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Abstract. The coupled Dyson-Schwinger equations for the gluon and ghost
propagators are investigated in the Landau gauge using a two-loop improved
truncation that preserves the multiplicative renormalizability of the propaga-
tors. In this truncation all diagrams contribute to the leading-order infrared
analysis. The infrared contributions of the nonperturbative two-loop diagrams
to the gluon vacuum polarization are computed analytically, and this reveals
that infrared power-behaved propagator solutions only exist when the squint-
diagram contribution is taken into account. For small momenta the gluon and
ghost dressing functions behave like ðp2Þ2� and ðp2Þ��, respectively, and the
running coupling exhibits a fixed point. The values of the infrared exponent and
fixed point depend on the precise details of the truncation. The coupled ghost-
gluon system is solved numerically for all momenta, and the solutions have
infrared behaviors consistent with the predictions of the infrared analysis. For
truncation parameters chosen such that � ¼ 0:5, the two-loop improved trunca-
tion is able to produce solutions for the propagators and running coupling
which are in very good agreement with recent lattice simulations.

1 Introduction

In the standard model of the strong, weak, and electromagnetic forces, the inter-
actions are quantitatively described by gauge field theories. Quantum chromody-
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namics is a non-Abelian SU(3) gauge theory, and the proof of its renormalizability
[1] and discovery of ultraviolet asymptotic freedom [2] have been milestones in its
acceptance as theory of the strong interaction. For large momenta, perturbation
theory seems an appropriate calculational tool, as the coupling becomes small.
However, for small momenta the coupling grows large and adequate methods have
to be used to study nonperturbative phenomena like confinement, chiral symmetry
breaking and fermion mass generation [3]. One such method is the study of the
Dyson-Schwinger equations (DSE) [4], and their phenomenological applications to
hadronic physics is a subject of growing interest [5, 6]. The gluon self-interaction
and existence of ghost fields are remarkable features of non-Abelian gauge the-
ories, and the study of the infrared behavior of the gluon and ghost propagators,
and of the running coupling has become a major topic in the quest to understand
the nonperturbative phenomena in QCD.

Early studies of the Dyson-Schwinger equation for the gluon propagator in the
Landau gauge concluded that the gluon propagator is highly singular in the infrared
[7–10]. However, these studies neglected any contribution of the ghost fields, and
posited cancellations of certain leading terms in the equations. It is therefore far
from certain that these solutions possess the correct infrared behavior of QCD.
Nevertheless, these solutions are at the origin of successful phenomenological
applications, which can be understood by observing that they generate the neces-
sary integration strength in the kernels of the gap and Bethe-Salpeter equations
[11].

The important role played by the coupling of ghost and gluon fields to generate
a consistent infrared behavior of QCD in the Landau gauge was first demonstrated
in a study of the coupled propagator equations [12]. The propagator dressing
functions were found to behave like powers for small momenta: the gluon as
ðp2Þ2� and the ghost as ðp2Þ��. Furthermore, the strong running coupling is related
to both propagators and exhibits an infrared fixed point �0 whose value depends on
�. Initial studies [12, 13] truncated the system using ans€aatze for the ghost-gluon
and three-gluon vertices, neglecting the two-loop gluon-vacuum polarization dia-
grams and introducing an angular averaging procedure. The infrared analysis was
performed analytically and yielded � ¼ 0:92, �0 ¼ 9:5 [12], and � ¼ 0:77,
�0 ¼ 11:5 [13], depending on the details of the truncation. The coupled equa-
tions were also solved numerically for all momenta, and the numerical solutions
have the infrared behavior predicted by the analytic infrared analysis. The unique-
ness of the solutions of ref. [13] was recently confirmed through an extended
analysis of the infrared and ultraviolet asymptotic behaviors of the truncation
[14, 15]. A discussion of the Faddeev-Popov quantization at the nonperturbative
level and of the Gribov horizon problem can be found in ref. [16]. Comparison with
lattice simulations [17–19] is quite encouraging as these studies have revealed
quite similar infrared behaviors for the propagators, i.e., a vanishing gluon dressing
function and a singular ghost dressing function. Nevertheless, quantitative discrep-
ancies in the value of �, fixed point of the coupling and behavior of the gluon
propagator at intermediate momentum hint to the need of improved truncations in
the Dyson-Schwinger-equation studies.

As was shown in ref. [20] the recipe used for angular averaging influences the
value of the exponent � and even the existence of infrared power-law solutions, and
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a method was developed therein to treat the angular integrals exactly. The infrared
analysis revealed an exponent � ¼ 1, agreeing with the Gribov form of the gluon
and ghost propagators [21], and a smaller fixed point value �0 ¼ 4:2. Unfortu-
nately, the numerical analysis could not find solutions satisfying the integral equa-
tions over the whole momentum range, and the question whether this infrared
behavior is indeed a property of QCD or a spurious solution of the infrared analysis
was left unanswered. Clearly, the existence of power laws satisfying the infrared
consistency conditions is not sufficient to ensure the existence of an overall solu-
tion of the integral equations.

To avoid spurious unrenormalizable ultraviolet quadratic divergences, refs.
[12, 13, 20] extracted the gluon dressing function by contracting the gluon equation
with the Brown-Pennington (BP) tensor [10]. In more recent work [22, 23] the
contraction was performed using an arbitrary tensor, and the infrared analysis
yielded an additional solution for � slightly larger than 0.5 when using a
non-BP tensor. These studies were restricted to an infrared analysis, and no full
numerical solution was given. In fact, a straightforward analysis shows that these
truncations are plagued by unrenormalizable ultraviolet quadratic divergences, and,
as will be shown later in this paper, the new infrared solution for � is spurious as its
existence is directly related to that of the ultraviolet quadratic divergences.

This truncation was later enhanced [24] by removing the ultraviolet quadratic
divergences using a prescription specially constructed to leave the infrared analysis
of ref. [22] unchanged, thus retaining the spurious �>� 0:5 solution. The merit of
this study is to produce the first numerical solution to the integral equations with
full angular integrals. However, as will be discussed later, its prescription to
remove the quadratic divergences is not satisfying, and subtracting these in a con-
sistent way removes the spurious infrared solution and destroys the existence of the
numerical solution.

For all the above-mentioned truncations, following in the footsteps of ref. [12],
only the ghost loop contributes to the leading infrared power of the gluon DSE. At
the same time, all these truncations violate the multiplicative renormalizability of
the propagators. In ref. [25] I proposed a novel truncation of the Dyson-Schwinger
equations that respects the multiplicative renormalizability of the propagators and
satisfies their resummed leading-order perturbative behavior. A major new feature
of the truncation is that all vacuum-polarization diagrams of the gluon DSE con-
tribute to its leading infrared power. An analytic infrared analysis of the coupled
ghost-gluon system was performed taking into account the ghost and gluon loops in
the gluon vacuum polarization, but still neglecting the two-loop diagrams. The
study could not find infrared power laws simultaneously solving the gluon and
ghost equations. Although the two-loop diagrams also contribute to the leading
infrared power, their numerical contribution could not yet be evaluated at that time,
and it was suggested that a more detailed study of the missing two-loop contribu-
tions is needed to get a better understanding of the infrared behavior of QCD.

In the present paper the MR truncation of ref. [25] for the coupled ghost-
gluon DSEs in pure Yang-Mills theory is generalized further. The various infra-
red contributions to the ghost self-energy and gluon vacuum polarization are
computed analytically. This includes an analytic solution for the two-loop infra-
red contributions of the sunset and squint diagrams. The contribution of the
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squint diagram proves to be such that propagator power laws satisfy the infrared
consistency conditions imposed by ghost and gluon equations, and the values of
the infrared exponent and fixed point of the coupling depend on the details of
the truncation.

For the numerical study, the two-loop integrals are replaced by effective one-
loop integrals with same infrared behavior and consistent subleading ultraviolet
behavior. The equations are then solved numerically for all momenta, and the
numerical solutions agree with the predicted infrared and ultraviolet behaviors.
The results for ghost and gluon propagators, and for the running coupling are also
compared to recent results from lattice simulations [19].

2 The Equations

The Dyson-Schwinger equations for the ghost and gluon propagators can be dia-
grammatically written as

with the labelled momenta flowing from left to right. Several contributions to the
gluon vacuum polarization were neglected in previous studies, and here the scope
of the investigation is extended by considering its complete form including the
contributions from the ghost loop, gluon loop, three-gluon loop and four-gluon
loop1. Written out explicitly, the Euclidean-space equations are

½�abðpÞ��1 ¼ ½�0;abðpÞ��1 � �abðpÞ; ð3Þ

½Dab
��ðpÞ�

�1 ¼ ½D0;ab
�� ðpÞ�

�1 ��ab
��ðpÞ; ð4Þ

1 The tadpole contribution is independent of the external momentum, and vanishes after subtraction of

the renormalized equations

114 J. C. R. Bloch



with ghost self-energy integral2

�abðpÞ ¼
ð

q

Ga2aa1
� ðp; qÞ�a1b1ðqÞG0;b2b1b

� ðq; pÞDb2a2
�� ðrÞ; ð5Þ

and gluon vacuum polarization

�ab
��ðpÞ ¼ �2c;ab

�� ðpÞ þ�2g;ab
�� ðpÞ þ�3g;ab

�� ðpÞ þ�4g;ab
�� ðpÞ; ð6Þ

where

�2c;ab
�� ðpÞ ¼ ð�1Þ

ð
q

Gaa2a1
� ð�r; qÞ�a1b1ðqÞG0;bb1b2

� ðq;�rÞ�b2a2ð�rÞ; ð7Þ

�2g;ab
�� ðpÞ ¼

1

2

ð
q

�3g;aa2a1

��2�1
ðp;�r;�qÞDa1b1

�1�1
ðqÞ�3g;0;bb1b2

��1�2
ð�p; q; rÞDb2a2

�2�2
ðrÞ; ð8Þ

�3g;ab
�� ðpÞ ¼

1

6

ð
q1

ð
q2

�4g;aa3a2a1
��3�2�1

ðp;�q3;�q2;�q1ÞDa1b1

�1�1
ðq1ÞDa2b2

�2�2
ðq2Þ

�Da3b3

�3�3
ðq3Þ�4g;0;bb1b2b3

��1�2�3
ð�p; q1; q2; q3Þ; ð9Þ

�4g;ab
�� ðpÞ ¼

1

2

ð
q1

ð
q2

�3g;aa4a1

��4�1
ðp;�q4;�q1ÞDa1b1

�1�1
ðq1Þ�3g;b1a3a2

�1�3�2
ðq1;�q3;�q2Þ

�Da2b2

�2�2
ðq2ÞDa3b3

�3�3
ðq3Þ�4g;0;bb2b3b4

��2�3�4
ð�p; q2; q3; q4ÞDb4a4

�4�4
ð�q4Þ: ð10Þ

Here D is the gluon propagator, � the ghost propagator, �3g the three-gluon vertex,
�4g the four-gluon vertex, G the ghost-gluon vertex, the zero superscript denotes
bare quantities, and the definitions of the momenta can be read off from the dia-
grammatic Eqs. (1) and (2). The extra factor ð�1Þ in front of the ghost loop (7) is
due to the Fermi statistics of the ghost field. The momenta in the three- and four-
gluon vertices are incoming momenta, the ghost momentum in the ghost-gluon
vertex is incoming, and the anti-ghost momentum is outgoing. The integrals are
regulated using an ultraviolet cutoff �.

The general expressions for the full gluon and ghost propagators in a covariant
gauge � can be written as

Dab
��ðpÞ ¼

��
g�� �

p�p�

p2

�
Fðp2Þ

p2
þ � p�p�

p4

�
�ab; ð11Þ

�abðpÞ ¼ �Gðp2Þ
p2

�ab; ð12Þ

where the scalar functions Fðp2Þ and Gðp2Þ are the gluon and ghost dressing
functions, and the bare propagators correspond to Fðp2Þ ¼ 1 and Gðp2Þ ¼ 1. The
full vertices can be decomposed in their color structures

Gabc
� ðp; p0Þ ¼ ig0 f abcp0�G��ðp; p0Þ; ð13Þ

2
Ð

q
¼
Ð

d4q=ð2	Þ4
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�3g;abc
��
 ðp; q; rÞ ¼ �ig0 f abc�3g

��
ðp; q; rÞ; ð14Þ

�4g;abcd
��
� ðp; q; r; sÞ ¼ �g2

0½ f abef cde�4g
��
�ðp; q; r; sÞ þ f acef bde�4g

�
��ðp; r; q; sÞ
þ f adef bce�4g

���
ðp; s; q; rÞ�; ð15Þ

where g0 is the bare coupling and p0 is the anti-ghost momentum flowing out of the
ghost-gluon vertex. After separation of the color structure, the tensor �3g is anti-
symmetric under exchange of any two arguments, while �4g is antisymmetric under
exchange of 1$ 2 or 3$ 4, and symmetric under exchange of ð1; 2Þ $ ð3; 4Þ.
The bare vertices correspond to

G0
��ðp; p0Þ ¼ ���; ð16Þ

�3g;0
��
 ðp; q; rÞ ¼ ðp� qÞ
��� þ ðq� rÞ���
 þ ðr � pÞ��
�; ð17Þ

�4g;0
��
�ðp; q; r; sÞ ¼ ��
��� � �����
; ð18Þ

in Eqs. (13), (14), and (15).
The Greens functions are potentially divergent as the ultraviolet cutoff is taken

to infinity, and therefore renormalized fields and couplings are introduced. Pro-
ceeding as described in ref. [25], the exact equations for the renormalized dressing
functions in the Landau gauge can be written as

