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ABSTRACT

Motivation: Cellular signaling pathways, which are not modulated on

a transcriptional level, cannot be directly deduced from expression pro-

filing experiments. The situation changes, when external interventions

such as RNA interference or gene knock-outs come into play. Even if

the expressionof the signaling genes is not changed, secondary effects

in downstreamgenesshed light on thepathway, andallowpartial recon-

struction of its topology.

Results:Weintroduceanalgorithmto infernon-transcriptionalpathway

features based on differential gene expression in silencing assays. We

demonstrate the power of our algorithm in the controlled setting of

simulation studies, and explain its practical use in the context of an

RNA interference dataset investigating the response to microbial chal-

lenge in Drosophila melanogaster.

Contact: florian.markowetz@molgen.mpg.de

1 INTRODUCTION

Cellular signaling pathways regulate essential processes in living

cells. In many cases, alterations of these molecular mechanisms lead

to serious diseases including cancer. Understanding the organiza-

tion of signaling pathways is hence a leading problem in modern

biology. Microarray studies using cell assays with external inter-

ventions into the signaling process allow for the systematic analysis

of these pathways (Spradling et al., 1999, Hughes et al., 2000).
Gene-expression profiling is a well-established high-throughput

technology, but until recently external interventions have been

labor intensive and time consuming. With the technology of

RNA interference (RNAi), this situation has changed. RNAi

(Fire et al., 1998) is a novel method of post-transcriptional gene

silencing. It has drastically reduced the time required for testing

downstream effects of gene silencing (Nature insight, 2004; Boutros

et al., 2004). In several studies, RNAi screening has been applied to
such functional genomic analysis (Gönczy et al., 2000; Fraser et al.,
2000).

Non-transcriptional modules in signaling pathways. A cell’s

response to an external stimulus is complex. The stimulus is propag-

ated via signal transduction to activate transcription factors, which

bind to promoters thus activating or repressing the transcription and

translation of genes, which in turn can activate secondary signaling

pathways, and so on. We distinguish between the transcriptional

level of signal transduction known as gene regulation and the non-

transcriptional level, which is mostly mediated by post-translational

modifications. Although gene regulation leaves direct traces on

expression profiles, non-transcriptional signaling does not. How-

ever, reflections of signaling activity can be perceived in expression

levels of other genes. We explain this by a real world example.

An example in Drosophila. Boutros et al. (2002) investigate the
response to microbial challenge in Drosophila melanogaster. They
treat Drosophila cells with lipopolysaccharides (LPS), the principal
cell wall components of Gram-negative bacteria. After 60 min of

applying LPS, a number of genes show a strong reaction. Which

genes and gene products were involved in propagating the signal in

the cell? To answer this question a number of candidate pathway

genes are silenced by RNAi. The effects on the LPS-induced genes

are measured by microarrays. The observations are: with only one

exception, the signaling genes show no change in expression when

other signaling genes are silenced. They stay ‘flat’ on the microar-

rays. Differential expression is only observed in genes downstream

of the signaling pathway: silencing tak reduces expression of all

LPS-inducible transcripts, silencing rel ormkk4/hep reduces expres-
sion of disjoint subsets of induced transcripts, silencing key results
in profiles similar to silencing rel.
Boutros et al. (2002) explain this observation by a fork in the

signaling pathway with tak above the fork, mkk4/hep in one branch

and both key and rel in the other branch. Note that this pathway

topology was found in an indirect way: no information is coming

from the expression levels of the signaling genes. Silencing can-

didate genes interrupts the information flow in the pathway, the

topology is then revealed by the nested structure of affected

gene sets downstream the pathway of interest. The computational

challenge we address in this paper is to derive an algorithm for

systematic inference from indirect observations.

Previous work. Previous methods for learning from interven-

tions construct a model to explain primary effects of silencing genes

on other genes in the pathway (Wagner, 2001, 2004; Tegner et al.,
2003; Ideker et al., 2000; Akutsu et al., 1998). With one exception

(Tegner et al., 2003), they are deterministic and cannot handle noise

in the data. All of them aim for transcriptional networks and are

unable to capture non-transcriptional modulation.

