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Running coupling in nonperturbative QCD: Bare vertices and y-max approximation

D. Atkinson* and J. C. R. Bloch†
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~Received 7 January 1998; published 7 October 1998!

A recent claim that in quantum chromodynamics~in the Landau gauge! the gluon propagator vanishes in the
infrared limit, while the ghost propagator is more singular than a simple pole, is investigated analytically and
numerically. This picture is shown to be supported even at the level in which the vertices in the Dyson-
Schwinger equations are taken to be bare. The gauge invariant running coupling is shown to be uniquely
determined by the equations and to have a large finite infrared limit.@S0556-2821~98!04421-X#

PACS number~s!: 12.38.Aw, 11.10.Gh, 12.38.Lg
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I. INTRODUCTION

The proof of the renormalizability of non-Abelian gaug
theories such as QCD@1#, and the discovery of ultraviole
asymptotic freedom@2#, heralded a new phase in the acce
tance of quantum field theories as serious candidates fo
quantitative description of the weak, electromagnetic a
strong interactions. Since the running coupling in QCD d
creases logarithmically to zero as the renormalization p
is taken to infinity, it seems reasonable to calculate it per
batively in the deep ultraviolet regime, where it is ve
small, even though a proof is lacking that the perturbat
series makes sense~for example, that it is strongly
asymptotic!.

Although one is not sure that perturbation theory is re
able for QCD at very high energies, at very low energies i
quite clear that it is inadequate. Chiral symmetry break
and fermion mass generation are typically non-perturba
phenomena. The obverse of ultraviolet asymptotic freed
is infrared slavery or confinement. Since the coupling
creases as the energy increases, it increases as one g
lower energies, and the possibility is open that its infra
limit is infinite. Many attempts@3#—necessarily of a non
perturbative nature—have been made to show this di
gence of the coupling in the infrared limit. Mandelstam in
tiated the study of the gluon Dyson-Schwinger equation
the Landau gauge@4#. Although he did consider the gluon
ghost coupling, Mandelstam concluded provisionally that
effect could safely be neglected. This assumption was
made in subsequent work@5,6#. A deficiency of these at-
tempts to show that the gluon propagator is highly singu
in the infrared is the necessity to posit certain cancellati
of leading terms in the equations. An uncharitable case
petitio principii might almost be made~i.e. circularity!.

Recently, a new possibility has been opened up by
work of von Smekal, Hauck and Alkofer@7#. In this work the
coupling of the gluon to the ghost was not neglected. Th
authors claim that it is not the gluon, but rather the gh
propagator that is highly singular in the infrared limit. Th
running coupling itself has afinite though quite large value
in the limit of zero energy, presumably large enough to gu
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antee chiral symmetry breaking in the quark equation@8#.
In the present paper we investigate the claims made in

new work. We shall write the gluon propagator in Land
gauge as

Dmn
ab~p!52dab

1

p2 Dmn~p!F~2p2!,

wherea and b are color indices, and whereD5D2 is the
projection operator

Dmn~p!5gmn2
pmpn

p2 .

The ghost propagator will be written in the form

Gab~p!52dab
1

p2 G~2p2!,

and we shall refer to the scalar functionsF and G as the
gluon and ghost form factors, respectively.

The claim made in Ref.@7# is that, in the infrared limit
x52p2→0, these form factors have the following behavio

F~x!;x2k, G~x!;x2k, ~1!

wherek'0.92. To obtain these results certainAnsätzewere
made for the three-gluon and ghost-gluon vertices, functio
forms inspired, but not uniquely determined by Slavno
Taylor identities. In fact theAnsatzmade in Ref.@7# for the
ghost-gluon vertex is such that actually the infrared behav
Eq. ~1! is not consistent with the Dyson-Schwinger equ
tions. The difficulty is the occurrence of a term

E
0

L2

dyyE
0

p

du
sin4u

z2

F~z!G~z!G~y!

G~x!
~2!

in the equation for the ghost form factor, which, with th
form ~1!, would yield an impermissible logx factor in the
limit x→0 when the angular integrals are performed exac
as shown in Appendix A. The logx problem persists if one
adopts the simple y-max angular averaging. Von Sme
et al. introduce a modified angular averaging, after which t
log x problem disappears; but since their equations do
have a solution of the form~1! beforeaveraging, it would
seem that the averaging is not justified—it complete
©1998 The American Physical Society36-1
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changes the properties of the equation.
Since we found this last replacement questionable,

decided first to see what would happen if one simply
places the full vertices by bare ones. In this case the p
lematic logarithm of Eq.~2! does not occur, and we ca
simply analyze the equation as it stands. If the behavior~1!
were to go away, it would bode ill for the new approac
However, our finding is that, with bare vertices, the form~1!
indeed remains good, but with the index changed tok
'0.77. Moreover, we can show that the solutions of
coupled gluon and ghost equations lie on a three-dimensi
manifold, i.e. the general solution has three free parame
nevertheless all solutions have the infrared behavior~1!. Our
primary purpose in this initial paper is to explain the abo
findings in detail.

In Landau gauge, the QCD Dyson-Schwinger equati
lead to the following coupled integral equations for t
renormalized gluon and ghost form factors:

F21~p2!5Z31
g2

8p3 Z̃1E
0

L2 dq2

p2 G~q2!

3E
0

p

du sin2 uM ~p2,q2,r 2!G~r 2!

1
g2

16p3 Z1E
0

L2 dq2

p2 F~q2!

3E
0

p

du sin2 uQ~p2,q2,r 2!F~r 2! ~3!

G21~p2!5Z̃32
3g2

8p3 Z̃1E
0

L2

dq2q2G~q2!

3E
0

p

du
sin4 u

r 4 F~r 2!, ~4!

with r 25p21q222pq cosu. The kernels are

M ~p2,q2,r 2!5
1

r 2 S p21q2

2
2

q4

p2D1
1

2
1

2q2

p2 2
r 2

p2 .

Q~p2,q2,r 2!5S p6

4q2 12p42
15q2p2

4
1

q4

2
1

q6

p2D 1

r 4

1S 2p4

q2 2
19p2

2
2

13q2

2
1

8q4

p2 D 1

r 2

2S 15p2

4q2 1
13

2
1

18q2

p2 D
1S 1

2q2 1
8

p2D r 21
r 4

p2q2 .

Here the full three-gluon and the ghost-gluon vertices h
been replaced by their bare values, while the four-gluon
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quark-gluon vertices have been provisionally thrown aw
To obtain these equations from the Dyson-Schwinger eq
tions, we performed a contraction with the tensor (gmn

24pmpn /p2), introduced by Brown and Pennington@6# to
avoid quadratic ultraviolet divergences, executed a Wick
tation, and evaluated two trivial angular integrations.

The form factors and the QCD coupling are renormaliz
at a scale m, using the renormalization constan
Z3 ,Z̃3 ,Z1 ,Z̃1 for the gluon field, the ghost field, the tripl
gluon vertex and the gluon-ghost vertex defined by

F̄~p2,L,j!5Z3~m,L,j!F~p2,m,j!,

Ḡ~p2,L,j!5Z̃3~m,L,j!G~p2,m,j!, ~5!

g5
Z3

3/2~m,L,j!

Z1~m,L,j!
g05

AZ3~m,L,j!Z̃3~m,L,j!

Z̃1~m,L,j!
g0 , ~6!

whereF̄(p2),Ḡ(p2) are the unrenormalized gluon and gho
form factors,F(p2),G(p2) the renormalized ones,g0 is the
bare coupling andg its renormalized value. We will see in
the following sections that the concept of renormalizati
scale can be generalized in the nonperturbative treatme
what we will call renormalization prescriptions, each corr
sponding to a solution of the nonperturbative integral eq
tions. The renormalization group invariance of the runni
coupling corresponds to an invariance under an arbitr
transformation in the three-dimensional space of solution
the integral equations.

We wish to solve the coupled integral equations~3!, ~4!
for F andG, and we propose to do that in a future public
tion @9,10#. For the moment we introduce a further simplifi
cation, the y-max approximation. This amounts to replac
F(r 2) and G(r 2) in Eqs. ~3!, ~4! by F(p2) and G(p2) if
p2.q2, but by F(q2) and G(q2) if p2<q2. This approxi-
mation facilitates the analytical and numerical analysis of
equations, since the angular integrals can now be perfor
exactly, and indeed the resulting one-dimensional Volte
equations can be converted into nonlinear ordinary differ
tial equations. This y-max approximation is very widely em
ployed for these reasons, however let us sound a not
warning: although we do not expect the qualitative picture
the solutions~1! to change, we do expect the value of th
index k to be different when we treat the coupled equatio
without the y-max approximation@9#. We have already see
that k is sensitive to the choice ofAnsatz for the vertex
functions, and it is also affected by the y-max approximati
The bare vertexAnsatzis of course only a first guess; and
is clear also that theAnsatzof von Smekalet al. needs to be
improved to avoid the logarithm problem to which we a
luded above. Nevertheless, the picture that von Sme
Hauck and Alkofer have uncovered appears to be robus
its qualitative, and hopefully also in its semi-quantitative fe
tures: the gluon propagator issoft in the infrared~i.e. it van-
ishes in this limit, instead of blowing up like a pole!, while
6-2
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RUNNING COUPLING IN NONPERTURBATIVE QCD: . . . PHYSICAL REVIEW D58 094036
the ghost propagator ishard ~it is more singular than a pole!.
The consequences for the physics of the strong interac
need to be investigated.