1

GRðp2; �2Þ ¼
~ZZ3ð�2;�2Þ � �ðp2Þ; ð19Þ

1

FRðp2; �2Þ ¼ Z3ð�2;�2Þ ��ðp2Þ; ð20Þ

where the renormalized and unrenormalized dressing functions are related through
multiplicative renormalizability,

Z3ð�2;�2Þ ¼ Fðp2;�2Þ
FRðp2; �2Þ ;

~ZZ3ð�2;�2Þ ¼ Gðp2;�2Þ
GRðp2; �2Þ ; ð21Þ

and Z3 and ~ZZ3 are the gluon and ghost field renormalization constants fixed by the
renormalization conditions FRð�2; �2Þ ¼ GRð�2; �2Þ ¼ 1. The scalar gluon equa-
tion (20) was extracted from the tensor equation (4) by contracting with the tensor

P��ðpÞ ¼ ��� � n
p�p�

p2
: ð22Þ

Throughout this paper the Brown-Pennington tensor (n ¼ 4) will be used, unless
stated otherwise, such that spurious, unrenormalizable quadratic ultraviolet diver-
gences are avoided [10]. The ghost self-energy contribution in Eq. (19) is given by

�ðp2Þ ¼
Ncg2

�

Z3
~ZZ3

ð
q

Tðp2; q2; r2ÞGðq2ÞFðr2Þ; ð23Þ

and the gluon vacuum polarization in Eq. (20) by

�ðp2Þ ¼ �2cðp2Þ þ�2gðp2Þ þ�3gðp2Þ þ�4gðp2Þ; ð24Þ
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with

�2cðp2Þ ¼
Ncg2

�

~ZZ2
3

ð
q

Mðp2; q2; r2ÞGðq2ÞGðr2Þ; ð25Þ

�2gðp2Þ ¼
Ncg2

�

~ZZ2
3

ð
q

Qðp2; q2; r2ÞFðq2ÞFðr2Þ; ð26Þ

�3gðp2Þ ¼
N2

c g4
�

Z3
~ZZ4

3

ð
q1

ð
q2

Q3ðp; q1; q2; q3ÞFðq2
1ÞFðq2

2ÞFðq2
3Þ; ð27Þ

�4gðp2Þ ¼
N2

c g4
�

Z3
~ZZ4

3

ð
q1

ð
q2

Q4ðp; q1; q2; q3; q4ÞFðq2
1ÞFðq2

2ÞFðq2
3ÞFðq2

4Þ; ð28Þ

where the contractions over color indices were performed using the formulae of
Appendix A, and Nc is the number of colors. The renormalized coupling g� was
introduced through the renormalization of the ghost-gluon interaction

g� ¼ gð�2Þ ¼ Z
1=2
3 ð�2;�2Þ~ZZ3ð�2;�2Þ

~ZZ1ð�2;�2Þ
g0ð�2Þ; ð29Þ

where ~ZZ1 is the ghost-gluon vertex renormalization constant. Eqs. (23)–(28) make
use of the universality of the strong coupling stating that the renormalized coupling
is identical for the ghost-gluon, three-gluon, and four-gluon interaction. Further-
more, ~ZZ1 � 1 in the Landau gauge, as shown by Taylor [26]. In the Landau gauge
the various kernels in Eqs. (23)–(28) are defined by

Tðp2; q2; r2Þ ¼ � 1

p2q2r2
g?��ðrÞG�ðp; qÞG0

�ðq; pÞ; ð30Þ

Mðp2; q2; r2Þ ¼ 1

3 p2q2r2
P��ðpÞG�ð�r; qÞG0

�ðq;�rÞ; ð31Þ

Qðp2; q2; r2Þ ¼ � 1

6 p2q2r2
P��ðpÞg?�1�1

ðqÞg?�2�2
ðrÞ

��3g
��2�1
ðp;�r;�qÞ�3g;0

��1�2
ð�p; q; rÞ; ð32Þ

Q3ðp; q1; q2; q3Þ ¼
1

36 p2q2
1q2

2q2
3

P��ðpÞg?�1�1
ðq1Þg?�2�2

ðq2Þg?�3�3
ðq3Þ

� ½ð2�4g
��1�2�3

ðp;�q1;�q2;�q3Þ�4g;0
��1�2�3

ð�p; q1; q2; q3Þ
� �4g

��1�2�3
ðp;�q1;�q2;�q3Þ�4g;0

��2�3�1
ð�p; q2; q3; q1Þ

� �4g
��1�2�3

ðp;�q1;�q2;�q3Þ�4g;0
��3�1�2

ð�p; q3; q1; q2ÞÞ
þ cyclic perm: ð1; 2; 3Þ�; ð33Þ
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Q4ðp; q1; q2; q3; q4Þ ¼
1

12 p2q2
1q2

2q2
3q2

4

P��ðpÞg?�1�1
ðq1Þg?�2�2

ðq2Þg?�3�3
ðq3Þ

� g?�4�4
ð�q4Þ�3g

��4�1
ðp;�q4;�q1Þ�3g

�1�3�2
ðq1;�q3;�q2Þ

� ½�4g;0
��2�3�4

ð�p; q2; q3; q4Þ þ �4g;0
��3�4�2

ð�p; q3; q4; q2Þ
� 2�4g;0

��4�2�3
ð�p; q4; q2; q3Þ�; ð34Þ

where g?��ðqÞ ¼ g�� � q�q�=q2. The kernels (30) to (34) contain full vertices which
depend on the propagator functions F and G by the intermediary of the three-point
Dyson-Schwinger equations.

As can be seen from Eqs. (23) to (28), the renormalization point � only enters
the right-hand sides of Eqs. (19) and (20) through the renormalized coupling g�
and the renormalization constants Z3 and ~ZZ3. All vertices and dressing functions
inside the integration kernels were left unrenormalized on purpose. The reason for
this will become clear when the MR truncation is constructed in the next section.

The knowledge of the propagator-dressing functions is phenomenologically
important because of its relation to the renormalization-group invariant running
coupling. From the definitions (21) and (29) of the renormalized quantities it is
straightforward to show that in the Landau gauge the product

�̂�ðq2; �2Þ � �ð�2ÞFRðq2; �2ÞG2
Rðq2; �2Þ ð35Þ

is renormalization-group invariant, i.e., independent of �2 [7, 12, 13]. Hence, the
product �̂�ðq2; �2Þ is nothing else but the nonperturbative running coupling �ðq2Þ,
as is easily demonstrated by choosing �2 ¼ q2 and noting that FRðq2; q2Þ ¼
GRðq2; q2Þ ¼ 1. The running coupling and its full nonperturbative behavior will
be a major focus in the remaining of this paper.

3 The Truncation

As proposed in ref. [25] the renormalization constants Z3 and ~ZZ3 in Eqs. (23) to (28)
are eliminated using their definitions (21), where the ratios of unrenormalized to
renormalized dressing functions are independent of the chosen momentum p for a
multiplicatively renormalizable theory. This arbitrariness in the choice of p will be
used to construct a truncation which not only satisfies the principles of multiplicative
renormalizability, but also satisfies the resummed leading-order perturbative results.

After elimination of Z3 and ~ZZ3 using Eq. (21) the full quantum corrections (23),
(25)–(28) can be rewritten as

�ðp2Þ ¼ Ncg2
�

ð
q

�
Gðq2ÞFðr2Þ

G1½a��F1½b��
Tðp2; q2; r2Þ

�
G1

R½a��F1
R½b��; ð36Þ

�2cðp2Þ ¼ Ncg2
�

ð
q

�
Gðq2ÞGðr2Þ

G2½a2c�F0½b2c�
Mðp2; q2; r2Þ

�
G2

R½a2c�F0
R½b2c�; ð37Þ

�2gðp2Þ ¼ Ncg2
�

ð
q

�
Fðq2ÞFðr2Þ

G2½a2g�F0½b2g�
Qðp2; q2; r2Þ

�
G2

R½a2g�F0
R½b2g�; ð38Þ
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�3gðp2Þ ¼ N2
c g4

�

ð
q1

ð
q2

�
Fðq2

1ÞFðq2
2ÞFðq2

3Þ
G4½a3g�F1½b3g�

Q3ðp; q1; q2; q3Þ
�

G4
R½a3g�F1

R½b3g�;

ð39Þ

�4gðp2Þ ¼ N2
c g4

�

ð
q1

ð
q2

�
Fðq2

1ÞFðq2
2ÞFðq2

3ÞFðq2
4Þ

G4½a4g�F1½b4g�
Q4ðp; q1; q2; q3; q4Þ

�

�G4
R½a4g�F1

R½b4g�; ð40Þ
where the symbolic notation

Xm½v� ¼
Yn

i¼1

Xviðq2
i Þ;

Xn

i¼1

vi ¼ m; ð41Þ

was introduced, which represents a product of powers of dressing functions eval-
uated at the internal momenta. Here X stands for any of the dressing functions
(renormalized or unrenormalized), n is the number of internal legs in the diagram,
qi enumerates the momenta of the internal legs, v ¼ ðv1; . . . ; vnÞ is a vector of
exponents, and the superscript m gives the total sum of the exponents. For example,
the notation G4½a3g� in Eq. (39) can be written out explicitly as

G4½a3g� ¼ Ga3g;1ðq2
1Þ Ga3g;2ðq2

2Þ Ga3g;3ðq2
3Þ;

where the exponents add up as a3g;1 þ a3g;2 þ a3g;3 ¼ 4. Note that in the single
loops (36) to (38) the internal momenta q1 and q2 were labelled as q and r,
respectively.

Eqs. (36) to (40) are still exact, and have the peculiarity that the renormaliza-
tion point only enters through the renormalized coupling and the renormalized
dressing functions, as all the renormalization constants have been eliminated.
Furthermore, the objects between square brackets contain regularized, but unrenor-
malized, quantities which depend on the ultraviolet regulator �, the external
momentum, and the loop momenta, but are independent of the renormalization
point �.

As was discussed in detail in ref. [25] the shapes of Eqs. (36) to (40) are
such that a truncation respecting the multiplicative renormalizability of the
propagators and satisfying the leading-order resummed perturbative results can
be constructed in a straightforward way. The truncation consists in replacing
each expression between square brackets in Eqs. (36) to (40) by its tree level
analog

�ðp2Þ ¼ Ncg2
�

ð
q

T0ðp2; q2; r2ÞG1
R½a��F1

R½b��; ð42Þ

�2cðp2Þ ¼ Ncg2
�

ð
q

M0ðp2; q2; r2ÞG2
R½a2c�F0

R½b2c�; ð43Þ

�2gðp2Þ ¼ Ncg2
�

ð
q

Q0ðp2; q2; r2ÞG2
R½a2g�F0

R½b2g�; ð44Þ
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�3gðp2Þ ¼ N2
c g4

�

ð
q1

ð
q2

Q0
3ðp; q1; q2; q3ÞG4

R½a3g�F1
R½b3g�; ð45Þ

�4gðp2Þ ¼ N2
c g4

�

ð
q1

ð
q2

Q0
4ðp; q1; q2; q3; q4ÞG4

R½a4g�F1
R½b4g�: ð46Þ

Because of the introduction of the product form (41) the truncation is a somewhat
generalized version of that proposed in ref. [25], where specific sets of values for
the a’s and b’s of Eqs. (42)–(46) were chosen. Note that choice of the sets a and b
can be done independently in the different self-energy and vacuum polarization
diagrams, as is suggested by their different subscripts. The proof that the truncation
respects multiplicative renormalizability and the leading-order resummed pertur-
bative results can be found in ref. [25]. To ensure that the leading-order perturba-
tive results are reproduced, it is crucial to choose internal loop momenta when
using Eq. (21) to eliminate the renormalization constants. This was provided for in
the definition (41) of Xm½v�. Choosing a fixed momentum, e.g., the renormalization
point �, would fail to reproduce the perturbative results.

The freedom of choice of the sets a and b means that even this simple trunca-
tion procedure is far from unique. For most diagrams, concerns of naturalness and
symmetry will fix the choice in the further treatment. For other diagrams, the sets
will be used as parameters in the study of the solutions of the coupled DSEs.

Note that the approach developed herein is quite different from that of refs.
[12, 23], where various explicit corrections to the ghost-gluon and triple-gluon
vertices were studied. Herein I consider effective kernel corrections to the equa-
tions, which guarantee that the kernels satisfy properties of MR and PT.

The tree-level kernels of the one-loop diagrams in Eqs. (42)–(44) are

T0ðx; y; zÞ ¼ �
�

x

y
� 2þ y

x

�
1

4 z2
þ
�

1

y
þ 1

x

�
1

2 z
� 1

4 x y
; ð47Þ

M0ðx; y; zÞ ¼
1

3

�
� 1

2 y z
� 1

2 x

�
1

y
þ 1

z

�
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x2

�
y

z
� 2þ z

y

��
; ð48Þ

Q0ðx; y; zÞ ¼
1

3

�
� x2

8 y2 z2
� x

�
1

y z2
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y2 z
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8 y2

� 1
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�
y
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� 13

z
� 13

y
þ z

y2

�

� 1
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�
y2

2 z2
þ 4 y

z
� 9þ 4 z

y
þ z2

2 y2

��
; ð49Þ

where x ¼ p2, y ¼ q2, and z ¼ r2. The two-loop kernels Q0
3 and Q0

4 of Eqs. (45) and
(46) are calculated in a straightforward way, but are more elaborate and therefore
not explicitly given herein.