Various probabilistic methods have been developed to recon-

struct regulatory networks from microarray data (Wille et al.,
2004; Friedman, 2004; Segal et al., 2003; Imoto et al., 2002;

Wessels et al., 2001; Friedman et al., 2000). Some incorporate

external interventions explicitly (Di Bernardo et al., 2005;�To whom correspondence should be addressed.
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Markowetz et al., 2005; Gardner et al., 2003; Pe’er et al., 2001;
Cooper and Yoo, 1999). All these methods model the joint distri-

bution of gene-expression levels as a graphical model. This requires

the expression levels of modeled genes to change from one array to

another. Interactions are modeled on the transcriptional level, the

non-transcriptional level is blinded out.

Some approaches use hidden variables to capture non-

transcriptional effects (Nachman et al., 2004; Rangel et al.,
2001, 2004). None of them makes use of interventional data. To

keep model selection feasible they have to introduce a number of

simplifying assumptions: either the hidden nodes do not regulate

each other, or the hidden structure is not identifiable. In both cases,

the models do not allow inference of non-transcriptional pathways.

Another class of algorithms searches for topologies which are

consistent with observed downstream effects of interventions

(Yeang et al., 2004). Although these algorithms are not confined

to the transcriptional level of regulation, they require that most

signaling genes show effects when perturbing others.

In summary, none of the methods designed to infer transcriptional

networks can be applied to reconstruct non-transcriptional path-

ways. The major problem is that these algorithms require direct

observations of expression changes of signaling genes, which are

not fully available in datasets such as those of Boutros et al. (2002).
Our general objective is similar to epistasis analysis with global

transcriptional phenotypes (Driessche et al., 2005). Nevertheless,
there are several important difference. First, we model whole path-

ways and not only single gene–gene interactions. Second, we treat

an expression profile not as one global phenotype but as a collection

of single-gene phenotypes.

Overview of our approach. In this paper, we present a compu-

tational framework for the systematic reconstruction of pathway

features from expression profiles relating to external interventions.

Our approach is based on the nested structure of affected down-

stream genes, which are themselves not a part of the model. Here we

give a short overview of our method before presenting it in all

details in Section 2.

We distinguish two kinds of genes: the candidate pathway genes,

which are silenced by RNAi, and the genes, which show effects of

such interventions in expression profiles. We call the first ones

S-genes (S for ‘silenced’ or ‘signaling’) and the second ones

E-genes (E for ‘effects’). Since large parts of signaling pathways

are non-transcriptional, there will be little or no overlap between

S-genes and E-genes. Elucidating relationships between S-genes
is the focus of our analysis, the E-genes are only needed as report-

ers for signal flow in the pathway. E-genes can be considered as

transcriptional phenotypes. S-genes have to be chosen depending

on the specific question and pathway of interest. E-genes are iden-
tified by comparing measurements of the stimulated and non-

stimulated pathway: genes with a high-expression change are

taken as E-genes.
Our approach models how interventions interrupt the information

flow through the pathway. Thus, S-genes are silenced, while the

pathway is stimulated to see which E-genes are still reached by the

signal. Optimally, the gene-expression experiments are replicated

several times. This results in a dataset representing every signaling

gene by one or more microarrays. These requirements are the same

as in epistasis analysis (Avery and Wasserman, 1992), but they are

not satisfied in all datasets monitoring intervention effects (Hughes

et al., 2000).

The main contribution of this paper is a scoring function, which

measures how well hypotheses about pathway topology are suppor-

ted by experimental data. Input to our algorithm is a list of hypo-

theses about the candidate pathway genes. A hypothesis is

characterized by (1) a directed graph with S-genes as nodes and

(2) the possibly many entry points of signal into the pathway. This

setting is summarized in Figure 1. Our model is based on the

expected response of an intervention given a candidate topology

of S-genes and the position of the intervention in the topology.

Pathways with different topology can show the same downstream

response to interventions. We identify all pathways, which make the

same predictions of intervention effects on downstream genes, by

one so-called silencing scheme. Sorting silencing schemes by our

score shows how well candidate pathways agree with experimental

data. Output of the algorithm is a strongly reduced list of candidate

pathways. The algorithm is a filter, which helps to direct further

research.