II. THE COUPLED GLUON-GHOST EQUATIONS

The set of coupled integral equations for the gluon a
ghost propagator, using the bare triple gluon vertex and
bare gluon-ghost vertex, and introducing the y-max appro
mation in Eqs.~3!, ~4!, is as follows:

F21~x!5Z31lZ̃1FG~x!E
0

x dy

x S 2
y2

x2 1
3y

2xDG~y!

1E
x

L2 dy

2y
G2~y!G1lZ1FF~x!

3E
0

x dy

x S 7y2

2x2 2
17y

2x
2

9

8DF~y!

1E
x

L2 dy

y S 271
7x

8yDF2~y!G ~7!

G21~x!5Z̃32
9

4
lZ̃1FF~x!E

0

x dy

x

y

x
G~y!

1E
x

L2 dy

y
F~y!G~y!G , ~8!

wherel5g2/16p2, x5p2 andy5q2.
To solve Eqs.~7!, ~8!, we eliminate the renormalizatio

constantsZ3 and Z̃3 by subtracting the equations atx5s:

F21~x!5F21~s!1lZ1FF~x!E
0

x dy

x S 7y2

2x2 2
17y

2x
2

9

8DF~y!

2F~s!E
0

s dy

s S 7y2

2s2 2
17y

2s
2

9

8DF~y!

27E
x

s dy

y
F2~y!1E

x

L2 dy

y S 7x

8yDF2~y!

2E
s

L2 dy

y S 7s

8y DF2~y!G1lZ̃1FG~x!E
0

x dy

x

3S 2
y2

x2 1
3y

2xDG~y!2G~s!E
0

s dy

s

3S 2
y2

s2 1
3y

2s DG~y!1E
x

s dy

2y
G2~y!G ~9!

G21~x!5G21~s!2
9

4
lZ̃1FF~x!E

0

x dy

x

y

x
G~y!

2F~s!E
0

s dy

s

y

s
G~y!1E

x

s dy

y
F~y!G~y!G .

~10!
09403
n

d
e
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III. SYMMETRIES OF THE REDUCED EQUATIONS

A very interesting simplification of Eqs.~9!, ~10! is ob-
tained if we throw away the gluon loop in Eq.~9!, keeping
only the ghost loop. This truncation is particularly intriguin
because, as we will show, its properties agree with the
quirements of renormalization group invariance, thus allo
ing us to specify the running coupling in a unique wa
whereas the inclusion of the approximate gluon loop int
duces an ambiguity. The truncated set of equations is

F21~x!5F21~s!1lZ̃1FG~x!E
0

x dy

x S 2
y2

x2 1
3y

2xDG~y!

2G~s!E
0

s dy

s S 2
y2

s2 1
3y

2s DG~y!

1E
x

s dy

2y
G2~y!G ~11!

G21~x!5G21~s!2
9

4
lZ̃1FF~x!E

0

x dy

x

y

x
G~y!

2F~s!E
0

s dy

s

y

s
G~y!1E

x

s dy

y
F~y!G~y!G .

~12!

We will show that Eqs.~11!, ~12! have a three-dimensiona
space of solutions and that these solutions can be tr
formed into one another by means of simple scalings.

First of all, if we have a solutionF(x) andG(x), we can
build a two-dimensional infinity of solutions simply by sca
ing these functions:

F̃~x!5F~x!/a ~13!

G̃~x!5G~x!/b ~14!

which simply amounts to a redefinition ofZ3 andZ̃3 , i.e. to
a change in the renormalization prescription. The new fu
tions satisfy the same integral equations, with the resca
coupling constant:

l̃5lab2.

Although the value ofl is in general changed, this has n
physical consequence, since the following gauge invar
quantity

lF~x!G2~x!5l̃F̃~x!G̃2~x!,

which will be shown to be the running coupling in Sec. IV,
unchanged by the above transformations. Thus the t
dimensional manifold of solutions corresponds to the sa
physics.

A second, less trivial feature is the possibility to derive
infinite number of solutions starting fromF(x) and G(x)
6-3
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D. ATKINSON AND J. C. R. BLOCH PHYSICAL REVIEW D58 094036
just by scaling the momentumx to tx. The new functionsF̂
and Ĝ take the same values at momentumx asF andG at
momentumtx:

F̂~x![F~ tx!, Ĝ~x![G~ tx!. ~15!

In terms of the scaled quantities,

x̃5x/t, ỹ5y/t, s̃5s/t

we find

F̂21~ x̃!5F̂21~ s̃ !1lZ̃1F Ĝ~ x̃!E
0

x̃ dỹ

x̃
S 2

ỹ2

x̃2
1

3ỹ

2x̃
D Ĝ~ ỹ!

2Ĝ~ s̃ !E
0

s̃ dỹ

s̃
S 2

ỹ2

s̃2
1

3ỹ

2s̃
D Ĝ~ ỹ!

1E
x̃

s̃ dỹ

2ỹ
Ĝ2~ ỹ!G

Ĝ21~ x̃!5Ĝ21~ s̃ !2
9

4
lZ̃1F F̂~x!E

0

x̃ dỹ

x̃

ỹ

x̃
Ĝ~ ỹ!

2F̂~ s̃ !E
0

s̃ dỹ

s̃

ỹ

s̃
Ĝ~ ỹ!1E

x̃

s̃ dỹ

ỹ
F̂~ ỹ!Ĝ~ ỹ!G .

This means thatF̂(x) and Ĝ(x) are also solutions of the
integral equations solved byF(x) andG(x). Again, all the
solutions obtained by varying the scaling factort correspond
to the same physical picture, since a scaling of momen
merely corresponds to choosing the units for the momen
variable when renormalizing the coupling constant at a c
tain physical scale. It is clear that the three above-mentio
scaling properties allow us to construct the whole thr
dimensional space of solutions starting from one specific
lution.

IV. THE RUNNING COUPLING

This three-fold scaling invariance is important as it is co
nected to the renormalization group invariance of the r
ning coupling, as we will now show.

The Green’s functions are functions of momentum and
quantum field theory they are generally divergent. To ren
all the Green’s functions finite it suffices to renormalize t
parameters occurring in the original Lagrangian of t
theory. The concept of multiplicative renormalizability r
lates the renormalized parameters to the bare parameter
way that leaves the form of the Lagrangian unchanged
this way a renormalized coupling is introduced. In QCD t
renormalized coupling obeys the following equations:

a~m!5
Z3~m,L,j!Z̃3

2~m,L,j!

Z̃1
2~m,L,j!

a05
Z3

3~m,L,j!

Z1
2~m,L,j!

a0 ,

~16!
09403
m
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wherea05g0
2/4p and we denote the explicit dependence

the renormalization constants on the renormalization scalm,
the ultraviolet cutoff L and the gauge parameterj. The
renormalization scalem is defined as the momentum sca
where the full propagators and vertices are taken to be id
tical to their bare quantities, such that the renormalized fo
factors satisfy:

F~m,m,j!515G~m,m,j!. ~17!

Such a renormalization is achieved by a proper choice of
renormalization constantsZ3 and Z̃3 in the construction of
the renormalized form functions from the unrenormaliz
ones, as given in Eq.~5!.

From Eq.~16! and the definitions~5! of Z3 andZ̃3 we can
derive the two following quantities, which are renormaliz
tion group invariants, since the right-hand sides of their d
nitions only involve unrenormalized quantities:

Z̃1
2~m,L,j!a~m!F~x,m,j!G2~x,m,j!

5a0F̄~x,L,j!Ḡ2~x,L,j! ~18!

and

Z1
2~m,L,j!a~m!F3~x,m,j!5a0F̄3~x,L,j!, ~19!

where m is the renormalization scale andx is an arbitrary
momentum.

We now evaluate the renormalization group invariant e
pression Eq.~18! at momentumx, using two different renor-
malization scalesx and m and Eq.~17! ~which is valid for
any m!:

a~x!5
Z̃1

2~m,L,j!

Z̃1
2~x,L,j!

a~m!F~x,m,j!G2~x,m,j!. ~20!

Since, in Landau gauge,Z̃1(m,L,0)51 for anym according
to Taylor @11#, we have

a~x!5a~m!F~x,m,0!G2~x,m,0!. ~21!

Since the functionsF(x) and G(x) depend on the momen
tum, and Eq.~21! is defined forall momenta, this evolution
yields thenon-perturbativerunning coupling in QCD.1 This
expression is renormalization group invariant as the rig
hand side of Eq.~21! is independent of the scalem.

However, we will show that the concept of renormaliz
tion scale, as defined in Eqs.~16!, ~17!, can be generalized to
what we will call renormalization prescriptions, which co
respond to solutions of the nonperturbative field equatio
In the derivation of the running coupling, Eqs.~16!–~21!, we
used the conceptrenormalization scaleto describe how the
renormalization of the form factors is performed. Howev
we can interpret Eq.~16! in a more general way, as is sup

1The expression~21! for the nonperturbative running couplin
was first proposed by von Smekalet al. in Ref. @7#.
6-4
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ported by the symmetries of the nonperturbative equati
discussed in Sec. III. The renormalization constantsZ3 and
Z̃3 from Eq. ~5! can be scaled by arbitrary real numbersa
andb as in Eqs.~13!, ~14!, and still satisfy the renormaliza
tion group invariance Eq.~21!, even though Eq.~17! will in
general no longer be satisfied since it can happen tha
renormalization scalem can be found whereF(m)51
5G(m).

We now clarify this point. Suppose we found renorm
ization constantsZ3(m,L,j) and Z̃3(m,L,j) such that
F(m,m,j)515G(m,m,j). To change the renormalizatio
scale fromm to n we have to scaleZ3 and Z̃3 so that now
F(n,n,j)515G(n,n,j). To achieve this, the new reno
malization constants have to be

Z3~n,L,j!5F~n,m,j!Z3~m,L,j!

