
1

NC
F~ l 2/vc

2 !, lª 1
3 l 12 2

3 l 2 , ~3!

G~q1 ,q2!5
1

NG
F~q2/vG

2 !, qª 1
2 q12 1

2 q2 , ~4!

D~K !5
1

mD
2
F~K2/vG

2 !, ~5!

F~y!5
12e2y

y
, ~6!

which introduces three parameters whose values were d
mined @8# in a least-squares fit toGE

p(q2):

vc vG mD

0.20 1.4 0.63
~7!
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all in GeV (1/mD50.31 fm!.3 NC andNG are thecalculated
nucleon and (ud) diquark normalization constants, which v
the canonical definition ensure composite electric charge
1 for the proton and 1/3 for the diquark. Current conser
tion is manifest in this model.

An essential, additional element in the calculation of t
electromagnetic nucleon form factors is the dressed-qu
propagator:

S~p!52 ig•psV~p2!1sS~p2! ~8!

5@ ig•pA~p2!1B~p2!#21. ~9!

While S(p) can be obtained as a solution of the qua
Dyson-Schwinger equation~DSE! @14#, a phenomenologi-
cally efficacious algebraic parametrization has been de
mined in extensive studies of meson properties@15,16# and
we employ it herein:

s̄S~x!52m̄F„2~x1m̄2!…1F~b1x!F~b3x!@b01b2F~ex!#,
~10!

s̄V~x!5
1

x1m̄2
@12F„2~x1m̄2!…#, ~11!

x5p2/l2, m̄5m/l, s̄S(x)5lsS(p2), and s̄V(x)
5l2sV(p2). The mass scale,l50.566 GeV, and paramete
values

m̄ b0 b1 b2 b3

0.00897 0.131 2.90 0.603 0.185
~12!

were fixed in a least-squares fit to light-meson observab
@15#. @e51024 in Eq. ~10! acts only to decouple the large
and intermediate-p2 domains.# This algebraic parametriza
tion combines the effects of confinement and dynamical c
ral symmetry breaking with free-particle behavior at lar
spacelikep2 @16#.

III. PION NUCLEON COUPLING

The pion-nucleon current is

Jp
j ~P8,P!5ū~P8!Lp

j ~q,P!u~P! ~13!

5..gpNN~q2!ū~P8!i t jg5u~P!, ~14!

where the spinors satisfy

g•Pu~P!5 iMu~P!, ū~P!g•P5 iMū~P! ~15!

with the nucleon massM50.94 GeV andq5(P82P).

3This modified value ofvG arises from correcting a minor com
putational error in the calculations of Ref.@8#. In our Euclidean
formulation: p•q5( i 51

4 piqi , $gm ,gn%52dmn , gm
† 5gm , smn

5 i /2 @gm ,gn#, and trD@g5gmgngrgs#524emnrs , e123451.
7-2
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For an on-shell pion a calculation of the impulse appro
mation toJp

j requires only one additional element:Gp
j (k;Q),

the pion Bethe-Salpeter amplitude, withk being the relative
quark-antiquark momentum andQ is the total momentum o
the bound state. It has the general form

Gp
j ~k;Q!5t jg5@ iEp~k;Q!1g•QFp~k;Q!

1g•kk•QGp~k;Q!1smnkmQnHp~k;Q!#,

~16!

and is obtained as a solution of a homogeneous Be
Salpeter equation.

Using any truncation of the quark-antiquark scatter
matrix that ensures the preservation of the axial-vec
Ward-Takahashi identity then, in the chiral limit@17#,

Ep~k;Q50!5
1

f p
B0~k2!, ~17!

andFp , Gp , Hp satisfy similar relations involvingA0(k2).
Here f p is the pion decay constant andA0(k2), B0(k2) are
the dressed-quark propagator functions in Eq.~9! calculated
in the chiral limit. Since@14,16#

A~p2!Þ1, ~18!

the identities involvingFp , Gp , Hp entail that the pion
necessarily has pseudovector components, even in the c
limit. These components are crucial at large pion ener
e.g., they are responsible for the asymptotic 1/q2 behavior of
the electromagnetic pion form factor@18#, however, for pion
energy&1 GeV they are quantitatively unimportant, and E
~16! with Eq. ~17! andFp505Gp5Hp provides a reliable
approximation.

This fact is useful in phenomenological applications, a
away from the chiral limit an algebraic parametrization h
been developed@15,19# to be used in concert with Eqs
~10!,~11!:

Ep~k;Q!5
1

f p
Bp~k2!, ~19!

whereBp(k2) is obtained from Eqs.~9!–~11! with @20#

m̄→0, b0→b0
p50.204. ~20!

This form of dressed-quark propagator and pion Bet
Salpeter amplitude yields~quoted with GeV as the base uni!

f p mp ^q̄q&0
1 GeV2

^q̄q&p
1 GeV2

Calc. 0.0924 0.141 (0.221)3 (0.257)3

Obs.@21,22# 0.0924 0.138 (0.241)3 (0.245)3

~21!

where ^q̄q&0
1 GeV2

is the vacuum quark condensate a

^q̄q&p
1 GeV2

is the ‘‘in-pion’’ condensate, which appears
the pseudoscalar meson mass formula derived in Ref.@17#
and further elucidated in Refs.@20,22#.
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The ~on-shell! Bethe-Salpeter amplitude is sufficient
calculate the pion-nucleon coupling. However, to calcul
the form factor we must specify an off-shell extrapolation
Ep(k;Q); i.e., a functional dependence forQ2Þ2mp

2 . Two
obviousAnsätzeare

~a! f pẼp~k;Q!5Bp~k2!, ~22!