Applications beyond RNAi. Our motivation to develop this

algorithm results from the novel challenges the RNAi technology

poses to bioinformatics. At present, RNAi appears to be the most

efficient technology for producing large-scale gene-intervention

data. However, our framework is flexible and any type of external

interventions can be used, which reduces information flow in the

pathway. This includes traditional knock-out experiments and spe-

cific protein inhibiting drugs. An important requirement for any

perturbation technique used is high specificity. Off-target effects

impair our method since intervention effects can no longer be

uniquely predicted.

In the next section we develop our model in detail. Then we test it

in simulation studies (Section 3.1) and demonstrate its use on real

data (Section 3.2).

2 METHODS

First, we describe our model for signaling pathways with transcriptional

phenotypes. Predictions from pathway hypotheses are summarized in a

silencing scheme. In the main part of the section, we develop a Bayesian

method to estimate a silencing scheme from data.

2.1 Signaling pathway model

Core topology on S-genes. The set of E-genes is denoted by E ¼ {E1, . . .,

Em}, and the set of S-genes by S ¼ {S1, . . ., Sn}. As a pathway model, we

assume a directed graph T on vertex set S. The structure of T is not further

SSS S S

Signal

EEE E

Fig. 1. A schematic summary of our model. The dashed box indicates one

hypothesis: it contains a directed graph T on genes contributing to a signaling
pathway (S-genes). A signal enters the pathway at one (or possibly more than

one) specified position. Interventions at S-genes interrupt signal flow through

the pathway. S-genes regulate E-genes on the second level. Together the S-

and E-genes form an extended topology T0. We observe noisy measurements

of expression states of E-genes. The objective is to reconstruct relationships

between S-genes from observations of E-genes in silencing experiments.

Pathway features from secondary effects

4027



restricted: there may be cycles and it may decompose into several subgraphs.

The external stimulus acts on one or more of the S-genes as specified by the

hypothesis. S-genes can take values 1 and 0 according to whether signaling

is interrupted or not. State 0 corresponds to a node, which is reached by the

information flow through the pathway. This is the natural state when the

pathway is stimulated. State 1 describes a node, which is no longer reached

by the signal, because the flow of information is cut by an intervention at

some node upstream in the pathway. An S-gene in state 1 is in the same state

as if the pathway had not been stimulated. Although the pathway is stimu-

lated, experimental interventions break the information flow in the pathway.

An intervention at a particular S-gene first puts this S-gene’s state to 1. The

silencing effect is then propagated along the directed edges of T.

From pathways to silencing schemes. We call the subset of S-genes,
which are in state 1 when S-gene S is silenced, the ‘influence region of S’.

The set of all influence regions is called a ‘silencing scheme F’. It sum-

marizes the effects of interventions we predict from the pathway hypothesis.

Mathematically, a silencing scheme is the transitive closure of pathway T

defining a partial order on S. Drawn as a graph, F contains an edge between

two nodes whenever they are connected by a directed path in T. Different

pathway models can result in the same silencing scheme. Note that the

E-genes do not appear in F, which only describes interactions between

S-genes. The E-genes come into play when we want to infer silencing

schemes: reduced signaling strength of S-genes owing to interventions in

the pathway cannot be observed directly on a microarray, but we can see

secondary effects on E-genes.

Secondary effects on E-genes. The extended topology on S [ E is called

T 0. We assume that each E-gene has a single parent in S. We interpret the set

of E-genes attached to one S-gene as a regulatory module, which is under the

common control of the S-gene. To account for the frequent case where more

than one S-gene regulates an E-gene, we will use model averaging. The

reaction of E-genes to interventions in the pathway depends on where the

parent S-gene is located in the silencing scheme. E-genes are set to state 1 if

their parent S-gene is in the influence region of an intervention; else they are

in state0. The state of E-genes can be experimentally observed as differential

expression on microarrays. Owing to the observational noise or stochastic

effects in signal transduction, we expect a number of false positive and false

negative observations.

Filtering hypotheses. The input to the algorithm is a list H1, . . ., HN of

pathway hypotheses. Each hypothesis makes predictions of effects at

E-genes downstream of the pathway. In the next section we develop a

Bayesian method to score silencing schemes given noisy observations of

E-genes. In general, different topologies can have identical scores; hence the

algorithm does not uniquely reconstruct the pathway, but returns a strongly

reduced list of optimally scoring pathways of length M � N.