Z̃3~n,L,j!5G~n,m,j!Z̃3~m,L,j!,

which means that the form factors at any momentumx, ex-
pressed with two different renormalization scalesm and n,
are related as follows:

F~x,n,j!5F~x,m,j!/F~n,m,j!

G~x,n,j!5G~x,m,j!/G~n,m,j!.

Hence, an arbitrary change of renormalization scale fromm
to n corresponds to scalings~13!, ~14! where

a5F~n,m,j!, b5G~n,m,j!. ~22!

However, the reasoning followed in Eqs.~16!–~21!, using
quantities renormalized at a scalem, can be generalized b
applying arbitrary scalingsa andb to Z3 andZ̃3 , provideda
is scaled accordingly, so that

a~x!5aF~x!G2~x!, ~23!

remains unchanged for any choice ofa andb. The valuesa
andb of Eq. ~22! are just special sets and the renormalizat
scale invariance as shown above in Eq.~21!, is only a sub-
group of the more general renormalization group invaria
summarized in Eq.~23!. The renormalized quantities in th
right-hand side of Eq.~23! can no longer be regarded a
being dependent on a renormalization scalem, since in gen-
eral Eq.~17! is no longer satisfied, but correspond to a sp
cific choice of renormalization prescription instead. Th
more general renormalization group invariance is suppo
by the results of the nonperturbative integral equations
discussed in Sec. III.

In our nonperturbative treatment the renormalizat
group invariance corresponds to an invariance of the runn
coupling with respect to an arbitrary transformation in t
three-dimensional space of solutions of the equations. T
invariance ofa(x) is exactly reproduced in the ghost-loo
only truncation. We will see in Sec. IX that the loss of sym
metry of the equations, when we include the gluon loop
09403
s
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the approximation employed, destroys this invariance,
different renormalization prescriptions no longer lead to
same running coupling.

V. INFRARED BEHAVIOR

We will show analytically that Eqs.~9!, ~10! and Eqs.
~11!, ~12! have a consistent infrared asymptotic solution:

F~x!5Ax2k ~24!

G~x!5Bx2k, ~25!

and that these solutions even solve theghost-loop-onlyequa-
tions~11!, ~12! exactly for all momenta. Let us try theAnsatz

F~x!5Axa, G~x!5Bxb. ~26!

In the infrared asymptotic regime the gluon loop does
contribute to lowest order. Substituting Eq.~26! into the in-
tegral equations~11!, ~12! we calculate

A21x2a5A21s2a1lZ̃1B2F3

2

1

21b
2

1

31b
2

1

4b G
3~x2b2s2b! ~27!

and

B21x2b5B21s2b2
9

4
lZ̃1ABF 1

21b
2

1

a1bG
3~xa1b2sa1b! ~28!

on condition that

b.22 ~29!

to avoid infrared singularities. The powers on both sides
Eqs.~27!, ~28! agree if

a522b,

and defining the indexk by

a52k, b52k ~30!

we find that both the constant and the power terms in
~27! and Eq.~28! match if

lZ̃1AB25F 3

2~22k!
2

1

32k
1

1

4kG21

~31!

and

lZ̃1AB252
4

9 F 1

22k
2

1

kG21

. ~32!

Elimination of lZ̃1AB2 yields a quadratic equation fork,
which remarkably does not depend on the value of the c
pling strengthl:

19k2277k14850, ~33!
6-5
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which has two real solutions

k5
776A2281

38
, ~34!

or

k1'0.769479 and k2'3.28315. ~35!

The second root is spurious: it must be rejected becau
gives rise to infrared singularities and thus does not giv
solution of the integral equation.

Replacement ofk by k1 in Eq. ~31! or Eq.~32! yields the
condition:

n5lZ̃1AB2'0.912771. ~36!

From Eq.~23! we know that the running coupling is given b

a~x!54plF~x!G2~x! ~37!

in the Landau gauge. Condition Eq.~36! is important, as it
tells us that the running coupling has a non-trivial infrar
fixed point

lim
x→0

a~x!'11.4702. ~38!

This means that the ghost field, which only introduces qu
titative corrections to the perturbative ultraviolet behavior
the running coupling, does alter its infrared behavior in
very drastic way.

We will show further on that the running coupling re
mains almost constant up to a certain momentum scalx̃,
after which it decreases as 1/logx. The momentum scale a
which the constant bends over into a logarithmic tail
closely related to the value ofLQCD . This is easily under-
stood intuitively, since the perturbative ultraviolet behav
of the running coupling blows up very quickly as the m
mentum gets down toO(LQCD).

VI. INFRARED ASYMPTOTIC SOLUTION

Although we have seen in the previous section that
pure power behaviors forF(x) andG(x) solve the reduced
equations exactly, these power solutions only give rise t
two-dimensional space of solutions. However, the numer
results told us that the equations were much richer then
initially believed. These numerical results tended to sugg
that the power solutions are only one very special tw
dimensional family of solutions in the midst of a who
three-dimensional space. Typical non-power solutio
showed an infrared behavior completely consistent with
power solution mentioned earlier, which then bends o
quite rapidly at some momentumx̃ into a completely differ-
ent ultraviolet behavior which seemed to be proportiona
some power of the logarithm of momentum. A straightfo
ward investigation of the ultraviolet asymptotic behavior
the solutions tells us that such powers of logarithms are
deed consistent ultraviolet solutions, but no obvious mec
nism seemed available to match the infrared to the ultravi
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parts of the solutions, making us believe at first that
numerical program was giving us spurious pseudo-solutio
due to some numerical inaccuracies or artifacts. One of
main reasons was that the infrared power behavior only c
tains one free parameter, and a standard asymptotic ex
sion does not add any corrections to the leading power. If
infrared asymptotic solution contains only one paramete
was very unclear how an infinite number of solutions w
log-tails could develop out of each power solution. Nev
theless the numerical results indicated that each power s
tion had an infinite number of corresponding log-tailed so
tions, and each solution seemed to be characterized by
momentum at which the log-tail sets in.

The traditional asymptotic expansion one would norma
try, is as follows:

F~x!5x2k(
i 50

N

Aix
i ~39!

G~x!5x2k(
i 50

N

Bix
i . ~40!

The reason for this is that each term in the expansion usu
generates terms, through integration, that are of the s
power or one unit higher. However, the fact that the eq
tions under consideration areexactly solved by the power
solution alters the reasoning. The leading power term d
not generate additional, next-to-leading order terms, and
Ai ,Bi for i .0 have to be zero for consistency reasons.

However, the fact that the power solution solves the in
gral equations does not mean that this is the unique solut
and we next tried an infrared asymptotic solution of t
shape:

F~x!5A0x2k1A1xa1

G~x!5B0x2k1B1xb1 ~41!

with a1.2k and b1.2k. Substitution of these solution
into Eqs.~11!, ~12!, tells us that consistency is obtained
a12b15k, as for the leading power, but it gives an add
tional constraint, fixing the value of the exponent of the ne
to-leading exponent. However, the solution proposed ab
does generate additional higher order terms, and consis
asymptotic infrared expansions can be built as follows:

F~x!5x2k(
i 50

N

Aix
ir

G~x!5x2k(
i 50

N

Bix
ir, ~42!

where the exponents of successive powers always incr
by the same amountr.0. To check the consistency of thes
infrared asymptotic expansions, we substitute them into E
~11!, ~12!. We make a Taylor expansion of the left-han
sides of these equations and expand the series multip
tions, before integration, on the right-hand sides. Con
6-6
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tency requires that the coefficients of equal powers of m
mentum match each other on both sides of the equation

The conditions on the leading term remain unchanged
described in Sec. V, withk'0.769479 andn5lZ̃1A0B0

2

'0.912771. Equating the second order terms on left-
right-hand sides of both integral equations yields the follo
ing set of twohomogeneouslinear algebraic equations fo
a1[A1 /A0 andb1[B1 /B0 :

a1

n
1S 3

2~22k1r!
2

1

32k1r

1
3

2~22k!
2

1

32k
2

1

22k1r Db150

3S 1

k1r
2

1

22k Da11S 1

k1r
2

1

22k1r
1

4

9n Db150.

This set of equations will only have non-trivial solutions
its determinant is zero, in which case it will have a on
parameter infinite number of solutions. The characteri
equation is

29.27685r4215.5544r3130.2899r2171.5686r50.
~43!

The four solutions are:

r50, r51.96964, r521.8231660.770012i .
~44!

The solutionr50 corresponds to the pure power solutio
The two complex solutions are spurious as they are not c
sistent with Rer.0, while the solutionr51.96964 gives
rise to consistent infrared asymptotic expansions.
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The linear homogeneous set of equations then yields

h[b1 /a150.829602, ~45!

and the solutions of this set of equations can, for instance
parametrized bya1 .

Let us define

an5An /A0 , bn5Bn /B0 , ~46!

in terms of which we find the followingheterogeneousset of
equations fora2 andb2 :

a2

n
1F 3

2~22k!
2

1

32k
1

3

2~22k12r!

2
1

32k12r
2

1

22k12r
b2

5
a1

2

n
2S 3

2~22k1r!
2

1

32k1r
2

1

2~22k12r! Db1
2

3F 1

k12r
2

1

22kGa21F 1

k12r
2

1

22k12r
1

4

9nGb2

5
4b1

2

9n
2S 1

k12r
2

1

22k1r Da1b1 , ~47!

with unique solution

a250.408732a1
2, b251.31169a1

2

and fora3 ,b3 :
al
a3

n
1F 3

2~22k!
2

1

32k
1

3

2~22k13r!
2

1

32k13r
2

1

22k13r Gb3

5
2a1a22a1

3

n
2F 3

2~22k12r!
2

1

32k12r

3

2~22k1r!
2

1

32k1r
2

1

22k13rGb1b2F 1

k13r
2

1

22kGa3

1F 1

k13r
2

1

22k13r
1

4

9nGb3

5
4~2b1b22b1

3!