The truncation is mainly motivated by its simplicity to achieve the two impor-
tant properties that are multiplicative renormalizability and perturbative behavior.
Nevertheless one would like to find a more theoretical justification for the trunca-
tion, which assumes that integrals with kernels containing specific combinations of
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full and bare vertices multiplied by various dressing functions can be well approxi-
mated by the same integrals over the tree-level kernels.

From the Slavnov-Taylor identities (STI) for the three-gluon, four-gluon, and
ghost-gluon vertices one observes that the vertices receive corrections which are
related to the gluon and ghost dressing functions [27, 28, 12]. That this is not only
true for the longitudinal parts of the vertices, constrained by these identities, but for
the complete vertex, can easily be seen from the principles of multiplicative renor-
malizability. The three-gluon vertex receives corrections proportional to G=F, the
four-gluon vertex to G2=F, and the ghost-gluon vertex to G=G, and the divergences
of the vertices are given by the divergences of these ratios.

All propagators and vertices in the Dyson-Schwinger equations (1) and (2) are
full, except for one vertex per diagram which is bare to avoid double counting in
the integral equation. When briefly assuming factorizable ans€aatze3 for the full
vertices, a simple counting of dressing-function corrections in each DSE diagram
reveals that the MR truncation introduces an additional correction equivalent to a
dressing of the remaining bare vertex. Hence, the MR truncation could wrongly be
interpreted as dressing all the vertices in the nonperturbative diagrams. That this is
not true is easily understood from the following ab absurdo argumentation. Placing
full vertices on all interaction points would introduce double counting, and the
perturbative results would not be reproduced. However, the MR truncation does
reproduce the leading-order perturbative result, hence refuting the allegation. As a
matter of fact, the additional correction exactly ensures that the divergence of the
integral matches that of the renormalization constant in the seed of the integral
equations, thus yielding a finite renormalized dressing function as required by the
left-hand sides of Eqs. (19) and (20).

It is known that the use of factorizable vertex ans€aatze in the DSE does not
reproduce the correct divergence and multiplicative renormalizability of the prop-
agators. The exact dressed vertex has a structure that is much more complicated
than just a multiplication of the bare vertex with ratios of dressing functions.
Usually several tensor structures are involved, each having its own correction given
by similar ratios of propagator dressings. This is well illustrated by the fermion-
photon Curtis-Pennington (CP) vertex in quenched QED [29], constructed to
satisfy the Ward-Takahashi identity and multiplicative renormalizability. The novel
MR truncation assumes that the integrals satisfy specific cancellations after con-
tractions and integrations. That this is not as far fetched as it at first seems, can be
seen from quenched QED. Substituting the quite elaborate CP-vertex in the quark
DSE yields kernels of great simplicity [30, 31] which are of the form suggested
above. Furthermore, in Appendix B an analysis of the DSE for the massless quark
propagator in quenched QED shows how the one-loop corrections to the various
vertex structures contribute to the self-energy integral and combine to produce an
MR dressing function, and how the same result can be obtained with a modified
kernel which only uses the bare vertex structure.

Although the validity of the ansatz could not yet be proven for QCD, the
simplicity of the truncated equations, which satisfy multiplicative renormalizability,

3 The factorizable ansatz replaces the full vertex by a product of bare vertex and dressing functions as

suggested by the STIs, which correctly reproduces its divergence
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resummed leading-order perturbation theory and take into account the two-loop
nonperturbative diagrams, is a good enough reason to further study their properties.

Now that the truncation scheme has been defined, the search for solutions of the
coupled integral equations can be initiated. First, their infrared asymptotic behavior
will be investigated analytically.

4 Infrared Analysis

As shown in ref. [25] a major feature of the MR truncation is that all diagrams in
the gluon vacuum polarization in Eq. (2) contribute to the leading infrared behavior
if the propagators obey infrared power laws. Indeed, in the infrared the propagator
power laws combine to a fixed point for the running coupling, and as all diagrams
in the MR truncation have kernels with similar dressing-function structure up to an
additional factor of �ðq2Þ they will all be infrared-leading. This contrasts with the
well-known fact that the sunset and squint diagrams are subleading for the ultra-
violet logarithmic behavior. Also note that earlier truncations of the ghost-gluon
system, with kernels violating multiplicative renormalizability, yield a very differ-
ent infrared analysis, where only the ghost loop contributes to the leading infrared
behavior of the gluon vacuum polarization.

The infrared analysis of the one-loop diagrams will be done in the same way as
before (see ref. [25] and references therein), and the method will be extended to
compute the infrared contributions of the two-loop diagrams. As will be detailed
further on, both gluon and ghost equations are individually satisfied by propagators
obeying infrared power laws

FRðxÞ ¼ Ax�; GRðxÞ ¼ Bx�; ð50Þ
where x ¼ p2. When substituting these power laws in Eqs. (19) and (20), the left-
and right-hand sides of the integral equations yield power behaviors. Requiring the
leading infrared exponents on both sides to match, produces the constraint
� ¼ �2�, such that

FRðxÞ ¼ Ax2�; GRðxÞ ¼ Bx��: ð51Þ
Because of Eq. (35), these power laws generate an infrared fixed point for the
running coupling

�0 ¼ lim
x!0

��FRðxÞG2
RðxÞ ¼ ��AB2 ! constant: ð52Þ

At this point it is useful to introduce the related function

�ðxÞ � Nc�ðxÞ
4	

¼ Nc��
4	

FRðxÞG2
RðxÞ: ð53Þ

From Eqs. (19), (20), (24), (42)–(46) it is clear that the function �ðxÞ only depends
on its value �� at the renormalization point, and is independent of the number of
colors Nc for the MR truncation presented herein4. As will be shown in this section,

4 Note that this is also true up to third order in perturbation theory [32]. At four-loop order 1=N2
c

corrections are generated [33] due to non-vanishing contributions from non-planar diagrams
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the infrared value �0 is fixed by the coupled Dyson-Schwinger equations. More-
over, as �0 is independent of Nc, Eq. (53) shows that the infrared fixed point �0 of
the running coupling is proportional to 1=Nc.

Equating the coefficients of the leading power of x, for x! 0, on both sides of
each equation yields two relations between the infrared fixed point �0 and the
leading infrared exponent �,

fGð�0; �Þ ¼ 0; fFð�0; �Þ ¼ 0: ð54Þ
The existence of a consistent infrared power solution requires the gluon and ghost
equation conditions (54) to be satisfied simultaneously. The solutions of Eq. (54)
will determine the values of the infrared fixed point �0 and exponent �. The various
loop integrals will now be computed and discussed.

4.1 Ghost Equation

The leading power contributions to the ghost equation are calculated by substitut-
ing5 the power laws (51) in Eq. (19) with self-energy (42),

x�

B
¼ ~ZZ3 � Ncg2

�AB

ð
q

T0ðx; y; zÞyk1zk2 ; ð55Þ

where x ¼ p2, y ¼ q2, z ¼ ðp� qÞ2, k ¼ ðk1; k2Þ is defined by k ¼ �ð2b� � a�Þ,
and k1 þ k2 ¼ � because a�;1 þ a�;2 ¼ b�;1 þ b�;2 ¼ 1 (from Eqs. (41) and (42)).
Substituting the kernel T0 given in Eq. (47) yields

x� ¼ B~ZZ3 þ Ncg2
�AB2

X
i;j;m

cijm

ð
q

xiy jþk1zmþk2 ; ð56Þ

where i; j;m are integers satisfying iþ jþ m ¼ �2, and the coefficients cijm can be
read off from Eq. (47). The right-hand side is a sum of integrals of the formð

q

x�y�z�; ð57Þ

with �þ � þ � ¼ �� 2. In ref. [20] these integrals were solved using spherical
coordinates, and the results were expressed in terms of generalized hypergeometric
functions. A more concise, equivalent expression can be derived [22] by noting that
integrals of type (57) are typical scalar integrals encountered when applying
dimensional regularization in perturbative calculations and they are readily com-
puted using Eq. (D.5).

Equating the coefficients of the leading infrared power x� on both sides of Eq.
(56) gives

�0 Gðk1; k2Þ ¼ 1; ð58Þ

5 Even though the general solutions behave logarithmically at high momentum (x� �2
QCD), power

laws are used for all momenta in the infrared analysis. This procedure gives the correct leading

power contribution because pure power laws are themselves solutions of the coupled equations in

the MR truncation, corresponding to �QCD !1. Ref. [13] showed that the leading infrared power

is independent of �QCD, which only enters the solution through the next term of its infrared

asymptotic expansion
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with �0 ¼ Nc�0=4	 and �0 given by Eq. (52). The function G is given by the self-
energy integral in Eq. (56) which can be calculated analytically using Eq. (D.5). Its
general expression is

Gðk1; k2Þ ¼ �
3

2

�ð2þ k1Þ�ð1þ k2Þ�ð�k1 � k2Þ
�ð1� k1Þ�ð2� k2Þ�ð3þ k1 þ k2Þ

; ð59Þ

where the Gamma-function recurrence relation was used repeatedly to bring the
expression into its simplest form. The values of k1 and k2 depend on the details of
the truncation through the sets a� and b� of Eq. (42) which have not yet been fixed.

For the ghost self-energy no symmetry between internal legs can be used to fix
a� and b�, and three different truncations are considered. A natural choice corre-
sponding to the bare ghost-gluon vertex approximation is obtained with a� ¼ ð1; 0Þ
and b� ¼ ð0; 1Þ, yielding a kernel proportional to GRðyÞFRðzÞ�IR y��z2�. This
choice gives ðk1; k2Þ ¼ ð��; 2�Þ, and from Eq. (59)

0
Gð�Þ � Gð��; 2�Þ ¼

6 �2ð2� �Þ�ð2�Þ
�ð3� 2�Þ�ð3þ �Þ�ð1þ �Þ : ð60Þ

An expression equivalent to Eq. (60) was first given in ref. [20], where it was
written in terms of generalized hypergeometric functions.

The G=G nature of the ghost-gluon vertex corrections makes it possible for the
bare vertex to satisfy MR and reproduce PT. Nevertheless, it is clear that the exact
dressed ghost-gluon vertex is not identical to the bare one, as can for example be
seen from its Slavnov-Taylor identity [12]. That identity suggests vertex correc-
tions like Gðr2Þ=Gðq2Þ, where q is the ghost momentum in the loop, and r the
gluon momentum. Approximating the full ghost-gluon vertex by a bare vertex
multiplied by such a correction leads to the truncation a� ¼ ð0; 1Þ and
b� ¼ ð0; 1Þ, and the kernel is proportional to GRðzÞFRðzÞ with infrared limit z�,
i.e., k1 ¼ 0, k2 ¼ �. In this case

V
Gð�Þ � Gð0; �Þ ¼

3

2�ð1þ �Þð2þ �Þð1� �Þ : ð61Þ

However, as explained in the previous section, in general the MR truncation
requires an additional vertex-type correction to satisfy MR and reproduce the
correct perturbative behavior of the integrals. This is not obvious for the ghost
self-energy because of the G=G nature of the vertex corrections, but is clear for
diagrams containing three-gluon, four-gluon, and quark-gluon vertices. Introducing
such an additional correction leads to another variant, which is very similar to the
multiplicatively renormalizable truncation of the quark equation [34]. This cor-
responds to a� ¼ ð�1; 2Þ and b� ¼ ð0; 1Þ, yielding a kernel proportional to
�ðzÞ=GRðyÞ (using Eq. (35)) with infrared limit y�, i.e., k1 ¼ �, k2 ¼ 0, and

�Gð�Þ � Gð�; 0Þ ¼
3

2�ð2þ �Þ : ð62Þ

The three truncations (60), (61), and (62) will be referred to as bare truncation,
V-truncation and �-truncation, respectively. The variation of G as function of �
for these three cases is shown in Fig. 1. The plotted quantity is inversely propor-
tional to the infrared fixed point of the running coupling (see Eq. (58)), and from
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the figure one can get information about the dependence of the fixed point on �
using different kernel corrections. For instance, a value of � ¼ 0:5 would corre-
spond to a fixed point value �0 ¼ 5=8 for the bare truncation and V-truncation, and
�0 ¼ 5=6 for the �-truncation. Global infrared and ultraviolet convergence criteria
of the integrals require 0<�< 2.

4.2 Gluon Equation

Next, the various contributions to the gluon vacuum polarization are investigated.
It is important to note that, in contrast to the studies [12, 13, 20], all the vacuum
polarization diagrams (43) to (46) of the MR truncation will be shown to contribute
to the leading-order infrared power of the gluon equation (20). The infrared
analysis yields the following equation after substituting the power laws (51) in
Eq. (20),

x�2�

A
¼ Z3 � lim

x!0
½�2cðxÞ þ�2gðxÞ þ�3gðxÞ þ�4gðxÞ�; ð63Þ

or for the coefficients of the leading power in x,

1 ¼ � lim
x!0

Ax2�½�2cðxÞ þ�2gðxÞ þ�3gðxÞ þ�4gðxÞ�: ð64Þ

Each contribution is now investigated in turn. The infrared ghost loop contribu-
tion (43) to Eq. (64) is given by

�0
2c
F ðk1; k2Þ � � lim

x!0
Ax2��2cðxÞ ¼ Ncg2

�AB2
X
i;j;m

cijm

ð
q

xiþ2�y jþk1zmþk2 ð65Þ

Fig. 1. Variation of the infrared ghost self-energy integral G as function of the infrared exponent �

for three specific choices of the kernel in Eq. (42): 0
G (60) using a bare ghost-gluon vertex, V

G (61)

with a factorizable vertex ansatz, and �G (62) for an �ðzÞ=GRðyÞ kernel
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with x ¼ p2, y ¼ q2, z ¼ ðp� qÞ2. The integers i; j;m satisfy iþ jþ m ¼ �2, and
the coefficients cijm can be read off from Eq. (48). Furthermore, k ¼ ðk1; k2Þ is
defined by k ¼ �ð2b2c � a2cÞ, and k1 þ k2 ¼ �2� because a2c;1 þ a2c;2 ¼ 2,
b2c;1 þ b2c;2 ¼ 0 (from Eq. (43)).