2.2 Likelihood of a silencing scheme

Data. In each experiment, one S-gene is silenced by RNAi and effects on

E-genes are measured by microarrays. Each S-gene needs to be silenced at

least once, but ideally the silencing assays are repeated and we have several

microarrays per silenced gene. We index the microarrays by k ¼ 1, . . ., l.
The expression data are assumed to be discretized to 1 and 0—indicating

whether interruption of signal flow was observed at a particular gene or

not. As a result we get a binary matrix D ¼ (eik), where eik ¼ 1 if E-gene Ei

shows an effect in experiment k. Thus, our data only consist of coarse

qualitative information. We do not consider whether an E-gene was upregu-

lated or downregulated or how strong an effect was. Each single observation

eik relates the intervention done in experiment k to the state of Ei. In the

following, the index ‘i’ always refers to an E-gene, the index ‘j’ to an S-gene,

and the index ‘k’ to an experiment.

Likelihood. We introduce the position of the E-genes as model para-

meters Q ¼ f�igmi¼1 with �i 2 {1, . . ., n} and �i ¼ j if Ei is attached to Sj. Let
us first consider a fixed extension T0 of T, i.e. the parameters Q are assumed

to be known. For each E-gene, T0 encodes to which S-gene it is connected. In
a silencing experiment we predict effects at all E-genes, which are attached

to an S-gene in the influence region. Expected effects can be compared with

observed effects in the data to choose the topology, which fits the data best.

Owing to measurement noise we cannot expect to find a topology T 0 in
complete agreement with all observations. We allow deviation from pre-

dicted effects by introducing global error probabilities a and b for false

positive and negative calls, respectively.

We model the expression levels of E-genes on the various microarrays as

binary random variables Eik. The distribution of Eik is determined by the

silencing scheme F and the error probabilities a and b. For all E-genes and
targets of intervention, the conditional probability of E-gene state eik given

silencing scheme F can then be written in tabular form as

eik ¼ 1 eik ¼ 0

P eikjF‚�i ¼ jð Þ ¼ a 1�a if F predicts no effect
1�b b if F predicts effect

�

This means that if Ei is not in the influence region of the S-gene silenced in

experiment k, the probability of observing Eik ¼ 1 is a (probability of false

alarm, type-I error); the probability to miss an effect and observe Eik ¼ 0

even though Ei lies in the influence region is b (type-II error). The likelihood

P(DjF, Q) of the data is then a product of terms from the table for every

observation.

However, in reality we do not know the ‘correct’ extension T0 of a can-

didate topology T. The positions of E-genes are unknown and they may be

regulated by more than one S-gene. We also do not aim to infer extended

topologies from the data: the model space of extended topologies is huge,

and model inference is unstable. We are only interested in the silencing

scheme F of S-genes. To deal with these issues, we interpret the position of

edges between S- and E-genes as nuisance parameters, and average over

them to obtain a marginal likelihood. This is what we describe next.

2.3 Marginal likelihood of a silencing scheme

We define a scoring function that evaluates how well a given silencing

scheme F fits the data. For now, we assume the silencing scheme F and

the error probabilities a and b to be fixed. But in contrast to the last section,

the connection parameters Q are unknown. By Bayes’ formula we can write

the posterior of silencing scheme F given data D as

P FjDð Þ ¼ P DjFð ÞP Fð Þ
P Dð Þ : ð1Þ

The normalizing constant P(D) is the same for all silencing schemes; we can

neglect it for model comparison. The model prior P(F) can be chosen to

incorporate biological prior knowledge. Here, we assume it to be uniform

over all possible models. What remains is the marginal likelihood P(DjF).

It equals the likelihood P(DjF, Q) of the data averaged over the nuisance

parameters Q. To compute it, we make three assumptions:

(1) Given silencing scheme F and fixed positions of E-genes Q, the
observations in D are sampled independently and distributed identi-

cally:

P DjF‚Qð Þ ¼
Ym
i¼1

P DijF‚�ið Þ ¼
Ym
i¼1

Yl
k¼1

P eikjF‚�ið Þ‚

where Di is the i-th row in data matrix D.