9n
2S 1

k13r
2

1

22k12r Da1b22S 1

k13r
2

1

22k1r Da2b1 ~48!

with unique solution

a3520.761655a1
3, b350.783905a1

3 .

By induction one can prove that the higher order terms all yield sets of equations of the same nature as Eq.~47! and Eq.~48!,
where the right-hand side of the set defining the coefficientsan ,bn are proportional toa1

n . This means that we have a gener
solution for thenth order coefficient of the type

an5 f na1
n , bn5gna1

n ~49!

for n.1, where thef n ,gn are constants~independent ofl and of Z̃1).
6-7
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The asymptotic expansions Eq.~42! can thus be written in the form

F~x!5A0x2kS 11(
i 51

N

f ia1
i xirD

G~x!5B0x2kS 11(
i 51

N

gia1
i xirD , ~50!

whereA0 , B0 anda15A1 /A0 are chosen to be the free parameters spanning the whole three-dimensional space of s
of Eqs.~11!, ~12! in the infrared region, and where~to 6 significant figures!

n[lZ̃1A0B0
250.912771, k50.769479, r51.96964

f 151, f 2 50.408732, f 3520.761655,...

g15h[b1 /a150.829602, g251.31169, g350.783905,... . ~51!
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It is precisely the existence of a third independent parame
namelya1 , which allows the infrared power solution to ben
over in a logarithmic tail in a way consistent with the integ
equations. To build a solution that is both consistent with
infrared asymptotic expansion set up in this section and
asymptotic ultraviolet logarithmic behavior which will be d
rived in the next section, the parametera1 has to be negative
as has been inferred from the numerical results calcula
with the Runge-Kutta method and with the direct integ
equation method. Ifa150 we retrieve the pure power solu
tion and ifa1.0 there does not seem to be a singularity-fr
solution forxP@0,L2#.

As we have shown in Sec. III, the three-dimensional fa
ily of solutions can also be constructed once we have fo
one solution, just by relying on the three distinct scale inva
ances~13!, ~14!, ~15!. How these scale invariances corr
spond to choices of infrared asymptotic parameters will n
be elucidated.

The function scalings~13!, ~14! of F(x),G(x) correspond
to similar scalings ofA0 ,B0 in the infrared expansions Eq
~50!,

Ã05A0 /a, B̃05B0 /b,

such that condition Eq.~51! remains satisfied withl̃
5lab2, anda1 is left unchanged.

Less trivial is the momentum scaling invariance of t
space of solutions:

F̂~x![F~ tx!, Ĝ~x![G~ tx!. ~52!

Using these definitions in Eq.~50!, we find, after some rear
rangement,

F̂~x!5~ t2kA0!x2kS 11(
i 51

N

f i~ tra1! ixirD

09403
r,
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e
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Ĝ~x!5~ t2kB0!x2kS 11(
i 51

N

gi~ tra1! ixirD .

This shows that the infrared expansions for the momen
scaled functionsF̂(x),Ĝ(x) correspond to asymptotic expan
sions parametrized by

Â05t2kA0 , B̂05t2kB0 and â15tra1 , ~53!

and that the asymptotic expansions indeed obey Eq.~50! and
the conditions Eq.~51!. As we expected, there is a one-t
one correspondence between the solutions constructed
the scaling invariances based on the symmetries of the e
tions, and the parametersA0 , B0 anda1 characterizing their
infrared expansions.

Let us now construct the asymptotic expansion of the r
ning coupling~with Z̃151) using the expansions~50!:

l~x!5lF~x!G2~x!

5lA0B0
2S 11(

i 51

N

f ia1
i xirD F S 11(

i 51

N

gia1
i xirD G2

~54!

or ~again truncating at N!

l~x!5nS 11(
i 51

N

hia1
i xirD , ~55!

where

h152.65920, h255.37956, h356.97232,...,

which tells us that the running coupling only depends on
dimensionful parametera1[A1 /A0 , and is independent o
l, A0 and B0 . Furthermore, we can show from Eqs.~52!,
~53! that the running coupling corresponding to the para
eter ã1 , is identical to the running coupling with paramet
6-8
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a1 after scaling the momentum with a factort5(ã1 /a1)1/r.
This tells us that the momentum units ofa1 are unambigu-
ously related to the physical scale of the experimentally
termined running coupling.

We now introduce a momentum scaleV2:

V25
1

~h1ua1u!1/r ~56!

~recall thata1,0), such that

l~x!5nX11(
i 51

N

~21! i h̃i S x

V2D irC, ~57!

where we defined

h̃i5
hi

h1
i : h̃151, h̃250.760753, h̃350.370785,... .

We will see from the numerical results thatV2 is a good
estimate of the scale up to which the infrared asympto
expansion remains valid.

VII. ULTRAVIOLET BEHAVIOR

We now turn to the investigation of the ultraviole
asymptotic behavior of the solutions. As discussed bef
the numerical results show a three-dimensional space o
lutions, which has been confirmed by an analytical study
the global symmetries of the integral equations and by
study of the infrared asymptotic expansions of the solutio
Except for the pure power solution, all these solutions be
over in a log-tail above a certain momentum scalex. We will
now check the consistency of such ultraviolet logarithm
solutions.

Suppose the solutions forF(x) and G(x), taking on the
valuesFm andGm at some momentumm in the perturbative
regime, have the following ultraviolet behavior:

F~x![FmFv logS x

m D11Gg

~58!

G~x![GmFv logS x

m D11Gd

. ~59!

We check the consistency of these ultraviolet solutions
substituting these expressions in Eqs.~11!, ~12!, thus deter-
mining the values ofg, d andv.

The ghost equation~12! yields, to leading log,

Gm
21Fv logS x

m D11G2d

5Gm
21Fv logS s

m D11G2d

2
9

4
lZ̃1FmGm

3E
x

s dy

y Fv logS y

m D11Gg1d

. ~60!
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After evaluating the integral we get

Gm
21Fv logS x

m D11G2d

5Gm
21Fv logS s

m D11G2d

2
9lZ̃1FmGm

4v~g1d11!

3H Fv logS s

m D11Gg1d11

2Fv logS x

m D11Gg1d11J .

~61!

Matching the index of the leading powers of logarithms
Eq. ~61! one finds the consistency condition:

g12d521 ~62!

and, equating the leading log coefficients in Eq.~61!, using
Eq. ~62!, we get

lZ̃1FmGm
2 5

2v

9
~g11!. ~63!

Substituting the solutions Eqs.~58!, ~59! in the gluon equa-
tion Eq.~11! and keeping only the leading log terms, we fin

Fm
21Fv logS x

m D11G2g

5Fm
21Fv logS s

m D11G2g

1lZ̃1Gm
2 E

x

s dy

2y Fv logS y

m D11G2d

. ~64!

After performing the integrals, we find

Fm
21Fv logS x

m D11G2g

5Fm
21Fv logS s

m D11G2g

1
lZ̃1Gm

2

2v~2d11!

3H Fv logS s

m D11G2d11

2Fv logS x

m D11G2d11J .

~65!

Consistency of the exponents on both sides of the equatio
automatically guaranteed by Eq.~62!. Then, equating the co
efficients of the leading log contributions of Eq.~65!, and
substituting Eq.~62!, we obtain

lZ̃1FmGm
2 52vg. ~66!

From Eqs.~62!, ~63!, ~66! we then find

g5
1

8
, d52

9

16
~67!

and the equivalent conditions Eqs.~63!, ~66! yield
6-9
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v54lZ̃1FmGm
2 . ~68!

Thus, the ultraviolet solutions forF(x),G(x) can be written
as

F~x!5FmF4lZ̃1FmGm
2 logS x

m D11G1/8

~69!

G~x!5GmF4lZ̃1FmGm
2 logS x

m D11G29/16

~70!

and the renormalization group invariant running coupling
given by

l~x!5lF~x!G2~x!5
1

4Z̃1logS x

m
D 1

1

lFmGm
2

. ~71!

We can rewrite this in the form

l~x!5
1

b0 logS x

LQCD
2 D , ~72!

whereb054, and the QCD scale is given by

LQCD
2 5m expS 2

1

4lFmGm
2 D , ~73!

if Z̃151. We see that fixinglFmGm
2 at a scalem, in the

perturbative regime, indeed amounts to a definition the va
of LQCD .

The leading log coefficient isb054, but this is not in
agreement with perturbation theory, whereb0511. How-
ever, the reason for this is obvious, as we only considered
ghost loop and discarded the gluon loop in the gluon eq
tion.

VIII. RESULTS

Knowing the infrared and ultraviolet asymptotic beha
iors of the coupled equations~11!, ~12!, we now go on to
solve the equations numerically in order to see if we can fi
consistent solutions over the whole momentum range, c
necting both asymptotic regions, hopefully giving us mo
insight into the transition from the regime of asymptotic fre
dom to the state of confinement.

We use a numerical method developed by one of us
the study of dynamical fermion mass generation in QE4
@12#. This method, which directly solves the coupled integ
equations by an iterative numerical scheme, is explaine
more detail in Appendix B.