~b! f pẼp~k;Q!5
1

2
@Bp~k1

2 !1Bp~k2
2 !#, ~23!

with k65k6Q/2. The first, which assumes no change o
shell, has been used with phenomenological success in a
riety of calculations that explore meson-loop corrections
hadronic observables@23#; the second@14# allows some
minimal dependence onk•Q, Q2; and forQ50 both satisfy
the constraint of Eq.~19! @cf. Eq. ~17!#.

As with the electromagnetic form factors, five distin
diagrams contribute to the nucleon form factors, which
depicted in Fig. 1. For thepNN coupling these diagrams
enumerated from top to bottom, are mnemonics for the v
tices Lp

n j(q,P) given in Eqs.~A1!–~A5!. As can be antici-
pated,Lp

2 j (q,P)[0 because of parity conservation; i.e.,
Poincare´ invariant theory cannot admit a three-poi
pseudoscalar-scalar-scalar coupling.

The pion-nucleon vertex:

Lp
j ~q,P!5Lp

1 j~q,P!12(
n52

5

Lp
n j~q,P!, ~24!

is completely expressed in terms of four independent sc
functions

Lp
j ~q,P!5t jg5@ i f 11g•q f21g•R f31smnRmqn f 4#,

~25!

where f i5 f i(q
2), R5(P81P) and q•R50 for nucleon

elastic scattering. From this we construct the pion-nucle
current

Jp
j ~P8,P!5ū~P8!Lp

j ~q,P!u~P!, ~26!

and employing the definition of the nucleon spinors, E
~15!, we identify the pion-nucleon coupling in Eq.~13!:

gpNN~q2!5 f 122M f 21R2f 4 . ~27!

Using Monte Carlo methods to evaluate the integrals
obtain the coupling,gpNNªgpNN(q250), in Table I. It is
11% too large.~Our statistical error is always,1%.! We
anticipate that retaining pseudovector components
Gp

j (k;Q) and an axial-vector diquark correlation will onl
slightly affect this value as long as they are constrainedcon-
sistently with the model. An ad hoc addition of the
pseudovector components can have large effects@26#.

The relative strength of the contribution from each d
gram in Fig. 1 is presented in Table II. We observe that
diquark breakup terms are just as important here as they w
in the calculation of the nucleon charge radii and magne
moments@8#. These diagrams are the true measure of
7-3
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diquark’s composite nature, which is not captured by sim
adding a diquark ‘‘vertex function.’’

The pNN form factor calculated using both off-shellAn-
sätze, Eqs.~22!,~23!, is plotted in Fig. 2. We have performe
monopole and dipole fits to our calculated result:

gpNN~q2!5
gpNN

~11q2/Lp
2 !n

, n51,2, ~28!

and obtain pole masses, in GeV,

n51 n52

Eq. ~22! 0.63 0.96
Eq. ~23! 0.57 0.85.

~29!

The dipole form provides an accurate interpolation on
entire range shown. However, the monopole form is o
accurate forq2&0.4 GeV2, overestimating the result b
;70 % atq253.0 GeV2. ~Requiring that the fits are accu
rate in the neighborhood ofq250 ensuresLp

dipole/Lp
monopole

'&.! Thus our calculations favor soft form factors, in sem

FIG. 1. Our impulse approximation to the meson-nucleon fo
factors requires the calculation of five contributions, which differ
detail for each probe.c: c( l 1 ,l 2) in Eq. ~3!; G: Bethe-Salpeter-like
diquark amplitude in Eq.~2!; dashed line:D(K), diquark propaga-
tor in Eq.~5!; solid internal line:S(q), quark propagator in Eq.~8!;
and double line: mesonlike probe. The lowest three diagra
which describe the interchange between the dormant quark an
diquark participants, effect the antisymmetrization of the nucleo
Fadde’ev amplitude.
06520
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quantitative agreement with those employed in Ref.@3# and
advocated in Ref.@27#. We can further quantify this by in-
troducing a pionic radius of the nucleon:

^r pNN
2 &ª2

6

gpNN

dgpNN~q2!

dq2 U
q250

. ~30!

Our calculated value is presented in Table I and can be c
pared with the analogous tabulated quantities. It is alm
three times larger thanr pNN;0.3 fm inferred from Ref.@1#.

IV. VECTOR-MESON NUCLEON COUPLING

In this section we considerv-NN- and r-NN-like inter-
actions; i.e., isoscalar-vector and isovector-vector couplin
The vector-meson–nucleon current is

s,
the
s

TABLE I. Calculated couplings compared with: contempora
meson exchange model values@3#, where available; experiment in
the case ofgA , r A @24#; a lattice-QCD result fors @25#; and forgs ,
r s , as discussed in connection with Eqs.~84!–~87!. Also for com-
parison, the pion model described in Sec. II yields@15# r p50.56
fm. The labels~a! etc. identify the results obtained with Eq
~22!,~23! for pNN; Eqs.~38!,~39!,~41! for VNN; and Eqs.~60!,~61!
for the axial-vector coupling.