(2) Parameter independence. The position of oneE-gene is independent of

the positions of all the other E-genes:

P QjFð Þ ¼
Ym
i¼1

P �ijFð Þ:

(3) Uniform prior. The prior probability to attach an E-gene is uniform

over all S-genes:

P �i ¼ jjFð Þ ¼ 1

n
for all i and j:

The last assumption can easily be dropped to include existing biological

prior knowledge about regulatory modules. With the assumptions above, the

F.Markowetz et al.
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marginal likelihood can be calculated as follows. The numbers above the

equality sign indicate which assumption was used in each step.

P DjFð Þ ¼
Z

P DjF‚Qð ÞP QjFð ÞdQ

¼1‚ 2½ � Ym
i¼1

Z
P DijF‚�ið ÞP �ijFð Þd�i

¼3½ � 1

nm

Ym
i¼1

Xn
j¼1

P DijF‚�i ¼ jð Þ

¼1½ � 1

nm

Ym
i¼1

Xn
j¼1

Yl
k¼1

P eikjF‚�i ¼ jð Þ: ð2Þ

The marginal likelihood in Equation (2) contains the error probabilities a

and b as free parameters to be chosen by the user. In Section 3.2 we will

show how to estimate these parameters from data.

Estimated position of E-genes. Given a silencing scheme F, we can

calculate the posterior probability for the edge between Sj and Ei as

P �i ¼ jjF‚Dð Þ ¼ 1

Z

Yl
k¼1

P eikjF‚�i ¼ jð Þ‚ ð3Þ

with a uniform prior for E-gene position and normalizing constant Z chosen

such that the probabilities for Ei sum up to one over all S-genes. The E-genes

attached with high probabilty to an S-gene are interpreted as a regulatory

module, which is under the common control of the S-gene.

3 RESULTS

We demonstrate the potential of our algorithm in two steps. First, we

investigate accuracy and sample size requirements in a controlled

simulation setting. In a second step, we show that our approach is

also useful in a real biological scenario by applying it to a dataset on

Drosophila immune response.

3.1 Accuracy and sample size requirements

We performed simulations consisting of five steps:

(1) S-genes. Randomly generate a directed acyclic graphTwith 20

nodes and 40 edges. This is the core topology of S-genes.

(2) E-genes. Connect 40E-genes to coreT. This forms an extended

topology T0. To evaluate how the position of E-genes affects

the results we try three different ways of attaching E-genes to

S-genes: deterministically two E-genes per S-gene, uniformly

distributed positions, or preferentially downstream positions

(also random but with a higher probability for S-genes at the

end of pathways).

(3) Data. Generate one random datasetD from the extended topol-

ogy T0. We use eight different repetition numbers per knock-

out experiment (r 2 {1, 2, 3, 4, 5, 8, 12, 16}). The experiment

consists of 20 · r ‘microarrays’, each corresponding to one of r
repeated knock-outs of one of the 20 signaling genes. For each

knock-out experiment the response of all E-genes is simulated

from T0 using error probabilities adata and bdata. The false

negative rate is fixed to bdata ¼ 0.05 and the false positive

rate adata is varied from 0.1 to 0.5.

(4) Hypotheses. Randomly select three existing edges in the graph

T, and three pairs of non-connected nodes. Using these six

edges, there are 26 ¼ 64 possible modifications of T, including

the original pathway T itself: some of the selected edges in

T may be missing and some new links may be added. We take

the 64 pathways as input hypotheses of our algorithm.

(5) Scoring. Score the pathway hypotheses by marginal likelihood

with parameters ascore ¼ 0.1 and bscore ¼ 0.3. Note that these

(arbitrarily chosen) values are different from (adata,bdata) used

for data generation. If the best score is achieved by the original

pathway Twe count this as a perfect reconstruction. Even with

a single incorrect edge we count the reconstruction as failed.

We report the average number of perfect reconstructions for every

(adata, r)-pair over 1000 simulation runs. Results are summarized in

Figure 2.

The plots show that rates of perfect reconstruction are best when

each S-gene has two E-genes as reporters and worst for purely

random E-gene connections. The frequency to identify the correct

pathway quickly increases with the number of replicates. With five

replicates and low noise levels, the rate of perfect reconstruction is

>90% in all simulations. Even with a noise level of 50% we cor-

rectly identified the right hypothesis in more than half of the runs.