Using this method, we performed a meticulous study
the equations Eqs.~11!, ~12!. We note that, for a fixed value
of l, the equations have two free parameters, for insta
F(s) and G(s) @restricted by Eq.~36!, lF(s)G2(s)
<0.912771# Furthermore, as shown in Sec. III, a scaling ol
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can always be absorbed in a redefinition of the unkno
functions F(x) and G(x), such that knowing the solution
space for one value ofl, we can build the solutions for an
arbitrary value ofl in a straightforward way. Moreover, suc
scalings ofl leave the running couplinglF(x)G2(x) un-
changed.

In practice, we choose an alternative pair of paramet
F(s) and A, whereA is the leading infrared gluon coeffi
cient defined in Eq.~24!. The choice of these two paramete
is suggested by the numerical solution method describe
Appendix B. Indeed, using Eq.~36!, the value ofA also
determines the leading infrared ghost coefficientB, and al-
lows us to compute a quite accurate analytical approxima
to the infrared part of the integral over@0,e2#, if the infrared
cutoff e2 is sufficiently small. The choice ofF(s) as second
parameter can be viewed as a measure of the deviation
the pure power behavior at momentums. We have taken the
subtraction scale to bes51 and varied both parametersA
andF(1)5F1 to scan the two parameter space of solutio
for a fixed value ofl51 and Z̃151. The equations are
solved using the iterative solution method outlined in Appe
dix B, starting from initial guesses constructed in Append
C. As expected, the results exhibit the scaling invarian
discussed in the previous sections.

If we plot the solutions forF(x) andG(x) for various sets
(A,F1), as in Fig. 1, we can check that every solution can
transformed into another one by a unique transformation~t,r!
corresponding to a momentum scalingtx and a function scal-
ing rF (x), G(x)/Ar . The numerical results clearly show th
expected power behavior in the infrared region and the lo
rithmic behavior in the ultraviolet region. The value of th

FIG. 1. Gluon and ghost form factorsF(x) and G(x) versus
momentumx ~on log-log plot!, for l51, A51 andF151025(a),
1024(b), 1023(c), 0.01~d! and 0.1~e!.
6-10



th
ca
th
e
a

r

na
e
ac
e

e
n

hi
i

ic
a

.
ho
th

ig
tu

it
i

lid

o

de

,

VI

is

r-
e

ri-
use

f

m,
tra-
na-
be
er,
in

an-
ior,
tant.

the

be-

RUNNING COUPLING IN NONPERTURBATIVE QCD: . . . PHYSICAL REVIEW D58 094036
exponents and of the coefficients in front of the power in
infrared region is completely consistent with the analyti
treatment of Sec. V, which was also used to compute
infrared part@0,e2# of the integrals analytically. As can b
seen from the plots, the gluon form factor, which starts off
a power with a given coefficientA, will bend over at some
cross-over pointx̃, such that the further logarithmic behavio
of the function consistently leads to a valueF1 at the sub-
traction scales51. The logarithmic behavior ofF(x) and
G(x) also satisfies the ultraviolet leading log behavior a
lyzed in Sec. VII. It is remarkable that both asymptotic r
gimes, infrared and ultraviolet, seem to connect onto e
other at some momentumx̃, with scarcely any intermediat
regime.

If we look at the running coupling we see that all th
solutions are just translations of each other when plotted o
logarithmic momentum scale, as is illustrated in Fig. 2. T
corresponds to the invariance of the space of solutions w
respect to scaling of momentum. It also shows the phys
equivalence of all solutions as such a transformation can
ways be absorbed into a redefinition of momentum units

We also checked the results with a Runge-Kutta met
applied to the set of differential equations derived from
integral equations~see Appendix D!. Comparison of the re-
sults obtained with both methods shows that a very h
accuracy can be achieved over quite a broad momen
range~see Appendix E!.

It is also interesting to compare the numerical results w
the analytic asymptotic calculations in order to investigate
which momentum regions the asymptotic solutions are va
As example we consider the caseA51 and F150.1. To
compute the infrared asymptotic expansion we need to kn
the value of the infrared parametera1 in Eq. ~50!. We used
the Runge-Kutta method, described in Appendix D, in or
to determine the value ofa1 yielding a value ofF(1)50.1
for the gluon form factor, withA51. For this specific case
the value isa1'210.27685 orV2'0.186475@from Eq.
~56!#. The infrared asymptotic expansion, derived in Sec.
is calculated from Eq.~57! and truncated after four terms:

a~x!;
ir

4pnF12S x

V2D r

10.760753S x

V2D 2r

20.370785S x

V2D 3rG .

FIG. 2. Running couplinga(x)5aF(x)G2(x) versus momen-
tum x ~on log-log plot!, for A51 and F151025(a), 1024(b),
1023(c), 0.01~d! and 0.1~e!.
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The ultraviolet asymptotic behavior, derived in Sec. VII,
described by Eq.~72!:

a~x!;
uv 4p

4 logS x

LQCD
2 D ,

where we use Eq.~73!,

LQCD
2 5m expS 2

1

4l~m! D ,

to compute the value ofLQCD for the case under conside
ation. We choosem in the perturbative regime, for exampl
m51032.15, where the numerical results yieldl(m)
[lF(m)G2(m)'0.0259676, and find

LQCD
2 50.06802,

still in arbitrary units, which should be fixed after compa
son of the numerical results with experimental data. Beca
of the incorrect leading log perturbativeb-coefficient of the
ghost-loop-only truncation~see Sec. VII! we will not actu-
ally fix the units as this would give a far too low value o
LQCD .

In Fig. 3 we plot the running coupling versus momentu
together with its infrared asymptotic expansion and the ul
violet asymptotic behavior. The agreement between the a
lytical and numerical results is extremely good, and it can
seen that both asymptotic behaviors flow into each oth
almost without any intermediate regime. The vertical line
Fig. 3 situates the scale ofLQCD

2 . We see thatLQCD
2 lies in

the momentum regime where the infrared asymptotic exp
sion has already taken over from the logarithmic behav
and where the running coupling has become almost cons
Furthermore, the infrared scaleV2'0.186 seems to be a
good measure to delimit the infrared region where
asymptotic expansion is valid.

We can even give a numerical relation betweenV2 and
LQCD

2 ~where the latter is computed from leading log only!,
namely

FIG. 3. Running couplingaF(x)G2(x) versus momentumx ~on
log-log plot!, for parameter valuesA51 andF150.1 together with
its infrared asymptotic expansion and its ultraviolet asymptotic
havior.
6-11
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LQCD
2

V2 '2.74,

and the ratio is the same for all solutions of the equati
~11!, ~12!. The simple relation betweenV and LQCD is a
consequence of the symmetries of theghost-loop-onlytrun-
cation. If we include the gluon loop, with a bare triple gluo
vertex andZ151, the asymptotic expansion of the runnin
coupling will no longer depend ona1 alone, but on the othe
parameters of the infrared expansions as well. Hence an
traviolet renormalization, leading to a specific value
LQCD

2 , will correspond to a family of running couplings, a
having slightly different behaviors in the intermediate r
gime, and there will be an ambiguity in the determination
the non-perturbative running coupling. This is a conseque
of the violation of renormalization group invariance in th
truncation, which implies that different solutions of the equ
tions will correspond to couplings running in different way

IX. INCLUDING THE GLUON LOOP

We will now briefly discuss Eqs.~9!, ~10!, i.e. the equa-
tions where both gluon loop and ghost loop are included
the gluon equation. Although it is this specific truncati
which attracted our attention when we started the invest
tion of the coupled gluon-ghost equations, the requireme
of renormalization group invariance were better met by om
ting the gluon loop. As discussed in the previous sectio
the ghost-loop-only truncation yielded an unambiguous r
ning coupling, determined by one physically relevant para
eter, LQCD . In the following subsections, we will briefly
show what changes occur when we do include the gluon l
and why an ambiguity occurs.

A. Symmetries of the equations

We can repeat the analysis of Sec. III in the truncation
are considering now. It is easy to see that the solution sp
will still be invariant under scaling of momentum~15!, i.e.
when scaling the momentum of any solution of the eq
tions, we retrieve another solution of the same equatio
However, the two-parameter scaling invariance~13!, ~14!,
with respect to the functions themselves, is now reduced
one-parameter scaling invariance because of the additi
constrainta5b on the scaling factors, which comes fro
adding the gluon loop. While theghost-loop-onlycase was
solely a function of productsF(x)G(y)G(z), for various
combinations ofx,y,z, the current truncation depends o
F(x)F(y)F(z) as well as onF(x)G(y)G(z). The fact that
the three-dimensional space of solutions has lost part o
symmetry is important, as it means thatlF(x)G2(x) is not
unique, even after an appropriate scaling of momentum. G
bally we can say thatlF(x)G2(x) is no longer invariant,
because of the admixture oflF3(x) terms. However, even in
the absence of the three-fold symmetry, after inclusion of
gluon loop, the coupled equations still have a thre
dimensional manifold of solutions. The only difference bei
that only two of the three dimensions of the solution spa
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can be reached by simple symmetry operations, while
third dimension now corresponds to deformations of the
lutions.

It is important to note that the loss of symmetry is entire
due to the weakness of the truncation. The exact inclusio
gluon loop, i.e. using the exact full triple gluon vertex an
the exact renormalization constantZ1 , will lead to a recov-
ery of the three-fold symmetry exhibited by the ghost-loo
only truncation.

B. Infrared behavior

Because the ghost equation remains unchanged, it is
to see that the leading infrared behavior in this case will
the same as in theghost-loop-onlycase. The additional gluon
loop in the gluon equation only yields higher order corre
tions. The asymptotic expansion set up in Sec. VI is s
generated in this case, but at some higher order it will h
to be supplemented by other higher order series, which
be related to the leading asymptotic series. We also note
the power solution will not be an exact solution of the equ
tions any more, although it remains the correct leading inf
red asymptotic behavior.