Calc. Estimates Expt.

gpNN 14.9 13.4

^r pNN
2 &1/2 ~a! 0.71

~b! 0.80
0.93–1.06 fm

grNN

~a! 5.92
~b! 6.26
~c! 4.82

6.4

f rNN

~a! 15.4
~b! 16.6
~c! 12.6

13.0

kr

~a! 2.57
~b! 2.64
~c! 2.61

2.0

gvNN

~a! 9.74
~b! 10.2
~c!11.5

7–10.5

f vNN

~a! 9.62
~b! 10.7
~c! 4.39

kv

~a! 0.99
~b! 1.04
~c! 0.38

gA
~a! 0.80
~b! 0.99

1.25960.017

^r A
2&1/2 ~a! 0.75

~b! 0.75
0.6860.12 fm

s/MN 0.015 0.01960.05
gs 9.3 10

^r sNN
2 &1/2 0.89 1.2 fm
7-4
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Jm
Va~P8,P!5 i ū~P8!

ta

2 S gmF1
V~q2!

1
1

2M
smnqnF2

V~q2! Du~P!, ~31!

with t0
ªdiag(1,1) andt1,2,3 the usual Pauli matrices. Al

though the complete specification of a fermion-vector bo
vertex,

Lm
a~q,P!ª

ta

2
Lm~q,P!, ~32!

requires 12 independent scalar functions,

FIG. 2. Calculated pion-nucleon form factor, compared w
dipole fits, Eqs.~28!,~29!.

TABLE II. Relative contribution to the couplings of each of th
terms represented mnemonically by the five diagrams in Fig. 1
building this table we used the amplitudes in Eq.~22! for the p,
Eqs.~38!,~41! for the vector couplings, and the dressed-quark-ax
vector vertex of Eqs.~57!,~61!. In all cases the crucial role of th
diquark breakup diagrams is evident. Diagram 2 will contribute
all processes if an axial-vector diquark correlation is included.

Diagram 1 2 3 4 5

gpNN 0.65 0.00 0.07 0.14 0.14
grNN ~a! 0.74 0.00 20.06 0.16 0.16

~c! 0.73 0.00 20.11 0.19 0.19
f rNN ~a! 0.64 0.00 0.10 0.13 0.13

~c! 0.64 0.00 0.12 0.12 0.12
gvNN ~a! 0.45 0.31 0.04 0.10 0.10

~c! 0.31 0.49 0.05 0.08 0.08
f vNN ~a! 1.04 20.28 20.16 0.20 0.20

~c! 1.81 21.16 20.35 0.35 0.35
gA 0.63 0.00 0.09 0.14 0.14
s 0.58 0.19 0.03 0.10 0.10
06520
n

iLm~q,P!5 igm f 11 ismnqn f 21Rm f 31 ig•RRm f 4

1 isnrRmqnRr f 51 ig5gn«mnrs qrRs f 61•••,

~33!

using Eq.~15! only the six shown explicitly contribute to
F1,2:

F15 f 112M f 324M2f 422Mq2f 52q2f 6 , ~34!

F252M f 222M f 314M2f 412Mq2f 524M2f 6 . ~35!

The coupling strengths relevant for comparison with pot
tial models are

gVNNªF1
V~0!, f VNNªF2

V~0!, kVª
f VNN

gVNN
~36!

because these aret-channel elastic-scattering models. How
ever, we note thatq250 is a far off-shell point for thev and
r of the strong interaction spectrum, for which (2q2)
5MV

2'0.6 GeV2. Hence a calculation of these couplin
constants is only possible after an off-shell extrapolation
the vector meson Bethe-Salpeter amplitude is specified.

Quantitatively reliable numerical solutions of the vect
meson Bethe-Salpeter equation have recently become a
able@28#, however, an algebraicAnsatzcompatible with our
parametrization of the dressed-quark propagator, E
~10!,~11!, is not yet available. Hence, we useAnsätzemoti-
vated by an extensive study of light- and heavy-meson
servables@20#:

Gm
a~k;Q!5

1

NV
S gm2

Qmg•Q

Q2 D w~k2!ta, ~37!

~a! w~k2!51/~11k4/v4!, ~38!

~b! w~k2!5@F~k2/v2!#2, ~39!

with v50.515 GeV and the normalization:NV , determined
canonically, Eq.~A12!. Following Ref. @20#, using these
simple forms of Gm

a(k;Q) in the appropriate formulas
therein, we calculate values of the electromagnetic a
strong coupling constants, columns~a!, ~b!:

Obs.@21# ~a! ~b! ~c!

gr 5.0360.012 6.57 6.05 4.37
grpp 6.0560.02 8.75 10.7 8.52 .

~40!
These results suggest that errors of up to 40% could aris
nucleon calculations involving these amplitudes.

The calculation of the vector-meson–nucleon curren
now straightforward withF1,2 determined by calculating the
integrals in Eqs.~A7!–~A11! and combining their contribu-
tions according to Eqs.~34!,~35!,~A13!. In this way we ob-
tain the couplings presented in Table I, with the relati
strength of the contribution from each diagram given
Table II.

In

l-
7-5
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The couplings are in semiquantitative agreement w
those inferred from meson-exchange models@3# exceptin the
case off vNN . Using Eqs.~38!,~39! we obtain f vNN'gvNN
while contemporary phenomenological models, which
only weakly sensitive tof vNN , assume it to be zero. T
determine the extent to which this result is model depend
we also calculate the couplings using

~c! w~k2!5
1

NV
BV~k2!, ~41!

whereBV(k2) is obtained from Eqs.~9!–~11! with @19# m̄
→0 and

b0→b0
V50.044, b1→b1

V50.580, b3→b3
V50.462.

~42!

The amplitude is canonically normalized via Eq.~A12! and
Ref. @19# reports the values ofgr , grpp in columnc) of Eq.
~40!.

The nucleon couplings are given in Table I with the re
tive strength of the contribution from each diagram presen
in Table II. In this case, while the other couplings change
&20 %, we findf vc)NN'0.4gvc)NN . The reason appears i
Table II: the strength of diagram 2 is much increased, a
while it does not contribute at all for ther and is additive for
gvNN , it is a destructive contribution tof vNN . This sensitiv-
ity to cancellations involving diagram 2 repeats the patt
we observed in calculating the nucleon’s isoscalar elec
magnetic form factor@8# and hencef vNN is sensitive to the
omission of the axial-vector diquark correlation.