3.2 Application to Drosophila immune response

We applied our method to data from a study on innate immune

response in Drosophila (Boutros et al., 2002), which was already

described as an example in Section 1. Selectively removing

Fig. 2. Results of simulation experiments on random graphs. The number of replicates r in the data are on the x-axis, whereas the y-axis corresponds to the rate of

perfect reconstructions in 1000 runs. Each plot corresponds to a different way of attaching E-genes to S-genes. The curves in each plot correspond to adata ¼
0.1, . . ., 0.5 in descending order; the lower the curve, the higher the noise in data generation. The dashed vertical line indicates performance with r ¼ 5

replicates—a practical upper limit for most microarray studies. The plots show excellent results for low noise levels. Even with adata ¼ 0.5 the method does

not break down, but identifies the complete true pathway in more than half of all simulation runs.

Pathway features from secondary effects
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signaling components (S-genes in our terminology) blocked induc-

tion of all, or only parts, of the transcriptional response to LPS (E-
genes in our terminology).

Data preprocessing. The dataset consists of 16 Affymetrix

microarrays: 4 replicates of control experiments without LPS and

without RNAi (negative controls), 4 replicates of expression pro-

filing after stimulation with LPS but without RNAi (positive con-

trols) and 2 replicates each of expression profiling after applying

LPS and silencing 1 of the 4 candidate genes tak, key, rel and mkk4/
hep. For preprocessing, we perform normalization on probe level

using a variance stabilizing transformation (Huber et al., 2002), and
probe set summarization using a median polish fit of an additive

model (Irizarry et al., 2003). In this data, 68 genes show a >2-fold up
regulation between control and LPS stimulation. We used them as

E-genes in our analysis.

Discretization and error rates. Next, we transformed the continu-

ous expression data to binary values. We set an E-gene’s state in an
RNAi experiment to 1 if its expression value is sufficiently far from

the mean of the positive controls, i.e. if the intervention interrupted

the information flow. If the E-genes expression is close to the mean

of positive controls, we set its state to 0.

Let Cik be the continuous expression level of Ei in experiment k.
Let mþ

i be the mean of positive controls for Ei, and m�
i the mean of

negative controls. To derive binary data Eik, we defined individual

cutoffs for every gene Ei by

Eik ¼
n
1 if Cik < k ·mþ

i þ 1�kð Þ ·m�
i ‚

0 else:

We tried values of k from 0.1 to 0.9 in steps of 0.1. To control the

false negative rate, we chose k ¼ 0.7: it is the smallest value where

all negative controls are correctly recognized. This discretization is

consistent with a small value of false negative rate b. We set it to b

¼ 0.05. The false positive rate a was estimated from the positive

controls: the relative frequency of negative calls there was just

below 15%. Thus we set a ¼ 0.15. Trying different values of a

and b did not change the results qualitatively, except when very

large und unrealistic error probabilities were chosen.

Figure 3 shows the continuous and discretized data as used in our

analysis. Silencing tak affects almost all E-genes. A subset of

E-genes is additionally affected by silencing mkk4/hep, another
disjoint subset by silencing rel and key. Note that expression profiles
of rel and key silencing are almost indistinguishable both in the

continuous and discrete datamatrix.

Results. We took all possible pathways on four genes as input to

our algorithm. The four S-genes can form 212 ¼ 4096 pathways,

which result in 355 different silencing schemes. The distribution of

marginal likelihood over the 30 top ranked silencing schemes in

Figure 4 shows a clear peak: a single silencing scheme achieves the

best score. It is well separated from a group of four silencing

schemes having almost the same second-best score. Only after a

wide gap all other silencing schemes follow.

The topology of the best silencing scheme is shown in Figure 4b.

It can be constructed from three different pathway hypotheses: one

is the topology shown in Figure 4, which is transitively closed, the

other two miss either the edge from tak to rel or from tak to key. The
key features of the data are preserved in all of them. The signal runs

through tak before splitting into two pathway branches, one con-

taining mkk4/hep, the other both key and rel. There is no hint to

cross-talk between the two branches of the pathway. All in all, our

result fits exactly to the conclusions Boutros et al. (2002) drew from

the data.