Although one can easily calculate this contribution for arbitrary a2c and b2c,
their values are naturally fixed by symmetry considerations between the two inter-
nal ghost legs: a2c ¼ ð1; 1Þ, b2c ¼ ð0; 0Þ. The kernel is then proportional to
GRðyÞGRðzÞ, and its infrared contribution, for which k ¼ ð��;��Þ, is

2c
F ð�Þ ¼

�2ð2� �Þ�ð2�Þ
�ð4� 2�Þ�2ð1þ �Þ : ð66Þ

This choice corresponds to an effective bare ghost-gluon vertex approximation.
Although one could argue that different ghost-gluon vertex approximations are
used in the ghost (Sect. 4.1) and gluon equations, this is not an inconsistency as
the truncation considers effective kernel corrections rather than ans€aatze for the full
dressed vertices. Because of the different tensor structures of the ghost self-energy
and gluon-vacuum polarization diagrams, kernel corrections can be of different
natures for both equations. Furthermore, for the ghost loop contribution to the
gluon vacuum polarization, corrections analogous to those of Sect. 4.1 would
depend on the external gluon momentum, and are not allowed in the effective
kernel truncations developed in this paper as they would destroy the perturbative
properties of the truncation.

The evolution of 2c
F is shown in Fig. 2 together with the ghost curves for 0

G,
V

G, and �G. In the leading ghost-loop truncation of ref. [20] the consistency con-
dition (54) between ghost and gluon equations is 1=�0 ¼ Gð�Þ ¼ 2c

F ð�Þ, and the
crossing of 2c

F and 0
G at � ¼ 1, with �0 ¼ 1, was suggested as a possible solu-

tion of the coupled equations. Ref. [20] only described the infrared analysis, and
the numerical study of the equations did not reveal solutions satisfying the equa-
tions over the whole momentum range. Using the �-truncation (62) of the ghost

Fig. 2. Variation of the infrared ghost loop integral 2c
F (66) in the gluon vacuum polarization,

together with the ghost self-energy integrals 0
G (60), V

G (61), and �G (62) from Fig. 1, as function of

the infrared exponent �. The crossing of 2c
F and 0

G at � ¼ 1 was suggested as a possible solution for

the equations in the leading ghost-loop truncation of ref. [20]
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equation would yield a slightly different infrared solution in the leading ghost-loop
approximation, with � ¼ 0:79 and a relatively large coupling �0 ¼ 1:46. Note that
the results can be sensitive to the truncation as can be seen from the V-truncation
for which no solution for � exists, as no intersection between this ghost curve and
the gluon curve occurs in Fig. 2.

The full numerical investigation of the leading-ghost loop truncation was
repeated in the current study and it confirms that no solution can be found con-
necting the infrared to the ultraviolet asymptotic behavior. The failure to find
numerical solutions does not prove that such do not exist, as the numerical solution
of the equations could be sensitive to instabilities. However, as will be shown later
on, the numerical method applied to solve the equations is quite powerful, and it is
therefore very likely that this truncation has no solution at all, and that the infrared
solutions are spurious solutions of the infrared analysis. This problem will be
resolved in an elegant manner by the MR truncation.

In a further attempt to find numerical solutions of the coupled equations in the
leading ghost-loop approximation with exact angular integrals, refs. [22–24]
extracted the gluon dressing function from the tensor equation (4) using P�� of
Eq. (22) with arbitrary n. They reported new infrared solutions with �>� 0:5 for
n 6¼ 4. These solutions are spurious as is explained below.

Although the solution can depend on n if the DSE truncation violates the
transversality of the gluon vacuum polarization, one hopes that its sensitivity is
minimal. However, an additional problem occurs when using a non-BP tensor
(n 6¼ 4) as spurious quadratic divergences are generated in the gluon vacuum polar-
ization [10]. These divergences have to be removed properly in order to get renor-
malizable solutions. Performing the infrared analysis of the ghost loop in the gluon
vacuum polarization for arbitrary n leads to an extension of Eq. (66),

2c
F ðn; �Þ ¼ ½nð�3þ 4�Þ þ 6� 4���

2ð2� �Þ�ð�1þ 2�Þ
6 �ð4� 2�Þ�2ð1þ �Þ

¼ 2c
F ð4; �Þ þ ðn� 4Þð�3þ 4�Þ�

2ð2� �Þ�ð�1þ 2�Þ
6 �ð4� 2�Þ�2ð1þ �Þ ; ð67Þ

where 2c
F ð4; �Þ is given by Eq. (66). Eq. (67) shows how 2c

F ðn; �Þ can be written
as a sum of two terms: one regular and the other singular at � ¼ 0:5. It is easy to
check that the singular factor �ð�1þ 2�Þ is exactly generated by the terms of M0

(extension of Eq. (48) for arbitrary n) which are quadratically divergent in the
ultraviolet limit. The singularity only occurs for n 6¼ 4 and is spurious. Fig. 3 shows
2c

F for n ¼ 4 and n ¼ 3, together with the ghost curve 0
G. The singularity at

� ¼ 0:5 for n 6¼ 4 inevitably introduces an additional, spurious crossing of the
ghost and gluon curves just above � ¼ 0:5.

When removing the kernel terms responsible for the quadratic divergence in a
natural way, the singular Gamma function in Eq. (67) disappears and no spurious
solution for � is found. The only solution left for n 6¼ 4 is the one that continuously
connects to the � ¼ 1 solution for n ¼ 4 [20]. Unfortunately, after removal of the
quadratically divergent terms the integral equations do not have overall solutions,
as was the case for n ¼ 4 in ref. [20], and as could be expected the absence of
solutions is independent of n.
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The absence of numerical solutions is remedied in ref. [24] by introducing
a specific procedure to remove the quadratic divergences for n 6¼ 4. The terms
responsible for the quadratic divergences are not simply removed from the
respective ghost and gluon loop kernels where they originally occur. Rather,
the subtraction in the gluon loop is adapted so that it cancels the ultraviolet
quadratic divergences coming from both gluon and ghost loops, while the ghost
loop is left unsubtracted. As the gluon loop is infrared subleading in that
truncation, the subtraction scheme leaves the leading infrared analysis of Eq. (67)
unchanged. The truncation yields infrared solutions with �>� 0:5 for n 6¼ 4, as
indicated in Fig. 3, and is free of ultraviolet quadratic divergences at the same
time. Furthermore, the numerical treatment found overall solutions for the
integral equations, connecting the asymptotic behaviors at low and high
momenta.

This truncation scheme was the first one to yield full numerical solutions in a
treatment with exact angular integrals (for any n, except n ¼ 4). Nevertheless, it
is difficult to evaluate the usefulness of the truncation because of the peculiar
scheme used to subtract the quadratic divergences. Clearly, this subtraction
scheme can only be used as long as the gluon loop does not contribute to
leading infrared order, and this is in contradiction with the MR truncation of
Sect. 3. The goal herein is to go beyond that truncation, avoiding quadratic
divergences from the very beginning by using n ¼ 4, and to develop a truncation
respecting multiplicatively renormalizability, for which all diagrams contribute to
leading infrared order.

Fig. 3. Variation of the infrared ghost loop integral 2c
F (67) in the gluon vacuum polarization for

n ¼ 4 and n ¼ 3, together with the ghost self-energy integral 0
G (60), as function of the infrared

exponent �. The additional crossing for the n ¼ 3 curve is spurious as it is due to the divergence of

2c
F at � ¼ 0:5, which is related to the presence of spurious ultraviolet quadratic divergences when

n 6¼ 4 in Eq. (22)
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As was shown in ref. [25] the gluon loop also contributes to the leading infrared
power behavior of the gluon vacuum polarization in the MR truncation. The treat-
ment is analogous to that of the ghost loop, and its contribution is given by

�0 
2g
F ðk1; k2Þ � � lim

x!0
Ax2��2gðxÞ; ð68Þ

with k ¼ ðk1; k2Þ defined by k ¼ �ð2b2g � a2gÞ, and k1 þ k2 ¼ �2� because
a2g;1 þ a2g;2 ¼ 2, b2g;1 þ b2g;2 ¼ 0. This leads to a sum of integrals similar to that
of Eq. (65), where the coefficients cijm are now determined by the kernel (49).

The values a2g and b2g are again naturally fixed based on symmetry considera-
tions between the two internal gluon legs: a2g ¼ ð1; 1Þ, b2g ¼ ð0; 0Þ. The kernel is
proportional to GRðyÞGRðzÞ, and its infrared contribution is6

2g
F ð�Þ ¼ ð15 k2 � 4 k � 14Þ�ð1� kÞ�ð2� kÞ�ð2 kÞ

�ð4� 2 kÞ�2ð2þ kÞ : ð69Þ

Note that in this case the effective MR kernel automatically corresponds to some
implicitly defined dressed vertex. Using a bare triple gluon vertex in Q of Eq. (38)
would yield equations that do not satisfy Eq. (44), would violate multiplicative
renormalizability and would furthermore not contribute to the leading infrared
power.

When neglecting the two-loop diagrams and only taking into account the one-
loop contributions in the gluon vacuum polarization, the infrared constraint (64)
from the gluon equation is

�0½2c
F ð�Þ þ 

2g
F ð�Þ� ¼ 1: ð70Þ

The existence of consistent infrared power solutions requires the ghost and gluon
relations (58) and (70) to be satisfied simultaneously:

Gð�Þ ¼ 2c
F ð�Þ þ 

2g
F ð�Þ: ð71Þ

Solutions of this equation would yield possible values for the leading infrared
exponent �. The corresponding �0 would then be computed from Eqs. (58) or
(70). In Fig. 4 the gluon-loop contribution 2g

F is drawn together with 2c
F and

G, and it is clear that the condition (71) cannot be satisfied for any � between
0 and 1 because of the large negative contribution of the gluon loop. This lead to
the conclusion in ref. [25] that the MR one-loop-only truncation, where only the
ghost and gluon loops are retained in the gluon vacuum polarization, does not
support infrared power laws for the propagators.

The absence of power-law solutions in that truncation could be interpreted as a
setback, but it was suggested in ref. [25] that taking into account the two-loop
diagrams in the DSEs could substantially change the infrared behavior of the
equations. Herein it will be shown that the absence of consistent infrared power-
law solutions is an artifact of an incomplete truncation due to the omission of the
two-loop diagrams, and that taking these into account, albeit in a simple realiza-
tion, will reinstate power laws in a very natural way.

6 The expressions 2c
F (66) and 2g

F (69) given here in terms of Gamma functions are identical to those

expressed in terms of generalized hypergeometric functions in ref. [25], as was checked numerically
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The following section will illustrate how the infrared analysis of the two-loop
gluon-vacuum polarization diagrams can be performed quite elegantly.

4.3 Two-Loop Diagrams

The sunset contribution (45) to the gluon vacuum polarization in the MR truncation
is given by

�3gðxÞ ¼ N2
c g4

�

ð
q1

ð
q2

Q0
3ðp; q1; q2; q3ÞG4

R½a3g�F1
R½b3g�: ð72Þ

Taking the infrared limit yields the contribution of the sunset diagram to the
coefficient of the leading infrared power x�2� in the gluon equation (64):

�2
0 

3g
F ðk1; k2; k3Þ � � lim

x!0
Ax2��3gðxÞ: ð73Þ

Substituting the power laws (51) yields7

3g
F ðk1; k2; k3Þ ¼ �ð16	2Þ2

ð
q1

ð
q2

Q0
3ðp; q1; q2; q3Þx2�zk1

1 zk2

2 zk3

3 ; ð74Þ

with x ¼ p2, zi ¼ q2
i . Furthermore, k ¼ ðk1; k2; k3Þ is defined by k ¼ �ð2b3g � a3gÞ,

and k1 þ k2 þ k3 ¼�2� because a3g;1 þ a3g;2 þ a3g;3 ¼ 4, b3g;1 þ b3g;2 þ b3g;3 ¼ 1.
To compute the sunset diagram it is crucial to note that it can be considered as a

sequence of two single loop integrations. First, the ðq2; q3Þ-loop, enclosed in the
box in the diagram shown below, is integrated out, and then the remaining ðq1; qsÞ-
loop, with qs ¼ q2 þ q3 ¼ p� q1, is computed.

Fig. 4. Contributions 0
G, 2c

F , and 2g
F as

function of the infrared exponent �. The

ghost curve 0
G and the gluon curve

2c
F þ 

2g
F do not intersect, and power laws

are not solutions in the one-loop-only MR

truncation

7 Power laws are assumed for all momenta as explained in footnote 5
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The integration rule (D.5) cannot be applied as such to compute the inner loop,
because the kernel Q3 cannot be written as a function of squared momenta only, as
could be done for the one-loop diagrams. There is always one angle that cannot be
eliminated. Fortunately, the integral can still be solved in a fairly easy way by
treating it as a sum of tensor integrals of rank 4 or lower.