The vector-meson–nucleon form factors calculated us
Eq. ~38! are depicted in Fig. 3 and the quadrupole

Fn
V~q2!5Fn

V~0!
1

~11q2/Ln
V!3

~43!

FIG. 3. Calculated vector-meson–nucleon form factors. A go
interpolation of the results is obtained with Eqs.~43!,~44!.
06520
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with pole masses, in GeV,

L1
v L2

v L1
r L2

r

1.12 1.11 1.06 1.18 ~44!

provides an excellent interpolation of the results. Aga
these are soft form factors.

On the domain explored, our results for theVNN form
factor are qualitatively unaffected by employing a monop
for w(k2) in Eq. ~37!.

V. AXIAL-VECTOR NUCLEON COUPLING

Neutronb decay is described by the axial-vector–nucle
current

J5m
j ~P8,P!5 i ū~P8!L5m

j ~q,P!u~P! ~45!

5..i ū~P8!g5

t j

2
@gmgA~q2!1qmgP~q2!#u~P!,

~46!

which involves two form factors:gA(q2) is the axial-vector
form factor of the nucleon andgP(q2) is the induced pseu
doscalar form factor. The complete specification of
fermion-axial-vector vertex,

L5m
j ~q,P!ª

t j

2
L5m~q,P!, ~47!

requires 12 independent scalar functions,

L5m~q,P!5g5gm f 11g5smnRn f 21emnrsgnqrRs f 31•••

~48!

but using Eqs.~15! only the three shown explicitly contribut
to the axial-vector form factor

gA~q2!5 f 122M f 22q2f 3 . ~49!

In the chiral limit and in the neighborhood ofq250
@17,22#

L5m
j ~q,P!5regular1

qm

q2
f pLp

j ~q,P!, ~50!

whereLp
j (q,P) is the pion-fermion vertex andregular de-

notes nonpole terms. It follows that in this neighborhood
induced pseudoscalar coupling is dominant and, using
~13!, is determined by the pion-nucleon coupling:

q2J5m
j ~P8,P!uq2505qm f pgpNN~q250!ū~P8!i t jg5u~P!

~51!

5qmū~P8!g5

t j

2
@q2gP~q2!#q250u~P!.

~52!

Current conservation:qmJ5m
j (q,P)50, which using Eqs.

~15! entails

d

7-6
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22MgA~q250!1@q2gP~q2!#uq25050, ~53!

then yields the Goldberger-Treiman relation:

MgA~q250!5 f pgpNN~q250!. ~54!

This brief analysis emphasizes thatgA(q2) is theregular part
of the axial-vector–nucleon current.

To calculategA(q2) in the impulse approximation we
must specify the dressed-quark-axial-vector vert
G5m

j (k;Q). It satisfies a Ward-Takahashi identity, which
the chiral limit is

2 iQmG5m
j ~k;Q!5S21~k1!g5

t j

2
1g5

t j

2
S21~k2!.

~55!

This identity is solved by

G5m
j ~k;Q!5G5m

R j ~k;Q!1g5

t j

2 F i
Qm

Q2
2SB~k1

2 ,k2
2 !G ,

~56!

G5m
R j ~k;Q!5G5m

T j ~k;Q!1g5

t j

2
„gmSA~k1

2 ,k2
2 !

12kmg•kDA~k1
2 ,k2

2 !…, ~57!

whereQmG5m
T j (k;Q)50 but G5m

T j (k;Q) is otherwise uncon-
strained by the Ward-Takahashi identity and

S f~p2,q2!ª 1
2 @ f ~p2!1 f ~q2!#, ~58!

D f~p2,q2!ª
f ~p2!2 f ~q2!

p22q2
. ~59!

The parenthesized term in Eq.~56! makes explicit the
simple kinematic singularity associated with the pion pol4

It is directly connected with the nucleon’s induced pseu
scalar form factor and, using Eqs.~17!,~23!, clearly saturates
Eq. ~51!. The regular part of the vertex, Eq.~57!, is primarily
responsible for the nucleon’s axial-vector form factor and
our calculations we complete its definition using either
two Ansätze for the transverse part:

~a! G5m
T j ~k;Q!50, ~60!

~b! G5m
T j ~k;Q!5

1

A2

f a1
ma1

Q21ma1

2
Gm

a1 j
~k;Q!, ~61!

whereGm
a1 j (k;Q) is thea1-meson Bethe-Salpeter amplitud

which is given explicitly in Eq.~A14!. Model ~a!: Eqs.

4Using (km /k•Q)SB(k1
2 ,k2

2 ) in Eq. ~56! instead of the parenthe
sized term is inadequate in this respect. Further, to exacerbate
flaw, it also introduces nonintegrable singularities in diagrams~3!–
~5!.
06520
:

-

f

~57!,~60!, is a minimalAnsatzthat correctly isolates the pion
pole. Model~b!: Eqs.~57!,~61!, is kindred to that advocated
for the dressed-quark-vector vertex in Ref.@29#. It recognizes
that the dressed-quark-axial-vector vertex has a pole atQ2

52ma1

2 with residue f a1
ma1

where f a1
is the weak decay

constant, and implements a model to represent the off-s
remnant of this contribution.

gA(q2) is obtained by evaluating the integrals in Eq
~A22!–~A26! and combining their contributions according
Eqs. ~49!,~A27!. The calculated coupling is presented
Table I with the relative strength of the contribution fro
each diagram given in Table II.5

The axial-vector form factor is depicted in Fig. 4. It
important and interesting to note that the dominant, orb
e2

a1 term in Gm
a1 @see Eqs.~A14!–~A21!# contributes,10 %

to gA(q2) on the illustrated domain, increasing from 0
with increasingq2; i.e., the bulk of the difference betwee
the~a! and~b! calculations arises from thee1

a1 term. In Fig. 4
we also plot a monopole fit to each calculation

gA~q2!5gA~0!
1

~11q2/LA
2 !