C. Ultraviolet behavior

We will show that the leading log ultraviolet behavior o
the running coupling still has the 1/logx behavior, as ex-
pected from perturbation theory, but that theb-coefficient is
different from the perturbative one. This discrepancy is a
surprising, since one expects the perturbative result to
contained in the ghost and gluon equations considered.
reason why this happens is that, for some reason, the
perturbative result does not consistently solve the n
perturbative equations.

As in Sec. VII, we try the following ultraviolet solutions
for F(x) andG(x), taking on the valuesFm andGm at some
momentumm in the perturbative regime:

F~x![FmFv logS x

m D11Gg

~74!

G~x![GmFv logS x

m D11Gd

. ~75!

We check the consistency of these ultraviolet solutions
substituting the expressions in Eqs.~9!, ~10!. For the ghost
equation, Eq.~10!, the treatment is identical to that of Se
VII and we again have

g12d521, ~76!

and

lZ̃1FmGm
2 5

2v

9
~g11!. ~77!

Substituting the solutions Eqs.~74!, ~75! in the gluon equa-
tion Eq. ~9! and keeping only the leading log terms, we no
find
6-12
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Fm
21Fv logS x

m D11G2g

5Fm
21Fv logS s

m D11G2g

27lZ1Fm
2

3E
x

s dy

y Fv logS y

m D11G2g

1lZ̃1Gm
2 E

x

s dy

2y Fv logS y

m D11G2d

. ~78!

After evaluation of the integrals and substitution of Eq.~76!,

Fm
21Fv logS x

m D11G2g

5Fm
21Fv logS s

m D11G2g

2
7lZ1Fm

2

v~2g11!

3H Fv logS s

m D11G2g11

2Fv logS x

m D11G2g11J
2

lZ̃1Gm
2

2vg H Fv logS s

m D11G2g

2Fv logS x

m D11G2gJ . ~79!

Consistency of this equation requiresg<21/3, in order to
equate the leading log terms on both sides of the equa
We first consider the caseg,21/3, for which the gluon
loop does not contribute to leading log. Then, the con
tency of Eq.~79! requires that

lZ̃1FmGm
2 52vg. ~80!

From Eqs.~77!, ~80! we then find

g5
1

8
²2

1

3
, ~81!

which is inconsistent with the initial assumptiong,21/3.
The only possibility left is

g521/3, ~82!

for which both the gluon and the ghost loop contribute
leading order. From Eq.~76! we then also find

d521/3, ~83!

and the condition Eq.~77! derived from the ghost equatio
yields

v5
27

4
lZ̃1FmGm

2 . ~84!

Equation~79! then becomes
09403
n.

-

Fm
21Fv logS x

m D11G1/3

5Fm
21Fv logS s

m D11G1/3

1
l

v F221Z1Fm
2 1

3

2
Z̃1Gm

2 G
3H Fv logS s

m D11G1/3

2Fv logS x

m D11G1/3J ,

~85!

which leads to the condition:

v5lF21Z1Fm
3 2

3

2
Z̃1FmGm

2 G . ~86!

Equations~84!, ~86! give us

Gm
2 5

28Z1

11Z̃1

Fm
2 , ~87!

which is a relation between the leading log renormaliz
values ofFm andGm , when the renormalization scalem is in
the perturbative regime, in which the leading log dominat
This might seem to be in contradiction to perturbati
theory, where the values of the renormalized quantities
take an arbitrary value and are usually fixed to 1. Howev
Eq. ~87! still contains the renormalization constantsZ1 and
Z̃1 . Taylor has shown thatZ̃1[1 in the Landau gauge@11#,
but one could still hope to be able to achieve the arbitr
renormalization ofF andG by a suitable choice ofZ1 .

If we write the far UV behavior ofF(x) andG(x) as

F~x!;C log21/3 x and G~x!;D log21/3 x, ~88!

then, from Eqs.~74!, ~75!, ~84!, ~87!, the log-coefficientsC
andD of F(x) andG(x) are given by

C5Fmv21/35
1

3 S 7lZ1

11 D 21/3

~89!

and

D5Gmv21/35
2

3
S 11l2Z̃1

3

7Z1
D 21/6

. ~90!

It is interesting to note that these leading log coefficients
independent of the valuesFm and Gm if we take Z15Z̃1
51, and therefore this truncation contradicts the requ
ments of renormalization group invariance.

Let us now look at the ultraviolet behavior of the runnin
coupling. Using the solutions Eqs.~74!, ~75! and substituting
Eq. ~84!, we find

aF~x!G2~x!5
aFmGm

2

27

4
lZ̃1FmGm

2 logS x

m
D 11

. ~91!

Now, divide numerator and denominator bylFmGm
2 :
6-13
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aF~x!G2~x!5
4p

27

4
Z̃1logS x

m
D 1

1

lFmGm
2

, ~92!

which can be written in the familiar form

aF~x!G2~x!5
4p

b0logS x

LQCD
2 D . ~93!

The leading log coefficient,b0527/4 if Z̃151, is not in
agreement with perturbation theory, for whichb0511. This
seems somewhat puzzling, because all the one-loop pe
bative ingredients are contained in our truncation of the n
perturbative equations, and indeed the leading log pertu
tive results can be retrieved from a perturbative expansio
these equations. However, the leading log ultraviolet beh
ior of the nonperturbativesolutions does not coincide wit
the leading log perturbative results. This is in contrast to
ghost-loop-onlytruncation, where the leading log ultraviole
behavior of the nonperturbative solutions yields ab-
coefficient that is identical to that of the perturbative gho
loop-only calculation.

To show how this disagreement arises, we will brie
discuss the difference in the determination of the ultravio
behavior of the nonperturbative solutions in both approxim
tions, with and without gluon loop. In the ghost-loop-on
case we saw in Sec. VII that the anomalous dimension
F(x) and G(x) are determined by equating thecoefficients
of the leading logs in the integral equations, as the con
tency of the log-exponents on left- and right-hand sides
both equations is automatically guaranteed. When we
clude the gluon loop the situation is different and the anom
lous dimensions are determined by the consistency requ
ments of the log-exponents. The equality of the coefficie
of the leading log terms yields an additional constraint giv
by Eq. ~87!. It is this difference in the way of determinin
the anomalous dimensions that seems to be responsibl
the contradiction between perturbative and nonperturba
results when we include the gluon-loop. Although our tru
cation approximates the full vertices by bare ones and
Z151, the question whether the ultraviolet behavior of t
full nonperturbative solution coincides with the results
perturbation theory remains an important issue which
will investigate in the future.

D. Results

We solved Eqs.~9!, ~10! with l51 andZ15Z̃151, for
widely varying values of the parametersA andF1 in order to
scan the two-parameter space of solutions for a givenl.
However, the loss of symmetry seems to cut out part of
solution space. Although we have made a rather thoro
investigation of this, we will not swamp the paper with
detailed discussion since we think that this loss of symme
is unphysical, thus making this truncation less interest
than theghost-loop-onlytruncation. To put it briefly, the fac
that the ultraviolet behaviors ofF(x) andG(x) are indepen-
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dent ofF(m) andG(m) destroys the invariance of the run
ning coupling with respect to the choice of the individu
renormalizations ofF and G. Hence, choosingF(m) too
large will prohibit the construction of a consistent solutio
having the correct ultraviolet asymptotic behavior. ForF(m)
small this is not an obstacle, as we can show that there i
intermediate regime, where the log of momentum take
different power, which allows us to connect to the corre
ultraviolet behavior.

To see this we plotF(x) for A51 andF150.001, 0.01,
0.1, 0.3 and 0.5 in Fig. 4. It is clear that the gluon for
factor, which starts off as a powerAx2k, bends over at the
cross-over pointx̃, such that the further logarithmic behavio
of the function leads to a valueF1 at the subtraction scale
x51. From this plot it is however clear that the curves~d, e!
have a quite different behavior from the others. Their ult
violet behavior is consistent with the log21/3 analytic predic-
tion from Sec. IX C, while the other curves seem to show
logarithmic increase instead. This is of course plausible, a
is possible that the ultraviolet asymptotic behavior only s
in at much higher momenta, and that in between the infra
and ultraviolet asymptotic behaviors there is a intermed
regime.

From a careful investigation of the equations, we can e
find a consistent analytical description of the intermedi
regime, connecting the region of confinement to that
asymptotic freedom, which fits the numerical results e
tremely well. Consider a case whereuF(s)u!uG(s)u. Then,
in the intermediate region,F(x)G2(x)@F3(x), and the
gluon loop will be negligible compared to the ghost loop,
the gluon equation, Eq.~9!. Keeping in mind the treatment o
Sec. VII, we know that this has a consistent ultraviolet so
tion F(x); log1/8 x and G(x); log29/16 x, which remains
valid all the way down to the region where the power beh
ior bends over to a logarithmic behavior. Comparison w
the numerical results shows that indeed the intermediate
gime is very well reproduced by these powers of log. T
ultimate ultraviolet behavior of Sec. IX C will only set in a
extremely high momentum, after the intermediate regime
allowed the form factors to evolve sufficiently in order
connect to the stringently constrained ultraviolet asympto
behavior. The connection of the asymptotic infrared regim
the intermediate log behavior and the asymptotic ultravio
behavior reproduce the numerical result to a good accur

FIG. 4. Gluon form factorF(x) versus momentumx ~on log-log
plot!, for A51 andF150.001(a), 0.01~b!, 0.1~c!, 0.3~d! and 0.5~e!.
6-14
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To evaluate the relevance of this truncation, it is m
interesting to plot the running coupling in Fig. 5. We s
that, in contrast to theghost-loop-onlytruncation of Fig. 2,
the various curves for the running coupling are no lon
mere translations of each other on log-log scale; and thu
we choose the units on each curve such thata(m)[am

exp, we
will find couplings which run in different ways in the inter
mediate regime. This means that the determination of
running of the strong coupling cannot be determined una
biguously in this case.