The various tensor terms in the kernel of Eq. (74) have denominators propor-
tional to q2a1

1 q2a2

2 q2a3

3 , with non-integer powers a1, a2, a3. To transform this into
known integrals, first the Feynman trick (C.1) is applied to rewrite the denomina-
tors of the inner loop integral as

1

q2a2

2 q2a3

3

¼ �ða2 þ a3Þ
�ða2Þ�ða3Þ

ð1

0

dt
ta2�1ð1� tÞa3�1

½tq2
2 þ ð1� tÞq2

3�
a2þa3

: ð76Þ

The momentum q3 is eliminated by introducing the outer loop momentum
qs ¼ q2 þ q3,

1

q2a2

2 q2a3

3

¼ �ða2 þ a3Þ
�ða2Þ�ða3Þ

ð1

0

dt
ta2�1ð1� tÞa3�1

½q2
2 � 2ð1� tÞq2 	 qs þ ð1� tÞq2

s �
a2þa3

: ð77Þ

To eliminate the dot product in the denominator, so that it is written in terms of
squared momenta only, the variable transformation l ¼ q2 � ð1� tÞqs is introduced:

1

q2a2

2 q2a3

3

¼ �ða2 þ a3Þ
�ða2Þ�ða3Þ

ð1

0

dt
ta2�1ð1� tÞa3�1

½l2 þ tð1� tÞq2
s �

a2þa3
: ð78Þ

The inverse variable transformations

q2 ¼ lþ ð1� tÞqs; q3 ¼ tqs � l; ð79Þ
are then used to replace the four-momenta components of q2 and q3 by l and qs in
the numerators of the tensor integrals of Eq. (74). The ensuing inner-loop integrals
can be calculated using the tensor integral formulae Eqs. (D.1) to (D.4). Conse-
quently, the remaining integration over the Feynman parameter t is easily per-
formed using Eq. (C.3). After integration of the inner loop the kernel of the
external ðq1; qsÞ loop integral is a function of p, q1, and qs which can be written
as a function of squared momenta only, and this integral can be computed using Eq.
(D.5). This complete procedure was programmed using the symbolic algebra pro-
gram Form [35] and yields the following result for the integral (74) with Q0

3 defined
as the tree-level version of kernel (33):

3g
F ðk1; k2; k3Þ ¼

3

8
ð1þ k1 þ k2 þ k3 � 2k1k2 � 2k1k3 � 2k2k3 � 8k1k2k3Þ

� �ð1þ k1Þ�ð1þ k2Þ�ð1þ k3Þ�ð�k1 � k2 � k3Þ
�ð2� k1Þ�ð2� k2Þ�ð2� k3Þ�ð4þ k1 þ k2 þ k3Þ

: ð80Þ

As expected from diagram (75), this result is invariant under k1 $ k2 $ k3. The
parameters in the MR truncation of the sunset diagram (72) are chosen to respect
the symmetry between the three internal gluon legs, i.e., a3g ¼ ð43 ; 4

3
; 4

3
Þ and b3g ¼

ð1
3
; 1

3
; 1

3
Þ corresponding to a kernel

Q0
3ðp; q1; q2; q3ÞF1=3

R ðz1ÞG4=3
R ðz1ÞF1=3

R ðz2ÞG4=3
R ðz2ÞF1=3

R ðz3ÞG4=3
R ðz3Þ: ð81Þ
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Hence, the set k in the infrared equation (74) respects this symmetry too, and
k1 ¼ k2 ¼ k3 ¼ �2�=3. For such a choice, Eq. (80) becomes

3g
F ð�Þ � 

3g
F ð�2�=3;�2�=3;�2�=3Þ

¼ 3

8

�
1� 2�� 8

3
�2 þ 64

27
�3

� �3

�
1� 2�

3

�
�ð2�Þ

�3

�
2þ 2�

3

�
�ð4� 2�Þ

: ð82Þ

The treatment of the squint diagram can be performed in a way analogous to
that of the sunset diagram. The squint contribution (46) to the gluon vacuum
polarization in the MR truncation is

�4gðxÞ ¼ N2
c g4

�

ð
q1

ð
q2

Q0
4ðp; q1; q2; q3; q4ÞG4

R½a4g�F1
R½b4g�: ð83Þ

Again, the contribution to the coefficient of the infrared leading power is given
by taking the infrared limit,

�2
0 

4g
F ðk1; k2; k3; k4Þ � � lim

x!0
Ax2��4gðxÞ; ð84Þ

and substituting the infrared power laws,

4g
F ðk1; k2; k3; k4Þ ¼ �ð16	2Þ2

ð
q1

ð
q2

Q0
4ðp; q1; q2; q3; q4Þx2�zk1

1 zk2

2 zk3

3 zk4

4 ; ð85Þ

with x ¼ p2, zi ¼ q2
i . Furthermore, k ¼ ðk1; k2; k3; k4Þ is defined by k ¼

�ð2b4g � a4gÞ, and k1 þ k2 þ k3 þ k4 ¼ �2� because a4g;1 þ a4g;2 þ a4g;3 þ a4g;4 ¼
4, b4g;1 þ b4g;2 þ b4g;3 þ b4g;4 ¼ 1.

As before, the two-loop integral can be computed by evaluating two consecu-
tive one-loop integrals: first the inner-loop integral over ðq2; q3Þ and then the
remaining outer-loop integral over ðq1; q4Þ as shown in the diagram below.

The steps to be followed are exactly the same as those described above for the
sunset diagram. The inner-loop integral over ðq2; q3Þ can be transformed into
known tensor integrals of rank 5 or lower. Once these have been integrated out,
the remaining one-loop integral has a kernel which is a function of p, q1, q4 which
can easily be solved using Eq. (D.5). The final result is

4g
F ðk1; k2; k3; k4Þ ¼ �

3

8
ð3k2

2 þ k2k3 þ 3k2
3 þ k2 þ k3 � 5Þ

� ð13þ 3ðk1 þ k2 þ k3Þ þ 13k4 þ 6ðk1 þ k2 þ k3Þk4 � 6k2
4Þ
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� �ð1þ k2Þ�ð1þ k3Þ�ð�k2 � k3Þ
�ð2� k2Þ�ð2� k3Þ�ð3þ k2 þ k3Þ

� �ð1þ k4Þ�ð2þ k1 þ k2 þ k3Þ�ð�k1 � k2 � k3 � k4Þ
�ð2� k4Þ�ð1� k1 � k2 � k3Þ�ð4þ k1 þ k2 þ k3 þ k4Þ

:

ð87Þ
Note that 4g

F is symmetric under interchange of q2 and q3 as is expected
from diagram (86). The value of 4g

F depends on the choice of a4g and b4g in
Eq. (46).

In the next section, the existence of infrared power solutions will be investi-
gated taking into account all the contributions calculated above.

4.4 Consistency Condition

The infrared consistency condition (71) has to be modified when the two-loop
diagrams are taken into account in the gluon vacuum polarization. For the gluon
equation the relation between the infrared fixed point of the coupling and the
infrared exponent of the propagator power laws can be derived from Eq. (64) using
Eqs. (65), (68), (73), and (84),

1 ¼ �0 
1l
F ð�Þ þ �2

0 
2l
F ð�Þ; ð88Þ

where the one-loop and two-loop contributions are defined by8

1l
F ð�Þ ¼ 2c

F ð�Þ þ 
2g
F ð�Þ; 2l

F ð�Þ ¼ 
3g
F ð�Þ þ 

4g
F ð�Þ: ð89Þ

Eq. (88) is solved by

1

�0

¼ 1

2

�
1l

F ð�Þ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1l

F ð�Þ�
2 þ 42l

F ð�Þ
q �

: ð90Þ

As discussed in Sect. 4.2, the one-loop contribution is negative, and therefore a
positive solution for �0 can only occur for the ‘‘þ’’-solution in Eq. (90).

The infrared consistency condition between ghost and gluon equations simply
follows by requiring Eqs. (58) and (90) to be satisfied simultaneously, and the
infrared exponent � is determined from

Gð�Þ ¼
1

2

�
1l

F ð�Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1l

F ð�Þ�
2 þ 42l

F ð�Þ
q �

: ð91Þ

For the simple MR kernel truncations developed in this paper the parametriza-
tion of the ghost loop (43), gluon loop (44), and sunset diagram (45) were fixed by
symmetry considerations between the internal momenta. However, the parametri-
zation of the squint diagram (46) has not yet been fixed as a4g, b4g still have to be
assigned specific values. A major concern of this study is to investigate if sets can
be found for which the infrared consistency condition (91) is satisfied, and if so, if
numerical solutions for the propagators exist having this asymptotic infrared
behavior.

8 The ’s depend on k ¼ �ð2b� aÞ, and can be written as functions of � for fixed a’s and b’s

Two-Loop Improved Truncation of the Ghost-Gluon DS Equations 133



First, the situation is investigated where all diagrams are taken into account
except the squint diagram. The evolution of 3g

F (82) as function of � is shown in
the left pane of Fig. 5, and for example 3g

F ð0:5Þ � �0:1. Table 1 summarizes the
various infrared contributions in Eq. (91), with exception of 4g, for � ¼ 0:25, 0.5,
0.75, and in the right pane of Fig. 5 the evolution of 1=��0 from the gluon-equation
condition (90) is shown. The �-superscript is used to emphasize that the squint
diagram was neglected. Clearly, no intersection will exist between the gluon curve
of Fig. 5 and any of the ghost curves of Fig. 1, and no power solution exists which
simultaneously satisfies both ghost and gluon equations.

Within the scope of the MR truncation, the only possible way left to find a
consistent power solution to both equations is for the squint diagram to give the
contribution necessary to balance both sides of Eq. (91). A consistent infrared
solution requires the squint-diagram contribution to satisfy

4g
F ð�Þ ¼ 2

Gð�Þ � Gð�Þ½2c
F ð�Þ þ 

2g
F ð�Þ� � 

3g
F ð�Þ; ð92Þ

and its variation with � is shown in the left pane of Fig. 6. The figure shows that the
squint contribution is quite constrained for a solution to exist: It has to be positive
and larger than 5. The figure also illustrates that the sunset diagram is negligible in
the analysis of the infrared asymptotic behavior.

Fig. 5. Left pane: variation of the sunset contribution 3g
F (82) as function of the infrared exponent

�. Right pane: Inverse of the infrared fixed point ��0 (90) as function of the infrared exponent �

without squint contribution

Table 1. Infrared contributions from the gluon-vacuum polarization

diagrams and ghost self-energy. An infrared solution requires 1=��0
from the gluon equation to equate 

G
from the ghost equation

� ¼ 0:25 � ¼ 0:5 � ¼ 0:75

Gluon 2c
F ð�Þ 0.55 0.5 0.65

2g
F ð�Þ �6.6 �5.4 �7.3

3g
F ð�Þ 0.08 �0.1 �0.60

1=��0 ð�Þ 0.01 �0.02 �0.09

Ghost 0
Gð�Þ 2.92 1.6 1.21

�Gð�Þ 2.67 1.2 0.73
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As discussed in Sect. 3, the MR truncation assumes the cancellation of a certain
number of dressing-function corrections in the loop kernels. The parameters a4g,
b4g of Eq. (46) determine how these corrections are distributed over the internal
legs of the squint diagram. Five simple choices are shown in Table 2 as illustra-
tions. Set 1 is a simple equipartition of the dressing corrections over the various
legs. Sets 2–5 correspond to attaching a G=F-correction to each three-gluon vertex
and G2=F to the four-gluon vertex. The sets differ in the way the dressing correc-
tions are distributed over the vertex legs.