~62!

with pole masses, in GeV,
~a! ~b!

LA 0.65 0.64 ~63!

his

5We are unable to reproduce the large value ofgA obtained in Ref.
@32#. Some of the discrepancy may be due to our simplified rep
sentation of the quark1scalar-diquark nucleon spinor in Eq.~1!
@33#. However, that does not diminish the importance ofG5m

T j .

FIG. 4. Axial-vector–nucleon form factor calculated using t
Ansätze of Eqs. ~60!,~61! compared with a monopole fit, Eqs
~62!,~63!.
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The fit provides a better representation forAnsatz~b! than for
~a!, and we judge~b! to be the more realistic model. Th
axial radius of the nucleon is

^r A
2&ª2

6

gA~0!

dgA~q2!

dq2 U
q250

~64!

and our calculated value is presented in Table I:r A'r pNN in
accordance with Ref.@27#.

Even though our framework manifestly preserves
axial-vector Ward-Takahashi identity the model is not gu
anteed to satisfy the Goldberger-Treiman relation beca
we employ Ansätze for the Fadde’ev amplitude and th
dressed-quark-axial-vector vertex that need not be mutu
consistent. For example, in deriving Eq.~54! we used Eqs.
~15!, which introduceM, however,C in Eq. ~1! is not the
solution of a Fadde’ev equation with eigenvalueM. Indeed,
without an axial-vector diquark correlation, the calculat
nucleon mass is 30–50 % too large@10,34,35#. The follow-
ing comparisons~in GeV! exhibit this uncertainty:

~a! MgA~0!50.7521.1

~b! MgA~0!50.9321.4J cf. f pgpNN51.37, ~65!

and show that modelAnsatz~b! is broadly consistent with
the Goldberger-Treiman relation.

A comparison between the results obtained with the tw
vertexAnsätzedemonstrates that a calculation of the dress
quark-axial-vector vertex, akin to that of the dressed-qua
vector vertex in Ref. @29#, would be very helpful in
demarcating the importance of axial-vector diquark corre
tions. As shown by the model~b! calculation,G5m

T j easily
provides contributions of the same order of magnitude as
which might be anticipated from an axial-vector diquark.

VI. NUCLEON s TERM

As a final application we explore the nucleons term:

s~q2!ū~P8!u~P!ª^P8um~ ūu1d̄d!uP&, ~66!

sªs(q250), which is the in-nucleon expectation value
the explicit chiral symmetry breaking term in the QCD L
grangian. The general form for a fermion-scalar vertex is

L1~q,P!5 f 11 ig•q f21 ig•R f31 ismnRmqn f 4 , ~67!

however, using Eqs.~15! we find

J1~P8,P!ªū~P8!L1~q,P!u~P! ~68!

5s~q2!ū~P8!u~P!, ~69!

s~q2!5 f 122M f 31q2f 4 . ~70!

To evaluate the matrix element in Eq.~66! we need the
dressed-quark-scalar vertex, which is an analog of
dressed-quark-axial-vector vertex used in Sec. V. In
case, however, there is not a Ward-Takahashi identity to h
us. Instead, we calculate the vertex by solving an inhomo
06520
e
-
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-
-

-
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e
is
lp
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neous Bethe-Salpeter equation using a simple, separ
model for the quark-antiquark scattering kernel@13# that has
been used successfully in a variety of phenomenological
plications@30,36#.

The inhomogeneous vertex equation in the separa
model is

G1~k;Q!512 4
3 E d4q

~2p!4
D~k2q!gmS~q1!

3G1~q;Q!S~q2!gm , ~71!

with the interaction

D~k2q!5G~k2!G~q2!1k•qF~k2!F~q2!, ~72!

where

F~k2!5
1

a
@A~k2!21#, G~k2!5

1

b
@B~k2!2m̃#, ~73!

a5āl2, b5b̄l2, andA(k2), B(k2) are obtained in the usua
way from Eqs.~A17!,~A18! with m̃5m̂l andb2

a1→b2. The
separable model was constrained to fitp andK properties, as
discussed in detail in Ref.@13#.

Using this model the most general form of the scalar v
tex is

G1~k;Q!51g11 ik•Qg•Qg21 ig•kg3 , ~74!

where gi5gi(k;Q). Substituting Eq.~74! in Eq. ~71! we
obtain the solution

G1~k;Q!511t1~Q2!G~k2!1 i t 2~Q2!F~k2!
k•Qg•Q

Q2

1 i t 3~Q2!F~k2!g•k, ~75!

where t1,2,3(Q
2) are calculated functions of their argumen

i.e., of Q2 only.
Thes term is only sensitive to the vertex atQ250, where

the explicit form of the solution reduces to

G1~k;Q!uQ250511t1~0!G~k2!1t3~0!F~k2!ig•k,
~76!

with t1(0)50.242 GeV,t3(0)520.0140 GeV. It is impor-
tant to note from Eqs.~73!,~76! that thet1 term contributes
1.43@B(k2)2m̃#/Ab so that atk250 it is six times larger
than the bare term; i.e., it is dominant in the infrared. Tha
to be expected because it represents the effect of the non
turbative dynamical chiral symmetry-breaking mechanism
the solution. This and the othert i terms vanish ask2→`,
which is a manifestation of asymptotic freedom in the se
rable model.