X. CONCLUSIONS

Following the study of von Smekalet al. @7#, where these
authors studied the coupled system of Dyson-Schwin
equations for the gluon and ghost propagators, using a B
Chiu vertexAnsatzfor the triple gluon vertex and a Slavnov
Taylor improved form for the gluon-gluon-ghost vertex, w
performed a detailed analytical and numerical analysis of
coupled gluon-ghost equations using thebare triple gluon
and gluon-gluon-ghost vertices. The reason that we w
back to the leading-order perturbative vertices was to av
the ‘‘log x’’ problem inherent in theAnsatzof Ref. @7#. We
have obtained a clear understanding of the mechanism th
the source of the new qualitative behavior of the no
perturbative gluon and ghost propagators and of the runn
coupling. First, the qualitative changes to the infrared beh
iors of the propagators are solely due to the coupling of b
propagator equations, and the details of the vertices see
introduce merely quantitative changes. Secondly, the us
the bare vertices ensures that no infrared singularities oc
hence no additional approximations, except for the ver
Ansätze and the y-max approximation, are in princip
needed in order to solve these equations.

However, we did apply one more truncation to t
coupled gluon-ghost equations. From an analysis of the s
metries of the equations and their solutions, we noted
removing the gluon loop, and keeping only the ghost loop
the gluon equation, leads to a set of equations which is c
sistent with the renormalization group invariance of the ru
ning coupling, while this is not the case in the presence
the gluon loop in the approximations employed.

We performed a detailed analytical and numerical stu
of the equations with and without the gluon loop. In the ca
where we removed the gluon loop, we computed the ana

FIG. 5. Running couplinga(x) versus momentumx ~on log-log
plot!, for A51 andF150.001(a), 0.01~b!, 0.1~c!, 0.3~d! and 0.5~e!.
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cal asymptotic infrared expansion, and showed that it
pends on three independent parameters defining the infr
behavior of a three-dimensional family of solutions. We a
derived the analytic ultraviolet asymptotic behavior of t
solutions, which are proportional to powers of logarithm
We then computed the solutions forF(x), G(x) and a(x)
over the whole momentum range with two different nume
cal techniques, the direct solution of the integral equatio
using a Newton iteration method to find Chebyshev appro
mations to the unknown functions on the one hand, and
the other hand, the Runge-Kutta method on the set of dif
ential equations derived from the integral equations. The
merical results agree very well with both asymptotic beh
iors in the infrared and ultraviolet regions. Furthermore t
results of the direct integral equation method and of
Runge-Kutta method agree to a very high accuracy.
found that the equations possess a three-dimensional fa
of solutions and that they all correspond to one and the s
physical running couplinga(x)5lF(x)G2(x).

We repeated the study with inclusion of the gluon loo
using a bare triple gluon vertex and takingZ151, and
showed that since renormalization group invariance is n
violated, the nonperturbative running coupling cannot be
termined unambiguously in this truncation.

To improve on the current study, we should try to inco
porate the gluon loop in the gluon equation in a way th
respects the physical invariances of the problem. For this,
believe that the bare triple gluon vertex will have to be
placed by an improved vertex, like the Ball-Chiu vertex, a
the renormalization constantZ1 will have to be chosen ap
propriately. Furthermore it would be interesting to inves
gate the importance of the y-max approximation.
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APPENDIX A: LOG PROBLEM

Let us spell out in more detail the ‘‘logx’’ problem inher-
ent in theAnsatzof Ref. @7#. With the aforementionedAnsatz
for the ghost-gluon vertex, one obtains for the ghost fo
factor

G21~x!5Z̃32
3g2

8p3 Z̃1E
0

L2

dyyE
0

p

du
sin4u

z2 F~z!

3FG~z!2G~y!1
G~z!G~y!

G~x! G , ~A1!

where x5p2, y5q2, z5(p2q)2, instead of Eq.~4!. The
difficulty is that, if one substitutes Eq.~1! into the right hand
side of Eq. ~A1!, one does not produce a behaviorc1
1c2xk, but ratherc11xk@c21c3 log x#, where thec’s are
constants. The problematical term is the last one in
square parentheses. In fact, after substitution of the infra
behavior~1!,
6-15
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E
0

L2

dyyE
0

p

du
sin4u

z2

F~z!G~z!G~y!

G~x!

;xkE
0

L2

dyy12kE
0

p

du sin4uzk22.

The u integral can be evaluated explicitly in terms of th
hypergeometric function@9#. We obtain

3p

8
xkF E

0

1

dtt12k
2F1~22k,2k;3;t !

1E
x/L2

1 dt

t 2F1~22k,2k;3;t !G
and the second of these integrals behaves, for smallx and/or
largeL, like log L2/x, plus a constant. This is what we mea
by the logx problem. The divergence cannot be absorb
into the renormalization constantZ̃3 , and we conclude tha
the form ~1! is not a solution of the equations of Ref.@7#,
before the angular averaging is made.

The logx problem persists if one adopts the simple y-m
angular averaging as the problematical term becomes

E
x

L2 dy

y

F~y!G2~y!

G~x!
.

Von Smekalet al. circumvent this problem by introducing
modified angular averaging, replacing the form factorG(x)
at external momentumx by its valueG(y) at radial integra-
tion momentumy in the ultraviolet part of the integrals. Th
term in question then becomes

E
x

L2 dy

y
F~y!G~y!.

Now the logx problem disappears, but since their equatio
do not have a solution of the form~1! beforeaveraging, it
would seem difficult to justify the averaging, since it com
pletely changes the properties of the equation.

APPENDIX B: NUMERICAL METHOD

We give an outline of the main features of the numeri
method used to solve the coupled integral equations dire
i.e. without transforming it into a set of differential equ
tions. Unlike most other methods used thus far, we repla
the widely used discretization of the unknown functions
smooth polynomial approximations, introducing Chebysh
expansions for the gluon and ghost form factorsF(x) and
G(x) and using the logarithm of momentum squared as v
able. To improve the accuracy of the Chebyshev approxi
tions we first extract the infrared power behaviors of t
form factors, although this only has a minor influence. T
form factors are approximated by

F~x![Ax2kFa0

2
1 (

j 51

N21

ajTj„s~x!…G ~B1!
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G~x![Bx2kFb0

2
1 (

j 51

N21

bjTj„s~x!…G ~B2!

with

s~x![
log10~x/Le!

log10~L/e!
, ~B3!

and whereL is the ultraviolet cutoff, ande is the infrared
cutoff, only needed for numerical purposes. We require b
integral equations to be satisfied atN fixed external mo-
menta, in order to determine the 2N Chebyshev coefficients
ai ,bi . Using smooth expansions has the advantage of all
ing us an absolute freedom in the choice of quadrature r
used to compute the various integrals numerically. This
required if we want to achieve a high accuracy in our resu
The integration region is first split into an analytical integr
over @0,e2# and a numerical integral over@e2,L2#. The in-
tegral over @0,e2# is computed analytically from the
asymptotic infrared behavior discussed in Sec. V. This
needed as the infrared part of the integral is highly no
negligible, especially in the case of the gluon equation.
an efficient choice of quadrature rule we split the numeri
integral into three regions, these are@e2,min(x,s)#,
@min(x,s),max(x,s)# and @max(x,s),L2#, wherex is the ex-
ternal momentum ands is the subtraction point. The split
ting of the region of numerical integration into three sub
gions is needed as the integrands are not smooth at
boundaries of these regions and too much accuracy is lo
one uses quadrature rules spanning these boundaries. A
sible choice of quadrature rule on each integration regio
for instance a composite 4-points Gaussian integration r
where the composite rules are delimited by the region bou
aries and the values of the external momenta at which
require the integral equation to be satisfied. This setup
yield 2N coupled, non-linear, algebraic equations for the 2N
Chebyshev coefficientsaj and bj . In traditional Dyson-
Schwinger studies, the unknowns are usually determined
what is often called thenatural iteration method, where the
current approximation to the unknowns is used in the in
grals of the right-hand side of the equations in order to p
vide a new approximation to the unknowns used in the le
hand side of the equations. This iteration method howeve
not necessarily convergent, and when it is convergent it o
converges very slowly, as has been shown in Ref.@12#. This
slow rate of convergence is not only inefficient, but mo
importantly it makes it very difficult to get a reliable estima
of the accuracy of the solution. For this reason, our num
cal method uses the Newton method to solve sets of n
linear equations. This method uses the derivatives of
equations with respect to the unknowns to speed up the
vergence. If the starting guess to the unknown coefficient
close enough to the solution, the convergence rate is e
quadratic. Let us symbolically rewrite the coupled function
equations as follows:

f ~x!@F,G#50

g~x!@F,G#50,
6-16
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where f and g are equivalent to the Eqs.~11!, ~12! and x
P@0,L2#. For the numerical solution, we require this equ
tion to be satisfied at the external momentaxi , the functions
F and G are expanded as Chebyshev polynomials with
efficientsaj andbj , and the integrals are approximated by
suitable quadrature rule. The equations then become

f̃ ~xi !@aj ,bj #50

g̃~xi !@aj ,bj #50,

wherei , j 50...N21 and f̃ and g̃ are the numerical approxi
mations to f and g when the integrals are replaced wi
quadrature rules.