As can be seen from Eq. (87) the infrared contribution of the squint diagram
depends on k ¼ �ð2b4g � a4gÞ, rather than on a4g, b4g themselves, and the k-
partitionings corresponding to the various parametrizations are also given in
Table 2. The infrared contributions 4g for these squint parametrizations are
shown in the right pane of Fig. 6. Comparing the required and actual squint
contributions in the left and right panes of Fig. 6 demonstrates that the squint
diagram potentially has the right sign and magnitude to satisfy the infrared
consistency conditions. Therefore, the value of � and �0 can be determined
by looking for the intersection between the ghost and gluon curves. This is
illustrated in Fig. 7 for one specific squint truncation, i.e., set 4 of Table 2.
Mathematica was used to determine the solutions of various truncations of the
ghost-gluon system, constructed by combining all the squint truncations of
Table 2 with two different truncations of the ghost self-energy. Each truncation

Table 2. Various truncations of the squint diagram

Set a4g b4g k ¼ �ð2b4g � a4gÞ

1 (1, 1, 1, 1) (1=4, 1=4, 1=4, 1=4) ð��=2;��=2;��=2;��=2Þ
2 (5=6, 1, 1, 7=6) (1=6, 1=3, 1=3, 1=6) ð��=2;��=3;��=3;�5�=6Þ
3 (5=6, 4=3, 4=3, 1=2) (1=6, 1=6, 1=6, 1=2) ð��=2;��;��; �=2Þ
4 (1=2, 7=6, 7=6, 7=6) (1=2, 1=6, 1=6, 1=6) ð�=2;�5�=6;�5�=6;�5�=6Þ
5 (1=2, 3=2, 3=2, 1=2) (1=2, 0, 0, 1=2) ð�=2;�3�=2;�3�=2; �=2Þ

Fig. 6. Left pane: Required value 4g
F (92) as function of the infrared exponent � to ensure consistent

infrared power solutions: (A) using the bare ghost-equation truncation 0
G (60), (B) for the �-

truncation �G (62). The dashed curves, calculated without the sunset contribution, show that its

contribution is negligible. Right pane: Squint contribution 4g
F (87) as function of the infrared

exponent � for the parametrizations of Table 2
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has up to two infrared solutions which are tabulated in Table 3. The numerical
analysis of the coupled integral equations, which will be discussed in more detail
later on, showed that not all infrared solutions correspond to consistent overall
solutions connecting the infrared and the perturbative ultraviolet behaviors. The
solutions with �>� 0:75 are spurious solutions of the infrared analysis, and only

Table 3. Solutions of the infrared consistency condition (91) and existence of numerical solutions for

various truncations of the ghost-gluon system. Part A for the bare ghost self-energy truncation and part

B for the �-truncation. The squint truncations 1–5 are defined in Table 2

Truncation Solution 1 Solution 2

Ghost Gluon � �0 Numerical � �0 Numerical

A 1 0.24 0.32 yes 0.95 0.96 no

2 – – – 0.78 0.84 no

3 0.38 0.50 yes – – –

4 0.53 0.65 yes 0.90 0.92 no

5 0.35 0.46 yes 0.90 0.93 no

B 1 0.17 0.25 yes 0.98 1.95 no

2 – – – 0.91 1.77 no

3 0.31 0.48 yes – – –

4 0.36 0.57 yes 0.96 1.89 no

5 0.31 0.48 yes 0.93 1.81 no

Fig. 7. Inverse fixed point 1=�0 from the gluon equation, with squint parametrization set 4 of Table 2,

and from the ghost equation in �-truncation, as function of the infrared exponent �. The intersection

between gluon and ghost curves gives the solutions of the infrared consistency conditions. Two

solutions are found: � ¼ 0:36 and 0.96. Only the first one corresponds to a true solution of the

integral equations, as was established from the numerical study
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those with �2½0:17; 0:53� correspond to consistent solutions of the integral
equations.

Clearly, the simple MR truncation is not able to pin down the exact QCD result:
The value of � depends on the truncation and its range is quite broad. Nevertheless,
the study elucidates the conspiracy between the various diagrams in the propagator
equations, necessary to allow for consistent solutions of the coupled ghost-gluon
system.

Now that power law solutions have been found satisfying the infrared con-
sistency conditions, the next task is to solve the integral equations numerically
and look for overall propagator solutions having such an infrared behavior.
However, first a closer look is taken at the numerical treatment of the two-loop
diagrams.

5 Numerical Study

5.1 Approximated Two-Loop Diagrams

Although the infrared analysis of the two-loop diagrams could be performed ana-
lytically, their numerical treatment as part of an integral equation is a numerical
problem of too high complexity to be accessed yet. Therefore an alternative solu-
tion method is herein proposed where the two-loop integrals are replaced by effec-
tive one-loop integrals which have the same leading infrared behavior as the
original integrals, are subleading in the perturbative region, and still satisfy the
properties of multiplicative renormalizability.

The MR truncated squint diagram was given in Eq. (46) by

�4gðxÞ ¼ N2
c g4

�

ð
q1

ð
q2

Q0
4ðp; q1; q2; q3; q4ÞG4

R½a4g�F1
R½b4g�; ð93Þ

where a4g ¼ ða1; a2; a3; a4Þ and b4g ¼ ðb1; b2; b3; b4Þ parametrize the squint
truncation.

As discussed in the infrared analysis (see Sect. 4.3), the two-loop integration
can be performed in two successive steps,

�4gðxÞ ¼ N2
c g4

�

ð
q1

�4g
innerðx; z1; z4Þ Ga1

R ðz1ÞFb1

R ðz1ÞGa4

R ðz4ÞFb4

R ðz4Þ; ð94Þ

with inner-loop integral

�4g
innerðx; z1; z4Þ ¼

ð
q2

Q0
4ðp; q1; q2; q3; q4Þ Ga2

R ðz2ÞFb2

R ðz2ÞGa3

R ðz3ÞFb3

R ðz3Þ: ð95Þ

This two-step procedure provides an ideal opportunity to introduce effective
one-loop integrals as approximation to the two-loop integrals, based on their ana-
lytic infrared evaluation. To evaluate the infrared contribution of the squint dia-
gram, the dressing functions are replaced by their asymptotic power behaviors, and
the inner loop (95) can be written as

lim
x!0

�4g
innerðx; z1; z4Þ ¼ Ab2þb3Ba2þa3

ð
q2

Q0
4ðp; q1; q2; q3; q4Þzk2

2 zk3

3 ; ð96Þ
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with k2 ¼ ð2b2 � a2Þ� and k3 ¼ ð2b3 � a3Þ�. The integrals are evaluated as
detailed in Sect. 4.3, and the solutions can be written as a function of squared
external and outer-loop momenta,

lim
x!0

�4g
innerðx; z1; z4Þ ¼ Ab2þb3Ba2þa3zk2þk3

1

X
i; j;m

cijmðk2; k3Þxiz
j
1zm

4 ; ð97Þ

where the coefficients cijm are ratios of �-functions depending on k2, k3.
The powers in front of the sum can be identified with the infrared behaviors of

GRðz1Þ and FRðz1Þ and, in the infrared, the last expression is identical to

lim
x!0

�4g
innerðx; z1; z4Þ ¼ Ga2þa3

R ðz1ÞFb2þb3

R ðz1Þ
X
i; j;m

cijmðk2; k3Þxiz
j
1zm

4 : ð98Þ

Although Eq. (98) is only exact in the infrared limit, it will be used to approx-
imate the inner-loop integral (95) for the arbitrary external momentum x, in order
to construct an effective one-loop diagram replacing the original two-loop diagram
(94) in the numerical calculations. Substituting Eq. (98) in Eq. (94) yields the
following effective squint contribution,

�4g
effðxÞ � N2

c g4
�

ð
q

Qeff
4 ðx; y; zÞ G

ay

R ðyÞF
by

R ðyÞG
az

R ðzÞF
bz

R ðzÞ; ð99Þ

with

ay ¼ a1 þ a2 þ a3; az ¼ a4;

by ¼ b1 þ b2 þ b3; bz ¼ b4; ð100Þ
and where the effective kernel

Qeff
4 ðx; y; zÞ �

X
cijmðk2; k3Þxiy jzm; ð101Þ

for the arbitrary external momentum x, is defined by the infrared integral of the
inner loop, given in Eq. (97). Its explicit form is given in Appendix E.

Because of the properties of a4g and b4g, the exponents in the effective loop
obey

ay þ az ¼ 4; by þ bz ¼ 1; ð102Þ
so that the approximation conserves the number of dressing functions of the orig-
inal integral. This is sufficient to ensure that the approximation remains multi-
plicatively renormalizable and ultraviolet subleading. Furthermore, the exponents
also satisfy

ð2by � ayÞ� ¼ k1 þ k2 þ k3; ð2bz � azÞ� ¼ k4; ð103Þ
and the effective loop reproduces the same infrared result (87) as the original two-
loop diagram. The preservation of these properties is obvious by construction.

Away from the infrared limit, the propagators no longer behave as power laws,
and therefore the infrared powers in Eq. (97) were replaced by the corresponding
dressing functions in Eq. (98) when devising the approximation. This guarantees
that the ultraviolet behavior is logarithmically subleading and avoids contamina-
tion with unjustifiable power behaviors. Indeed, substituting the leading-order per-
turbative results FðxÞ � �ðxÞ�� and GðxÞ � �ðxÞ��, with � ¼ � 13

22
, � ¼ � 9

44
, in the
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approximated two-loop diagram (99) yields an ultraviolet contribution of order
�ðxÞ1��, which has the correct log-exponent of the resummed next-to-leading order
correction to the gluon anomalous dimension [36]. Hence, the effective loop cor-
rectly mimics the ultraviolet behavior of the two-loop diagram, albeit not with the
correct coefficient.

Although Eq. (99) looks similar to the ghost and gluon loop contributions
(43) and (44), there is a crucial difference between the genuine one-loop integrals
and the effective loop diagram. The latter contains an additional factor
Nc��FRð	 	 	ÞG2

Rð	 	 	Þ which behaves as a running coupling �ðyÞ in the ultraviolet
and ensures that the loop is logarithmically subleading.

The effective sunset contribution is constructed in exactly the same way as
depicted above for the squint diagram. Note that the coefficients cijm of the effec-
tive kernels for the sunset diagram are an order of magnitude smaller than those of
the squint diagram, which agrees with the earlier conclusion that its infrared con-
tribution is negligible.

The introduction of the effective loops allows for a numerical study of the
coupled ghost-gluon system including the main features of the two-loop diagrams
to the gluon vacuum polarization.

5.2 Results

The existence of power laws satisfying the infrared consistency conditions does not
yet guarantee that the coupled integral equations have solutions over the whole
momentum region connecting the predicted infrared asymptotic behavior with the
ultraviolet perturbative regime. A straightforward way to answer this question is to
look numerically for solutions of the coupled equations.

To solve Eqs. (19) and (20) numerically the unknown seeds ~ZZ3 and Z3 of the
equations are eliminated by subtracting each equation at a fixed subtraction point,

1

FRðp2Þ ¼
1

FRð�2
FÞ
��ðp2Þ þ�ð�2

FÞ;

1

GRðp2Þ ¼
1

GRð�2
GÞ
� �ðp2Þ þ �ð�2

GÞ; ð104Þ

and the renormalization conditions are fixed9 by requiring �ð�2Þ ¼ �� and
GRð�2Þ ¼ FRð�2Þ ¼ 1.

The numerical method employed to solve the set of coupled integral equations
(104) was developed in ref. [37] and is described in more detail in Appendix F.
Numerical solutions were sought for the ten truncations of the ghost-gluon system
described in Table 3 of Sect. 4.4. As shown in that table, the lowest lying � of each
truncation corresponds to a consistent numerical solution, while the higher value is
spurious as no numerical solution having such an infrared behavior is found. The

9 For reasons of numerical stability, the ghost equation is subtracted at �2
G ¼ 0, where 1=GRð0Þ ¼ 0,

and the renormalization conditions are chosen by fixing ��, FRð�2Þ ¼ F�, and the coefficient A of

the asymptotic infrared power law for FðxÞ. Because of multiplicative renormalizability these

conditions are equivalent to the conditions �ð�2Þ ¼ ��, GRð�2Þ ¼ FRð�2Þ ¼ 1
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numerical solutions for the various parametrizations are very similar to one
another, and typical SU(3) solutions10 for truncation B.4 of Table 3 are shown in
Figs. 8 and 9. The infrared power behaviors of the dressing functions and the
infrared fixed point of the running coupling are in perfect agreement with the
predictions of the infrared analysis, with � ¼ 0:36 and �0 ¼ 2:4 for SU(3). Note
that the infrared fixed point of the running coupling in Fig. 9 is the result of a
product of power laws with vanishing total exponent (see Eq. (52)), and its truthful
rendering requires a numerical method with high accuracy.

Because the equations are scale invariant, the momentum units of the solutions
are arbitrary, and the scale should be fixed using experimental input. A typical
choice is to fix the coupling at a specific perturbative mass scale, for instance
�ðM2

ZÞ. However, as this is a study of pure gauge theory and no quark loops are
taken into account, the coupling does not run like the physical one, and such a scale
matching would have no phenomenological use. Therefore, the momentum units in
Figs. 8 and 9 are left arbitrary for the time being. Nevertheless, it is clear that the

Fig. 8. Numerical solutions for truncation B.4 of Table 3 with � ¼ 0:36. Left pane: Gluon dressing

functions as function of squared momentum, with renormalization condition Fð1Þ ¼ 1. Right pane:

Ghost dressing functions as function of squared momentum, with Gð1Þ ¼ 1

Fig. 9. Running coupling for truncation

B.4 of Table 3, computed using Eq. (35)

and plotted as function of squared mo-

mentum. The infrared fixed-point value

is �0 ¼ 2:4

10 The relation between SU(N) and SU(3) results is trivial as can be seen from the equations of Sect. 2

and the discussion after Eq. (53). The solutions for F and G remain unchanged, while the running

coupling � is multiplied by a factor 3=N
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solutions contain an intrinsic scale, which signals the transition from the perturba-
tive to the nonperturbative region and is fixed by the renormalization conditions.
Note that because the equations satisfy multiplicative renormalizability the solu-
tions for arbitrary renormalization conditions can easily be derived from the solu-
tions computed for a particular renormalization.

Of major interest is the comparison between recent SU(2) lattice simulations
[17–19] and the Dyson-Schwinger results. The lattice data also exhibit infrared
power behaviors for the gluon and ghost dressing functions, and they seem to
indicate that � ¼ 0:5 as the gluon propagator goes to a non-zero, finite value at
zero momentum. Furthermore, the lattice results feature a pronounced bump in the
gluon dressing function, in the transition from the perturbative to the nonperturba-
tive behavior.