The vertex equation has a solution for allQ2, and that
solution exhibits a pole at thes-meson mass; i.e., in the
neighborhood of (2Q2)5ms

25(0.715 GeV)2
7-8
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G1~k;Q!5regular1
nsms

2

Q21ms
2

Gs~k;Q!, ~77!

whereregular indicates terms that are regular in this neig
borhood and Gs(k;Q) is the canonically normalized
s-meson Bethe-Salpeter amplitude, whose form is exa
that of@G1(k;Q)21# in Eq. ~75!. The simple pole appears i
the functionst i(Q

2) and performing a pole fit we find

mns53.3 MeV. ~78!

nsms
2 is the analog of the residue of the pion pole in t

pseudoscalar vertex@17,22#: 2^q̄q&p / f p , and its flow under
the renormalization group is identical.mns is
renormalization-point independent and its value can be c
pared with

2m^q̄q&p

f p

1

ms
2

53.6 MeV; ~79!

i.e., the magnitude ofns is typical of effects driven by dy-
namical chiral symmetry breaking. We can also define asq̄q
coupling:

gsq̄qªGs~0;Q!uQ252m
s
2512.6, ~80!

whose magnitude can be placed in context via a compar
with gpq̄q511.8 obtained using the separable model’s ana
of the quark-level Goldberger-Treiman relation, Eq.~17!.

To calculate the expectation value in Eq.~66! we use

Gm~k;Q!5mG1~k;Q! ~81!

as our impulse approximation probe in Eqs.~A28!–~A32!
and obtains(q2)5s(q2) by combining the contributions ac
cording to Eqs.~70!,~A33!. This yields the value ofs pre-
sented in Table I, with the relative strength of the contrib
tion from the various diagrams listed in Table II.

The form factor is depicted in Fig. 5 where the evoluti
to thes-meson pole is evident. Fitting (t52q2)

s~ t !5gsNN

mns

12t/ms
2

, tP@0.1,0.5# GeV2, ~82!

which isolates the residue associated withGm(k;Q), we ob-
tain the on-shell coupling:gsNN527.3. This coupling can
also be calculated directly using the solution of the homo
neous Bethe-Salpeter equation and that yields

gsNN527.7, ~83!

in agreement within Monte Carlo errors. Equation~82! alone
overestimates the magnitude of our calculateds(t) every-
where except in the neighborhood of the pole.

As the lowest-mass pole-solution of Eq.~71!, our s me-
son is distinct from the phenomenological meson introdu
06520
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-

on
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-

d

in potential models to mock-up two-pion exchange.6 How-
ever, we can estimate a coupling relevant to meson excha
models by introducinggs(t):

s~ t !5..gs~ t !
mns

12t/ms
2

, ~84!

and a fit to our calculateds(t) yields

gs~ t !51.6112.61
1

~12t/Ls
2 !10

, Ls51.56 GeV,

~85!

where the large exponent merely reflects the rapid evolu
from bound state to continuum dominance of the vertex
the spacelike region. At the mock-s mass:ms

2p50.5 GeV,

gsªgs„~ms
2p!2

…59.3, ~86!

which is listed in Table I and compared with a phenomen
logically inferred value: gs510 @39#. We note that
gs(4mp

2 )55.2 so that this comparison is meaningful on
relevant phenomenological domain. Further,gs(q2→`)
51.61 and we, therefore, find thats(q2) is well approxi-
mated by a single monopole forq2.1 GeV2. However, the
residue is very different from the on-shell value. The sca
radius of the nucleon is obtained from

6The separable model@13# realizes a rainbow-ladder truncation o
the quark DSE and meson Bethe-Salpeter equation, which is li
inaccurate in the 011 channel@37#. The defect is tied to the diffi-
culties encountered in understanding the composition of scalar r
nances below 1.4 GeV@38#.

FIG. 5. Our calculateds(q2). The rapid increase with decreas
ing q2 is associated with the evolution to thes-meson pole. On this
scale,s(q2) calculated without thet2,3(Q

2) contributions is indis-
tinguishable from the full calculation.
7-9
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^r sNN
2 &ª2

6

s

ds~q2!

dq2 U
q250

~87!

and our calculated result is listed in Table I, in comparis
with an inferred value@39#.

VII. SUMMARY AND CONCLUSION

In Ref. @8# we introduced a simple model of the nucleon
Fadde’ev amplitude that represents the nucleon as a bo
state whose constituents are a confined dressed quark
confined dressed-scalar diquark, and fixed its parameters
calculation of nucleon electromagnetic properties. Herein
employ that model in a study of a range of nucleon fo
factors that can be identified with those used extensively
phenomenologicalNN potentials and meson-exchange mo
els. These calculations require knowledge of the relevant
son Bethe-Salpeter amplitudes and three-point vertex fu
tions. However, they have been determined in the applica
of Dyson-Schwinger equation models to non-nucleonic p
cesses. It is an important result that this simple model p
vides a uniformly good description of nucleon propert
and, where there are discrepancies with experimental da
cause and a means for its amelioration are readily identifi
Our study demonstrates that it is realistic to hope for use
constraints on meson-exchange models from w
constrained models of hadron structure.

Our calculations suggest that the nucleon form factors
‘‘soft’’ and there is no sign that this is a model-depende
result. The couplings generally agree well with those fitted
meson-exchange models. The only significant discrepanc
that we find 0.4& f vNN /gvNN&1.0, whereas the conven
tional model assumption isf vNN50. Comparison with our
calculation of the nucleon’s isoscalar electromagnetic fo
factor, however, suggests thatf vNN is the one coupling par
ticularly sensitive to neglecting the axial-vector diqua
Hence a conclusive determination off vNN must await its
incorporation.