The order of key and rel cannot be resolved from this dataset

(see the nearly identical profiles in Fig. 3). However, it is known

that rel is the transcription factor regulating the downstream

genes (Boutros et al., 2002). This knowledge could have been

easily introduced into a model prior P(F) penalizing topologies

not showing rel below key. We refused to do this on purpose;

our results here show how well pathway features can be reconstruc-

ted just based on experimental data, without any biological prior

knowledge.

4 DISCUSSION

We have described a computational method for reconstructing path-

way topologies based on differential gene expression in assays using

external interventions like RNAi. Unlike previous work, our method

is designed to deal with indirect observations. Simulation studies

have demonstrated the power of our algorithm to choose pathways

well supported by data. The applicability of our method to real

world data could be shown in an application to a small RNAi

study in Drosophila.

A measure for uncertainty. In Bayesian terminology, maximizing

the marginal likelihood is equivalent to calculating the mode of

the posterior distribution on model space, assuming a uniform

prior. When scoring all possible pathways, we have derived a com-

plete posterior distribution on model space, which does not only

estimate a single pathway model, but also accurately describes the

uncertainties involved in the reconstruction process. A flat posterior

distribution indicates ambiguities in reconstructing the pathway.

What we find in Figure 4 is a well pronounced maximum, which

shows that we found the dominant structure in the data with high

certainty. Still, we can only reconstruct features of the pathway, not

the full topology. This stems from inherent limits of reconstruction

from indirect observations. We discuss here prediction equivalence

and likelihood equivalence.

Prediction equivalence. More than one pathway hypothesis

result in the same silencing scheme if they only differ in transitive

edges. An example are the three topologies sharing the silencing

scheme of Figure 4 as discussed above. Since our score is defined

on silencing schemes and not on topologies directly, the

hypotheses with the same silencing scheme are not distinguishable.

Assuming parsimony, we can represent each silencing scheme by a

graph with minimal number of edges. This technique is called

transitive reduction (Aho et al., 1972; van Leeuwen, 1990;

Wagner, 2001, 2004).

Likelihood equivalence. We can also construct cases, where

two hypotheses with different silencing schemes produce identical

data. Figure 5 shows an example with a cycle of S-genes and a linear
cascade, where all E-genes are attached on the downstream end. All

E-genes react to interventions at every S-gene. In this case, the data
do not prefer one silencing scheme over the other; both will have the

same likelihood.

Epistatic effects. The model we use in this paper is very simple.

Additional constraints, which are not dealt with in our model, are

imposed by epistatic effects: one gene can mask the effect of

another gene. These effects can be included into our model by
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introducing a set of Boolean functions F ¼ {fS, S 2 S}. Each fS 2 F
determines the state of S-gene S given the states of its parents in T.
Two simple examples of local functions fS are AND- and OR-logics.
In an AND-logic, all parent nodes must be affected by an interven-

tion (i.e. have state 1) to propagate the silencing effect to the child.

Original data(A) (B) Discretized data (C) Position of E-genes
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This describes redundancy in the pathway: if two genes fulfill

alternative functions, both have to be silenced to stop signal flow

through the pathway. In an OR-logic, one affected parent node is

enough to set the child’s state to 1. This describes a set of genes

jointly regulating the child node; silencing one of the parents des-

troys the collaboration. The topology T together with the set of

functions F defines a deterministic Boolean network on S.

Multiple knock-outs. Since epistatic effects involve more than

one gene, they cannot be deduced from single knock-out experi-

ments. One can extend our method to data attained by silencing

more than one gene at the same time. This will not change our

scoring function, but more sophisticated silencing schemes have to

be developed, which encode predictions both from single-gene and

multi-gene knock-outs. Since the number of possible multiple

knock-outs increases exponentionally, we need tools to choose

the most informative experiments (Yoo and Cooper, 2004;

Yeang et al., 2005).
In summary. This is the first paper addressing pathway recon-

struction from indirect observations. Our algorithm reconstructs

pathway features from the nested structure of affected downstream

genes. Pathway features are encoded as silencing schemes. They

contain all information to predict a cell’s behavior to an external

intervention. In simulation studies we confirmed small sample size

requirements and high accuracy. Limitations only result from the

information content of indirect observations.
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