Because of its simplicity, the MR truncation cannot be expected to predict the
correct value of the infrared exponent �. Moreover, for a given � the effective one-
loop approximation to the two-loop diagrams (see Sect. 5.1) most probably affects
the intermediate behavior of the solutions. An important goal of this investigation
is to find out to what extent the two-loop improved MR truncation of the ghost-
gluon system is able to accommodate the various features exhibited by the lattice
data. For this purpose the physically motivated parametrizations of the squint dia-
gram proposed in Table 2 are now relaxed, and a � ¼ 0:5 solution is constructed by
tuning the parameters. Note that the numerical solutions of the Dyson-Schwinger
equations are stable with respect to variations of the parameters. The main effects
are changes in the infrared exponent and the related value of the infrared fixed
point of the coupling, and changes in the steepness of the transition from pertur-
bative to nonperturbative region, which is related to the height of the bump in the
gluon dressing function.

The MR truncation requires the specification of the ghost self-energy truncation
as discussed in Sect. 4.1. As illustrated in Fig. 1 the value of the infrared fixed point
of the coupling is related to the value of � through the ghost-equation conditions
(60)–(62). For � ¼ 0:5 the �-truncation (62) yields a higher value �0 ¼ 5:2 for the
SU(2) infrared fixed point (compared to 3.9 for the bare truncation), and seems in
better agreement with the lattice data [19].

The squint diagram truncation is parametrized by the sets a4g and b4g of Eq.
(46), and its infrared contribution is determined by k ¼ �ð2b4g � a4gÞ. In practice,
a � ¼ 0:5 solution is constructed by solving the consistency equation (91) for k,
after imposing the conditions k1 þ k2 þ k3 þ k4 ¼ �2� and k2 ¼ k3 (symmetry of
the inner loop). The solution is not unique and one possible solution, which will be
investigated in more detail, is k ¼ ð�2:072; 0:536; 0:536; 0Þ.

The effective one-loop integrals (99) approximating the two-loop integrals in
the numerical calculation, depend on k2 and k3, which fix the coefficients cijm of the
effective integration kernel (101), and on ay, az, by, and bz defined in Eq. (100).
Given a set k, determining the infrared behavior of the squint diagram, there is one
more parameter from the set ay, az, by, bz that can be chosen freely. The remaining
parameters are then fixed by Eqs. (102) and (103). This freedom of choice leaves
the leading infrared and ultraviolet behaviors unchanged, but can influence the
behavior of the solutions in the intermediate momentum region. Hence, it can be
used as phenomenological parameter to recover some of the information that is
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unavoidably lost by replacing the two-loop integrals by effective integrals. In
practice, the parameter by is tuned to reproduce the height of the bump in the
lattice gluon dressing function, and good agreement is found for by ¼ �0:6, which
yields ay ¼ 0:8, az ¼ 3:2, and bz ¼ 1:6.

The DSE results are compared with the SU(2) lattice data of ref. [19]. These
lattice simulations were performed on a 163� 32 grid using 6 different �-values
ranging from 2.1 to 2.5. The momentum scale of the lattice calculations is fixed
using a string tension of 440 MeV. The momentum units of the DSE results are

Fig. 10. Comparison of the lattice data from ref. [19] with the DSE results using the two-loop

improved MR truncation (with � ¼ 0:5) and from ref. [24]. Upper pane: Gluon dressing functions as

function of momentum. Lower pane: Ghost dressing functions as function of momentum

142 J. C. R. Bloch



fixed by maximizing the overlap between the DSE solution for the running cou-
pling and the corresponding lattice data. The running coupling on the lattice was
also computed from the dressing functions using Eq. (35) (see ref. [19]). Figs. 10
and 11 compare the lattice data with the DSE results11 computed with the two-
loop improved MR truncation, and with the truncation of ref. [24].

The ability for the DSE formalism to reproduce the lattice data, by introducing
the two-loop improved MR truncation, is way beyond the initial expectations.
Even though the DSE truncation was fixed using some characteristics of the lattice
results, the DSE solutions are not molded to those on the lattice, and they genuinely
predict a number of additional features which are consistent with the lattice data, as
is discussed below.

Although the height of the bump in the gluon dressing function (upper pane of
Fig. 10) was tuned to that of the lattice, the position and width of the peak are
genuine DSE predictions which agree well with the lattice data. The ghost dressing
function (lower pane of Fig. 10) is in total agreement with the lattice data, and
reproduces well the smooth evolution from the perturbative region into the 1=p
infrared singularity.

Even more remarkable is the agreement of the running coupling (Fig. 11) over
the complete momentum region. The value of the fixed point is a DSE prediction,
determined by the ghost infrared condition (58). Even though the lattice simula-
tions are not yet sampling the infrared region deep enough to clearly show the
bend-over towards a fixed point, the existence and value of the DSE fixed point are
consistent with the actual infrared behavior of the lattice data. In the DSE study, the

Fig. 11. Running coupling as function of momentum for SU(2). Comparison of the lattice data from

ref. [19] with the DSE results using the two-loop improved MR truncation (with � ¼ 0:5) and from

ref. [24]. The fixed point of the MR truncation is �0 ¼ 5:24

11 The data are now plotted on linear scale for both axes as the lattice data cover a much smaller

momentum region than the DSE computations. Also note that the abscissa is p instead of p2

Two-Loop Improved Truncation of the Ghost-Gluon DS Equations 143



steepness of �ðxÞ in the transition region appears to be tightly related to the height
of the bump in the gluon dressing. The computations show that the steepness of the
DSE coupling agrees well with the lattice data precisely when the height of the
gluon bump does too, and hence, their interrelation is correctly reproduced by
the DSE truncation. The perturbative tail agrees very well with the lattice results
too, illustrating that the solutions of the two-loop improved DSE truncation go
beyond the leading logarithm. This contrasts with the usual one-loop inspired
truncations, which typically yield ultraviolet tails that are 20% larger than the
lattice results, as can be seen in Fig. 11 from the DSE curve taken from ref. [24].

It is also useful to construct a fit to the running coupling solution, which could
be used in hadronic phenomenology,

�ðxÞ ¼ 1

c0 þ x2
½ðc0 þ c1 x
Þ�0 þ x2�2lðxþ �Þ�; ð105Þ

with x ¼ p2=�2
QCD, and �2lðxÞ is the two-loop perturbative running coupling

[38]. The fixed point �0 ¼ 5:24 is known from the infrared analysis, � is set equal
to 2, and the other parameters are fitted to the DSE solution of Fig. 11:
�QCD ¼ 856 MeV, c0 ¼ 1:16, 
 ¼ 0:66, and c1 ¼ �0:070.

Note that other truncation parametrizations, which also give � ¼ 0:5 and repro-
duce the gluon bump, yield solutions which only differ in the nonperturbative
approach to the fixed point of the running coupling, as shown in Fig. 12.

The results presented in Figs. 10 and 11 are solutions for pure SU(2) gauge
theory. For nature’s QCD the corresponding SU(3) value of the fixed point is
�0 ¼ 3:49. Furthermore, to get the correct running of the coupling, quark loops
have to be included in the gluon vacuum polarization taking into account their
dynamically generated mass. This is done by solving the coupled quark-ghost-

Fig. 12. Running coupling for three different parametrizations, constructed to yield � ¼ 0:5 and

reproduce the bump in the gluon dressing function, and specified in the table below

k by

a (�2.072, 0.536, 0.536, 0) �0.6

b (�1.552, 0.526, 0.526, �0.5) �0.15

c (0.596, �0.5, �0.5, �0.596) �0.1
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gluon system in an MR truncation merging the truncation presented herein with
those for the quark loop [25] and for the quark equation [34]. The solution of this
coupled system will be reported elsewhere [39], but from a previous study of the
quark equation [34] it is already clear that a running coupling similar to Eq. (105)
is capable of producing a strong enough breaking of the chiral symmetry to allow
for consistent hadronic phenomenology.

6 Conclusion

In ref. [25] a truncation of the Landau-gauge Dyson-Schwinger equations for the
ghost and gluon propagators was proposed, which respects the principles of multi-
plicative renormalizability and reproduces the leading-order resummed perturba-
tive results. This was achieved by directly approximating the integration kernels,
rather than introducing explicit approximations to the full vertices and their corre-
sponding renormalization constants. A remarkable feature of the truncation is that
all diagrams in the gluon vacuum polarization contribute to the leading power in
the infrared analysis. However, in that study the contributions of the two-loop
gluon-vacuum polarization diagrams could not be evaluated, and the MR trunca-
tion did not yield solutions for the coupled ghost-gluon system when only taking
into account the one-loop diagrams.

The present paper generalized further the MR truncation scheme of ref. [25]
and confirmed that the interplay between all the loops in the gluon vacuum polar-
ization is a key ingredient to find consistent MR solutions of the coupled ghost-
gluon system.

An analytic method was developed to compute the contributions of the two-
loop diagrams to the leading infrared power behavior of the gluon vacuum polar-
ization, such that a complete infrared analysis of the coupled ghost-gluon system
could be performed. The investigation showed that the squint diagram is able to
supply an infrared contribution that allows for propagator solutions with infrared
power behavior. The gluon and ghost dressing functions behave like ðp2Þ2� and
ðp2Þ��, respectively, and the running coupling exhibits an infrared fixed point. The
value of the infrared exponent depends on the details of the truncation, and some
simple realizations of the truncation yield values of �2½0:17; 0:53�.

The numerical study of the coupled ghost-gluon system was facilitated by
approximating the two-loop gluon vacuum polarization by an effective one-loop
integral with the same leading infrared behavior. The numerical analysis produced
solutions of the ghost-gluon system over the whole momentum range, and their
infrared behaviors agree with the predictions of the analytic infrared analysis.

Recent lattice simulations suggest that � ¼ 0:5, and DSE solutions having such
an infrared behavior were constructed by adjusting the truncation parameters. The
numerical solutions for the dressing functions and running coupling showed that
the two-loop-improved MR truncation of the Dyson-Schwinger equations is able to
produce solutions that are in extremely good agreement with the lattice data.

This paper presented a study of the pure gauge sector. In a forthcoming study
[39], this MR truncation will be merged with that of the quark equation developed
in ref. [34], to allow for a complete self-consistent study of dynamical chiral
symmetry breaking in QCD.
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Appendix A. Color Contraction

The color contraction identities needed in Sect. 2 are

fc1c2a fc1c2b ¼ CA�ab; ðA:1Þ

fc1c2a fc1c3b fc2c3c ¼
CA

2
fabc; ðA:2Þ

fac1c2
fbc3c4

fc1c3c5
fc2c4c5

¼ C2
A

2
�ab: ðA:3Þ

Appendix B. Multiplicative Renormalizability in Quenched QED

To get some feeling for the truncation suggested in Sect. 3, it is good to make a detour over quenched

QED [29] and see how there the multiplicative renormalizability of the massless quark propagator is

achieved in the Dyson-Schwinger equation, at least on the perturbative level.

Although the divergence in the vertex can be written as a multiplication of the bare vertex by a

divergent product of dressing functions, a variety of studies has shown that in general such a dressed

vertex is not sufficient in its application to the Dyson-Schwinger equations to retrieve the correct

divergence and the multiplicative renormalizability of the propagators.

The DSE for the quark dressing function is:

1

Zðp2Þ ¼ 1� 	�
p2

ð
k

Tr½6p��ðk; pÞ6k�� �D��ðqÞ Zðk
2Þ

k2
: ðB:1Þ

Expanding the right-hand side to order �, i.e., replacing the full vertex by its bare analog, yields

1

Zðp2Þ ¼ 1� ��
4	

ln
p2

�2
: ðB:2Þ

To Oð�Þ this gives

Zðp2Þ ¼ 1þ ��
4	

ln
p2

�2
; ðB:3Þ

and multiplicative renormalizability tells us that

Zðp2Þ ¼
�

p2

�2

���=4	

; ðB:4Þ

after resummation of the leading-logarithm contributions.

The question now is: How is the correct ln2-term produced such that the series (B.3) is continued in

a way consistent with the MR solution (B.4)? This was discussed previously in ref. [29], and the

mechanism is clarified in detail below.

For large momentum the leading-logarithm one-loop fermion-photon vertex is [29]:

��ðk; pÞ ¼
k2�p2

��

�
1� ��

4	
ln

k2

�2

�
� �

4	
ð6p��6k þ ð� � 1Þk�6pÞ

1

k2
ln

k2

p2
: ðB:5Þ
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Note that the ultraviolet divergent part of the vertex (�-dependent) is exclusively contained in the term

proportional to �� of the vertex, and for large k the vertex correction is given by 1=Zðk2Þ. Nevertheless,

the divergent part of the vertex is not sufficient to generate the correct divergence of the propagator in

the DSE, nor is it capable to produce an MR solution: The finite, momentum-dependent part of the

vertex plays a crucial role.

The next-to-leading order term of Zðp2Þ is generated by substituting the Oð�Þ dressing function

(B.3) and vertex (B.5) (neglecting subleading parts independent of �) in Eq. (B.1). After performing the

angular integrals, the ultraviolet integral becomes

1

Zðp2Þ ¼ 1þ ��
4	

ð�2

p2

dk2

k2
þ
�
��

4	

�2 ð�2

p2

dk2

k2

��
� ln

k2

�2
þ ln

k2

p2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�ð1ÞZð0Þ

þ ln
k2

�2|ffl{zffl}
�ð0ÞZð1Þ

�
þ 	 	 	 ; ðB:6Þ

where �ð0Þ, Zð0Þ, �ð1Þ, Zð1Þ correspond to the bare and one-loop corrections, to the vertex and dressing

function, respectively. Integration yields the dressing function to two-loop,

1

Zðp2Þ ¼ 1� ��
4	

ln
p2

�2
þ 1

2

�
��

4	
ln

p2

�2

�2

þ 	 	 	 : ðB:7Þ

These are the first three terms of the Taylor expansion of the inverse of Eq. (B.4). From Eq. (B.6) it is

clear that only taking into account the divergent parts of the one-loop vertex and dressing function is

not sufficient to reproduce the correct two-loop contribution to the dressing function, which is crucial

to ensure the resummability of the series required by multiplicative renormalizability. Therefore, DSE

truncations where the full vertex is simply approximated by its divergent part, i.e., bare vertex multi-

plied with dressing functions, will not preserve the multiplicative renormalizability of the propagators.