A primary requirement for improving our model is th
inclusion of the axial-vector diquark correlation. In our stu
of gA we saw that it can contribute up to;25%, and
Fadde’ev equation studies show@10,34,35# that it provides a
necessary;33% reduction of the quark1scalar-diquark
nucleon mass. Also important in our analysis ofgA was an
elucidation of the role played by transverse parts of
dressed-quark-axial-vector vertex that are regular atQ250.
A simple model that allowed for the constrained leakage
the a1-meson pole contribution into the spacelike regi
showed that terms unrestricted by the axial-vector Wa
Takahashi identity provide;20% of the magnitude ofgA .
This sensitivity of the result to such elements makes imp
tant a numerical solution of the axial-vector vertex equati
a calculation for which the study of the vector vertex@29#
serves as an exemplar.

Our analysis of the nucleons term is particularly inter-
esting because it illustrates the only method that allows
unambiguous off-shell extrapolation in the estimation
meson-nucleon form factors. An essential element in the
06520
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pulse approximation calculation of the scalar form fact
s(q2), is the dressed-quark-scalar vertex and we use
separable model to obtain it as the solution of the inhom
geneous scalar vertex equation. This solution exhibit
simple pole atQ252ms

2 and hence so doess(q2). The
residue of that pole gives thes-meson nucleon coupling
However, the inhomogeneous vertex equation admits a s
tion for arbitrary Q2, which describes theQ2-dependent
dressed-quark-scalar coupling and hence allows a di
and consistent determination ofs5s(q250). That
Q2-dependent coupling exemplifies the necessary elem
in studies of those meson-nucleon form factors that tr
represent correlated quark exchange. Our calculation
s(q2) and the model~b! calculation ofgA are analogs of
Ref. @29#, which elucidates similar aspects of the electroma
netic pion form factor, making explicit ther-meson contri-
bution and its leakage away fromQ252mr

2 .
As noted above, to proceed it is important to inclu

axial-vector diquark correlations. Without them we cann
describe theD resonance, and theN→D transition is an
important probe of hadron structure and models; e.g., re
nant quadrupole strength in this transition can be interpre
as a signal of nucleon deformation@40#. The existence of
strong final-state interactions muddies this interpretation
means that nucleon structure models such as ours cann
compared directly with data. However, they can be used
foundation in the application of detailed reaction models@41#
and thereby provide a connection between the nucleo
quark-gluon content, its ‘‘shape’’ and data.
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APPENDIX: COLLECTED FORMULAS

1. Pion-nucleon

For thepNN coupling, Fig. 1 represents

Lp
1 j~q,P!53E d4l

~2p!4
c~K,p31q!D~K !c~K,p3!

3Lp
q j~p31q,p3!, ~A1!

with K5 2
3 P1 l , p35 1

3 P2 l , p25K/22k, Lp
q j(k1 ,k2)

5S(k1)Gp
j (kr ;kT)S(k2), kr5

1
2 (k12k2), kT5k11k2,

Lp
2 j~q,P!50; ~A2!

i.e., there is not a direct pion–scalar-diquark coupling b
cause of parity conservation,
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Lp
3 j~q,P!526E d4k

~2p!4

d4l

~2p!4
V~p11q,p3 ,p2!

3V~p1 ,p2 ,p3!S~p2!Lp
q j~p1 ,p11q!S~p3!,

~A3!

Lp
4 j~q,P!56E d4k

~2p!4

d4l

~2p!4
V~p1 ,p3 ,p21q!

3V~p1 ,p2 ,p3!Lp
q j~p21q,p2!S~p1!S~p3!,

~A4!

Lp
5 j~q,P!56E d4k

~2p!4

d4l

~2p!4
V~p1 ,p31q,p2!

3V~p1 ,p2 ,p3!S~p2!S~p1!Lp
q j~p31q,p3!,

~A5!

with 65«c1c2c3
«c1c2c3

and

V~p1 ,p2 ,p3!5c~p11p2 ,p3!D~p11p2!G~p1 ,p2!.
~A6!

2. Vector-meson–nucleon

For the vector meson coupling, Fig. 1 represents

Lm
1 j~q,P!53E d4l

~2p!4
c~K,p31q!D~K !c~K,p3!

3Lm
q j~p31q,p3!, ~A7!

Lm
2 j~q,P!56E d4k

~2p!4

d4l

~2p!4

3V~p11q,p2 ,p3!V~p1 ,p2 ,p3!

3trDF@Lm
q j~p11q,p1!S~p2!#S~p3!, ~A8!

Lm
3 j~q,P!5~21! I6E d4k

~2p!4

d4l

~2p!4
V~p11q,p3 ,p2!

3V~p1 ,p2 ,p3!S~p2!Lm
q j~p1 ,p11q!S~p3!,

~A9!

Lm
4 j~q,P!56E d4k

~2p!4

d4l

~2p!4

3V~p1 ,p3 ,p21q!V~p1 ,p2 ,p3!

3Lm
q j~p21q,p2!S~p1!S~p3!, ~A10!
06520
Lm
5 j~q,P!56E d4k

~2p!4

d4l

~2p!4
V~p1 ,p31q,p2!

3V~p1 ,p2 ,p3!S~p2!S~p1!

3Lm
q j~p31q,p3!, ~A11!

with Lm
q j(k1 ,k2)5S(k1)Gm

j (kr ;kT)S(k2) andGm
j (kr ;kT) the

Bethe-Salpeter-like amplitude of Eq.~37! whose normaliza-
tion is determined by

2N V
2dabQm

5 1
3 trCDFE d4k

~2p!4 FGn
a~k;2Q!

]S~k1!

]Qm
Gn

b~k;Q!S~k2!