The Newton method will yield successive approximatio
to the solutions, given by

aj
n115aj

n2Daj
n11

bj
n115bj

n2Dbj
n11 ,

and the (n11)-th improvementsDaj
n11 , Dbj

n11 are given
by the solutions of the 2N32N set of linear equations

d f̃ n~xi !

daj
Daj

n111
d f̃ n~xi !

dbj
Dbj

n1150

dg̃n~xi !

daj
Daj

n111
dg̃n~xi !

dbj
Dbj

n1150,

where the equations are taken at theN external momentaxi
and each equation includes implicit summations overj .

The total accuracy depends on the combination of
accuracies of the Chebyshev expansion and of the quadr
rule and on the convergence criterion of the Newton ite
tion.

APPENDIX C: STARTING GUESS

The Newton method, which is at the core of our nume
cal method, is a quadratically convergent iterative method
the initial approximations to the unknown functions aresuf-
ficiently closeto the exact solutions. The meaning of suf
ciently close depends however entirely on the kernel of
integral equation. We observed that for the coupled glu
ghost equations, the starting guess must not be too rem
from the exact solution, if the method is to converge. This
in contrast with previous work on chiral symmetry breaki
in QED and on the Mandelstam approximation to the glu
propagator in QCD, where the method was extremely ins
sitive to the starting guess.

It turns out that in the case of the coupled gluon-gh
equations, the starting guesses have to be chosen fairly a
rately, especially in the asymptotic regions. In practice,
used the analytic asymptotic solutions to build good eno
starting guesses for the form factors.

We want to find the solution parametrized by the lead
infrared gluon coefficientA @defined in Eq.~24!# and F1
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5F(1). The leading order infrared ghost coefficient is co
puted from Eq.~36!:

B5A n

lZ̃1A
,

and we definex̃ as

x̃5S F1

A D 1/2k

,

which can be seen as a crude approximation to the bend-
point. A possible construction for the starting guesses is

F~x!5AF x

x

x̃
11G 2kF4n logS x

x̃
11D 11G1/8

G~x!5BF x

x

x̃
11G2kF4n logS x

x̃
11D 11G29/16

,

which has the correct leading infrared asymptotic behav
for F(x) andG(x) and agrees well with their leading ultra
violet logarithmic behavior, as is illustrated in Fig. 6.

Although it seems that the starting guessesF(x) and
G(x) are extremely close to the final numerical solutions,
see that the Newton method does alter the running coup
a(x)54plF(x)G2(x) substantially while converging to th
solution, as is shown in Fig. 7.

APPENDIX D: RUNGE-KUTTA METHOD

Rewrite the equations~11!, ~12!, for s51, as

F21~x!5h1lFG~x!

x2 E
0

x

dyS 3y

2
2

y2

x DG~y!

1E
x

1 dy

2y
G2~y!G ~D1!

and

FIG. 6. Comparison of the solutions forF(x) and G(x) with
their starting guesses used in the iterative Newton method, fol
51, A51 andF150.1.
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G21~x!5z2
9

4
lFF~x!

x2 E
0

x

dyyG~y!1E
x

1 dy

y
F~y!G~y!G ,

~D2!

where h and z are constants. As discussed before we c
choosel51, since an arbitrary value ofl can be recovered
by applying an appropriate scaling to the form factorsF(x)
andG(x).

Let us rewrite the above equations in the form

F21~x!5h1
3

2
G~x!K~x!2G~x!L~x!1

1

2 E
x

1 dy

y
G2~y!

~D3!

and

G21~x!5z2
9

4
F~x!K~x!2

9

4 E
x

1 dy

y
F~y!G~y!,

~D4!

where

K~x!5
1

x2 E
0

x

dyyG~y! ~D5!

and

L~x!5
1

x3 E
0

x

dyy2G~y!. ~D6!

On differentiating the above four equations, we obtain

Ḟ5F2@2 3
2 ĠK2 3

2 GK̇1ĠL1GL̇#1 1
2 F2G2

Ġ5 9
4 G2@ ḞK1FK̇#2 9

4 FG3

K̇5G22K

L̇5G23L,

where Ḟ5dF/dt5x(dF/dx) etc., with t5 log x. After a
little algebra, we can throw the first two of these equatio
into the form

FIG. 7. Comparison of the solution for the running coupli
a(x) with its starting guess, forl51, A51 andF150.1.
09403
n

s

Ḟ53F~X2Y!2FZ~ 3
2 X2Y!

Ġ5ZG, ~D7!

where

X5FGK

Y5FGL

Z5
X~3X23Y22!

4
9 1X~ 3

2 X2Y!
. ~D8!

This system is suitable for an application of the Runge-Ku
method; but we must first address the question of the e
tence and multiplicity of the solutions, first of the differenti
system, and then of the integral equations~D3!, ~D4! from
which they were derived. We already know an~exact! solu-
tion, namely

F~x!5Ax2k

G~x!5Bx2k, ~D9!

wherek was defined in Eq.~34!, and where@compare Eq.
~32! with l51#

B5
2

3AA
S 1

k
2

1

22k D 21/2

'
0.955

AA
. ~D10!

A priori we would expect there to befour free parameters for
the differential system, corresponding say to the values
F(1), G(1), K(1) and L(1), from which the differential
equations could step-by-step be integrated, for example
the Runge-Kutta method. In general, solutions of the diff
ential system would not satisfy the requirementsx2K(x)
→0 andx3L(x)→0 asx→0. In fact the lower limits of the
integrals in Eqs.~D5!, ~D6! would be incorrectly replaced by
nonzero constants. Imposing the requisite boundary co
tions atx50, we expect to reduce the number of arbitra
constants in the general solution from four to two. Sin
there is a scaling invariance that leavesFG2 unchanged, this
means that, after we have removed this trivial degree of fr
dom by fixingA in Eq. ~D9!, we should still have one non
trivial free parameter. Where is it?

In Sec. VI we have seen that we can construct the follo
ing infrared asymptotic expansion, Eq.~50!, for the general
solutionsF(x) andG(x):

F~x!5A0x2kS 11(
i 51

N

f ia1
i xirD

G~x!5B0x2kS 11(
i 51

N

gia1
i xirD . ~D11!

We expect these series to have zero radius of converge
so they have been truncated in the anticipation that they
asymptotic series—that is, for small values ofx, there will
6-18
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be an optimal truncation point,N, for which the finite series
is a good approximation. From this expansion we see t
besides the parametersA0 and B0 , there is one more free
parameter,a1 . On substituting the series forG in the defi-
nitions Eqs.~D5!, ~D6!, we find

K~x!5B0x2kS 1

2k12
1(

i 51

N gia1
i xir

2k1 ir12D
L~x!5B0x2kS 1

2k13
1(

i 51

N gia1
i xir

2k1 ir13D . ~D12!

The knowledge of the infrared asymptotic expansions
F(x), G(x), K(x) andL(x) allows us to use a Runge-Kutt
method, starting from a momentum point deep in the infra
region and building the solution for increasing momenta. T
Runge-Kutta method was run using theNDSOLVEroutine of
MATHEMATICA 3.0. The problem is solved as a function
t5 log x and as the starting point, the IR series Eqs.~D11!,
~D12! are evaluated atx50.0001 withN58, using the coef-
ficients f j andgj which are calculated withMATHEMATICA as
well. The Runge-Kutta routine is run with 25 digit precisio
and 10,000 steps fromx51024 to x5104 for various values
of a1,0. The results produced by this method agree
tremely well with those found with the direct integral equ
tion method, as can be seen in Appendix E.

APPENDIX E: COMPARING THE RUNGE-KUTTA
AND THE DIRECT METHOD

It is interesting to compare the two numerical metho
used to solve the coupled set of integral equations.
Runge-Kutta method is a local method, which computes
function values at each point using the function values
neighboring points, starting from a momentum value deep
the infrared region and the asymptotic expansion at
point, while the direct integral equation method is a glob
method, the complete momentum range being solved sim
taneously. Each method employs a different set of par
eters. For a givenl, the Runge-Kutta method uses the infr
G

J
d

,
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red coefficientsA0 anda1 , while the direct method usesA0
andF1 . To compare results, we first have to determine
parameter sets corresponding to the same solution in
three-dimensional space of solutions. We run the Run
Kutta method withl51, A051, and leta1 vary till we find
the solution yieldingF(1)50.1. As mentioned before this i
found for a15210.27685. We then compute the solutio
of the Runge-Kutta method at the N values of external m
menta used in the direct integral equation method and c
pare the numerical values found with both methods, us
the maximum norm. ForN581, we find

iFdir2FRKi[max
i 50

N21

uFdir~xi !2FRK~xi !u55.731025

iGdir2GRKi[max
i 50

N21

uGdir~xi !2GRK~xi !u56.031025.

The agreement between these two very different numer
solution methods by far surpasses our initial expectatio
Especially for the direct method it was hoped that the ac
racy would be between 1/100 and 1/1000. However,
above mentioned numbers show that also this met
achieves an even better accuracy.

The Newton iteration of the direct method requires ab
4 iterations to converge and the program needs approxi
tively 19 sec real time to run on a Linux operated Pentiu
200MHz PC. The Runge-Kutta method runs in approxim
tively 9 sec using theMATHEMATICA 3.0 routineNDSOLVE on
the same computer. The use of two different methods is
tremely important, to check the validity and accuracy of t
solutions, especially in the case where the family of solutio
is quite intricate.

Although the Runge-Kutta method is faster and very
curate, it can only be used if the integral equations can
transformed into differential equations1boundary condi-
tions. It also requires a very accurate evaluation of the st
ing values of the functions using the infrared asymptotic
pansion. When the problem cannot be turned into differen
equations, only the direct method will be usable.
,
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