How can MR be preserved and the correct divergence be reproduced in a truncation using only the

�� part of the vertex?

The self-energy integral of Eq. (B.1) can be written asð
k

Kðx; y; zÞZðyÞ ¼
ð

k

½Z2ðyÞKðx; y; zÞ� 1

ZðyÞ

¼UV��

4	

ð�2

x

dy

y

�
� 1� ��

4	

�
ln

y

�2
þ ln

y

x

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

ðaÞ

��
1� ��

4	
ln

y

�2

�
;

ðB:8Þ

where Z2K and 1=Z were expanded to Oð�Þ. The interesting observation is that the factor (a) yields a

vanishing ln2 integral contribution. This explicitly shows that the ln2-correction to 1=ZðxÞ is correctly

generated by the integral over the bare vertex kernel K0 times the ln-correction of 1=ZðyÞ, i.e.,ð
k

Kðx; y; zÞZðyÞ ¼
ð

k

K0ðx; y; zÞ
1

ZðyÞ to Oðln2Þ: ðB:9Þ

In fact, using the Taylor expansion of the power law (B.4), it is easy to see that the right-hand side

of Eq. (B.9) reproduces term by term the leading-logarithm series for 1=ZðxÞ, and Eq. (B.9) is valid

at each order in perturbation theory. This means that the MR truncation correctly reproduces the

resummed leading-logarithm results. Note that this does not imply that the kernels Z2K and K0 are

identical, but just that they yield the same ultraviolet integral contributions. In the same way, the MR

truncation can be shown to reproduce the resummed leading-logarithm results of the gluon and ghost

propagators in QCD.

The MR truncation of Sect. 3 assumes that the use of Eq. (B.9) can reasonably be extended to all

external momenta, at least in a slightly more general form, as it ensures that multiplicative renormal-

izability is satisfied over the complete momentum domain.
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Appendix C. Feynman Integration Trick

To solve the infrared integrals of Sect. 4 using the integrals given in Appendix D, it is helpful

to transform denominator products of squared momenta in the kernels using the following

equality,

1

p2a
q2b
¼ �ðaþ bÞ

�ðaÞ�ðbÞ

ð1

0

dt ta�1ð1� tÞb�1 1

½tp2 þ ð1� tÞq2�aþb
; ðC:1Þ

which can be generalized as

1

q2
1

m1 q2
2

m2 	 	 	 q2
n

mn
¼ �ðm1 þ m2 þ 	 	 	 þ mnÞ

�ðm1Þ�ðm2Þ 	 	 	�ðmnÞ

�
ð1

0

dt1 dt2 	 	 	 dtn �

�X
ti � 1

� Q
tmi�1
i

½
P

tiq
2
i �
P

mi

: ðC:2Þ

Eventually the Feynman parameter t is integrated out using the well-known formula

ð1

0

dt tað1� tÞb ¼ �ðaþ 1Þ�ðbþ 1Þ
�ðaþ bþ 2Þ : ðC:3Þ

Appendix D. Integrals

The tensor integrals needed to compute the infrared contributions of the one- and two-loop diagrams

are [40]

Jðn;�Þ �
ð

l

1

ðl2 þ�Þn ¼
1

16	2

�ðn� 2Þ
�ðnÞ �2�n; ðD:1Þ

J��ðn;�Þ �
ð

l

l�l�

ðl2 þ�Þn ¼
1

16	2

�ðn� 3Þ
�ðnÞ �3�n ���

2
; ðD:2Þ

J��
�ðn;�Þ �
ð

l

l�l�l
l�

ðl2 þ�Þn ¼
1

16	2

�ðn� 4Þ
�ðnÞ �4�n 1

4
ð����
�

þ ��
��� þ �����
Þ; ðD:3Þ

J��
���ðn;�Þ �
ð

l

l�l�l
l�l� l�

ðl2 þ�Þn

¼ 1

16	2

�ðn� 5Þ
�ðnÞ �5�n 1

8
½ð����
� þ ��
��� þ �����
Þ���

þ ð����
� þ ��
��� þ �����
Þ��� þ ð����
� þ ��
���
þ �����
Þ��� þ ð������ þ ������ þ ������Þ��

þ ð����
� þ ��
��� þ �����
Þ����; ðD:4Þ

and the odd-rank tensor integrals vanish because of symmetry properties.

By applying the Feynman integration trick (C.1) and using the integration formula (D.1), a typical

scalar integral, often needed in one-loop integrals, is given by

Iða; bÞ ¼
ð

d4q

ð2	Þ4
1

yazb
¼ 1

16	2

�ð2� aÞ�ð2� bÞ�ðaþ b� 2Þ
�ðaÞ�ðbÞ�ð4� a� bÞ x2�a�b; ðD:5Þ

with x ¼ p2, y ¼ q2, and z ¼ ðp� qÞ2.
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Appendix E. Effective Two-Loop Kernels

As discussed in Sect. 5.1 the two-loop diagrams are approximated by effective one-loop integrals in the

numerical calculation. The kernel of the effective squint diagram can be written as

Qeff
4 ðx; y; zÞ¼ Aðk2; k3Þ

�17

y
� 3 y

z2
� 4

z

x
� 6

z2
þ 5 x

y z2
� 8

y z

0
@

þ
�36þ 4 y2

z2
þ 12 y

z
þ 20 z

y

x2

1
A
; ðE:1Þ

with

Aðk2; k3Þ ¼ ��ð1þ k2Þ�ð1þ k3Þ�ð�k2 � k3Þð�5þ 3 k2
2 þ 3 k2

3 þ k2k3 þ k2 þ k3Þ
256	2�ð2� k2Þ�ð2� k3Þ�ð3þ k2 þ k3Þ

: ðE:2Þ

Kernel (E.1) contains potential quartic (1=x2-term) and quadratic (1=x-term) divergences. Although

these terms formally cancel after integration, their numerical implementation can yield serious prob-

lems because incomplete cancellations will give rise to residual unrenormalizable divergences [37, 41].

A simple, elegant solution consists in writing the expression over a common denominator and then

expressing z as xþ y� 2
ffiffiffiffiffi
xy
p

cos �,

Qeff
4 ðx; y; zÞ ¼ Aðk2; k3Þ 1

xyz2
½24y2ð�1þ 4 cos2�Þ � 20y

ffiffiffiffiffi
xy
p

cos �ð1þ 8 cos2�Þ

þ 4xyð�7þ 43 cos2�Þ � 36 x
ffiffiffiffiffi
xy
p

cos ��: ðE:3Þ

Once written in this form the simple trigonometric form of the remaining 1=x-term ensures that the

quadratic divergence will be cancelled properly. An analogous expression can be written for the sunset

diagram.

Appendix F. Numerical Method

The numerical method employed to solve the set of coupled integral equations (104) was first devised

for the study of dynamical chiral symmetry breaking in strong coupling QED [37]. After changing to

spherical coordinates and integrating out two angles, the integral equations can be written as (dropping

the subscript R on the renormalized dressing functions)

1

FðxÞ ¼
1

F�
þ
ð1

0

dy

ð	
0

d�KF ½G;F�ðx; y; �Þ;

1

GðxÞ ¼
1

G�
þ
ð1

0

dy

ð	
0

d�KG½G;F�ðx; y; �Þ: ðF:1Þ

The unknown dressing functions are approximated using Chebyshev expansions [42] in logðxÞ for

x2 ½�2;�2�,

log FðxÞ :¼ a0

2
þ
XN�1

j¼1

aj TjðsðxÞÞ;

log GðxÞ :¼ b0

2
þ
XN�1

j¼1

bj TjðsðxÞÞ; ðF:2Þ

where �2 and �2 are infrared and ultraviolet parameters introduced for numerical purposes only, and

sðxÞ � log ðx=��Þ
log ð�=�Þ ; ðF:3Þ

such that s2 ½�1;þ1� when x2 ½�2;�2�. The number of Chebyshev polynomials is chosen between 30

and 60, depending on the steepness of the running coupling in the intermediate momentum regime and
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the required accuracy. In the infrared, for x< �2, the dressing functions are taken to obey their

asymptotic power law behaviors

FðxÞ :¼ Ax2�;

GðxÞ :¼ Bx��; ðF:4Þ

and in the ultraviolet, for x> �2, the functions are frozen to their values at �2 given by the Chebyshev

expansions (F.2).

The system of equations (F.1) is required to be satisfied at N external momenta

xi ¼ ��

�
�

�

�si

; si ¼ cos

�
ði� 1=2Þ	

N

�
; i ¼ 1; . . . ;N; ðF:5Þ

where the si are chosen to be the zeros of the Chebyshev polynomial TN of degree N, and the integrals

are approximated by suitable numerical quadratures,

1

FðxiÞ
¼ 1

F�
þ
XNy

j¼1

XN�

k¼1

wjwkKF ½F;G�ðxi; yj; �kÞ;

1

GðxiÞ
¼ 1

G�
þ
XNy

j¼1

XN�

k¼1

wjwkKG½F;G�ðxi; yj; �kÞ; ðF:6Þ

with radial integration points yj, j ¼ 1; . . . ;Ny, and angular integration points �k, k ¼ 1; . . . ;N�. Note

that the nodes yj can depend on the external momentum xi.

The radial integrals are split into three parts: ½0; �2�, ½�2;�2�, and ½�2;1�. An accurate evaluation of

the infrared integrals ½0; �2� is important to reproduce the infrared power laws, and they are solved

using a Gauss-Legendre integration with 64 points. The major integration range ½�2;�2� has to be

handled carefully as the integrand is not smooth at y ¼ x. A composite Gauss-Legendre rule is used

(after transformation to t ¼ logðyÞ), with main nodes located at �2, �2, and the N values of external

momenta, and an M-point Gauss-Legendre rule is used between adjacent nodes. The integrand is

concentrated around y ¼ x, and hence the number of points in the elementary rule is adapted accord-

ingly: A high-accuracy rule with M ¼ 32 is used when the integration frame overlaps with the interval

½x=10; 10x�, while otherwise M ¼ 4. For the subtracted equations the ultraviolet integral ½�2;1� is

negligible. The angular integrals are computed using an N�-point Gauss-Legendre integration, with

N� ¼ 33.

The method described above transforms the set of coupled integral equations (F.1), into a set of 2N

non-linear algebraic equations (F.6) for the Chebyshev coefficients aj, bj of the dressing functions.

Symbolically this can be written as�
f ðxÞ½F;G� ¼ 0;
gðxÞ½F;G� ¼ 0;

¼)
�

~ffi½aj; bj� ¼ 0;
~ggi½aj; bj� ¼ 0:

ðF:7Þ

The latter set of equations is solved using the Newton iterative method, which is quadratically

convergent for starting guesses close enough to the solutions. Successive iterations are given by

�
anþ1

j ¼ an
j ��anþ1

j ;

bnþ1
j ¼ bn

j ��bnþ1
j ;

ðF:8Þ

where the increments �aj and �bj are solutions of the set of 2N linear equations

@~ffi½an
j ; b

n
j �

@aj

�anþ1
j þ

@~ffi½an
j ; b

n
j �

@bj

�bnþ1
j ¼ ~ffi½an

j ; b
n
j �;

@~ggi½an
j ; b

n
j �

@aj

�anþ1
j þ

@~ggi½an
j ; b

n
j �

@bj

�bnþ1
j ¼ ~ggi½an

j ; b
n
j �;

i ¼ 1; . . . ;N;

8>>><
>>>:

ðF:9Þ
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and summation over the repeated index j is assumed. The quadratic convergence property is clearly

observed in the numerical implementation as the distance between successive iterations decreases by

an order of magnitude at each iteration step in the vicinity of the solution. Hence, the method is fast

and gives a reliable estimate of the accuracy of the solutions.

Note that the quadratic convergence only sets in ‘‘close’’ enough to the exact solution, and good

initial guesses dramatically speed up the convergence rate. These can easily be constructed, as the

infrared and ultraviolet asymptotic behaviors of the dressing functions are known. Typical starting

guesses are

~FFðxÞ ¼ A

�
x

x=xt þ 1

�2�� ~��ðx=xtÞ
�0

�13=22

;

~GGðxÞ ¼ B

�
x

x=xt þ 1

���� ~��ðx=xtÞ
�0

�9=44

; ðF:10Þ

with

~��ðtÞ ¼ 1

c0 þ t2

�
c0�0 þ

4	

�0

�
1

log t
þ 1

1� t

�
t2

�
;

where c0 and xt can be tuned to improve the starting guess. The procedure (F.8) is iterated till the

convergence criterion maxjðj�anþ1
j jÞ< 10�5 maxjðjanþ1

j jÞ and maxjðj�bnþ1
j jÞ< 10�5 maxjðjbnþ1

j jÞ is

satisfied. Starting from pure power laws (F.4) for all momenta typically requires about 20 iterations to

converge, while the more refined starting guesses (F.10) reduce the iteration procedure to 4 iteration

steps.

The total accuracy of the method is given by a combination of the accuracies of the Chebyshev

expansion, the quadrature rules, and the Newton iteration method.
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