1Gn
a~k;2Q!S~k1!Gn

b~k;Q!
]S~k2!

]Qm
G

Q252M
V
2

,

~A12!

wherek65k6Q/2. The flavor trace ensures thatLm
2 j con-

tributes only to the isoscalar coupling. This merely refle
the fact that in an isospin symmetric theory there cannot b
three-point iso-vector-scalar-scalar vertex. Further,Lm

3 j con-

tributes with opposite signs to thev (I 50) and r (I 51) cou-
plings. The complete vertex is

Lm
j ~q,P!5Lm

1 j~q,P!12(
n52

5

Lm
n j~q,P!. ~A13!

3. Axial-vector–nucleon

Model ~b! for the dressed-quark-axial-vector vertex i
volves the Bethe-Salpeter amplitude for thea1 meson, which
in the separable model of Ref.@13# has the form~terms qua-
dratic in k are suppressed in this model!

Gm
a1~ k̄,Q̂!5 i tW @g5gm

Te1
a1Ḡ~x!1e2

a1elmnsglk̄nQ̂sF̄~x!#,
~A14!

where k̄5k/l, l50.566 GeV is the model’s mass scal
Q̂m5Qm /uQ2u1/2, gm

T5(gm2Qmg•Q/Q2) and

F̄~x!5
1

ā
@Ā~x!21#, Ḡ~x!5

1

b̄
@B̄~x!2m̄#, ~A15!

with calculated constants

ā5~0.359!2, b̄5~0.296!2. ~A16!

Herein@30# Ā(x), B̄(x) are modified dressed-quark propag
tor functions obtained in the usual way from

s̄S
a1~x!52m̂F„2~x1m̂2!…1F~b1x!F~b3x!F„~eSx!2

…

3@b01b2
a1F~ex!#, ~A17!
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s̄V
a1~x!5

2~x1m̂2!2e2eV
2(x1m̂2)2

1e22(x1m̂2)

2~x1m̂2!2
, ~A18!

where

m̂50.0081, b2
a150.863, eS50.482, eV50.1,

~A19!

and the other parameters are given in Eq.~12!.
The separable model yieldsma1

in Eq. ~A21! and the
eigenvector

e1
a150.145, e2

a151.69, ~A20!

which is canonically normalized using Eq.~A12! evaluated
with Eqs. ~A14!–~A19!. This Bethe-Salpeter amplitud
yields f a1

in Eq. ~A21!.

ma1
~GeV! f a1

~GeV!

Calc. 1.34 0.221
Obs. 1.2360.040@21# 0.20360.018@31#

~A21!
NB: This model predicts that theg5gm term is subdominan
in the a1 meson. The dominante2

a1 term characterizes con
stituents with relative orbital motion.

For the axial-vector coupling, Fig. 1 represents

L5m
1 j ~q,P!53E d4l

~2p!4
c~K,p31q!D~K !c~K,p3!

3L5m
q j ~p31q,p3!, ~A22!

L5m
2 j ~q,P!50, ~A23!

L5m
3 j ~q,P!56E d4k

~2p!4

d4l

~2p!4
V~p11q,p3 ,p2!

3V~p1 ,p2 ,p3!S~p2!L5m
q j ~p1 ,p11q!S~p3!,

~A24!

L5m
4 j ~q,P!56E d4k

~2p!4

d4l

~2p!4
V~p1 ,p3 ,p21q!

3V~p1 ,p2 ,p3!L5m
q j ~p21q,p2!S~p1!S~p3!,

~A25!

L5m
5 j ~q,P!56E d4k

~2p!4

d4l

~2p!4
V~p1 ,p31q,p2!

3V~p1 ,p2 ,p3!S~p2!S~p1!L5m
q j ~p31q,p3!,

~A26!
06520
L5m
q j (k1 ,k2)5S(k1)G5m

j (kr ;kT)S(k2) with G5m
j (kr ;kT)

5G5m
R j (kr ;kT), the regular part of the dressed-axial-vecto

quark vertex defined by model~a!, Eqs.~57!,~60!; or model
~b!, Eqs.~57!,~61!. Lm

2 j vanishes for the same reason thatLp
2 j

does and the complete vertex is

L5m
j ~q,P!5L5m

1 j ~q,P!12(
n52

5

L5m
n j ~q,P!. ~A27!

4. s term

The contributions to the scalar-nucleon vertex are

L1
1~q,P!53E d4l

~2p!4
c~K,p31q!D~K !c~K,p3!

3Lm
q ~p31q,p3!, ~A28!

L1
2~q,P!512E d4k

~2p!4

d4l

~2p!4

3V~p11q,p2 ,p3!V~p1 ,p2 ,p3!

3trD@Lm
q ~p11q,p1!S~p2!#S~p3!, ~A29!

L1
3~q,P!56E d4k

~2p!4

d4l

~2p!4

3V~p11q,p3 ,p2!V~p1 ,p2 ,p3!S~p2!

3Lm
q ~p1 ,p11q!S~p3!, ~A30!

L1
4~q,P!56E d4k

~2p!4

d4l

~2p!4
V~p1 ,p3 ,p21q!

3V~p1 ,p2 ,p3!Lm
q ~p21q,p2!S~p1!S~p3!,

~A31!

L1
5~q,P!56E d4k

~2p!4

d4l

~2p!4
V~p1 ,p31q,p2!

3V~p1 ,p2 ,p3!S~p2!S~p1!Lm
q ~p31q,p3!,

~A32!

with Lm
q (k1 ,k2)5S(k1)Gm(kr ;kT)S(k2), and

L1~q,P!5L1
1~q,P!12(

n52

5

L1
n~q,P!. ~A33!
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