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Abstract: We present a subset method which solves the sign problem for QCD at nonzero

quark chemical potential in 0+1 dimensions. The subsets gather gauge configurations based

on the center symmetry of the SU(3) group. We show that the sign problem is solved for

one to five quark flavors and that it slowly reappears for a larger number of flavors. We

formulate an extension of the center subsets that solves the sign problem for a larger number

of flavors as well. We also derive some new analytical results for this toy model.
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1 Introduction

Numerical simulations of quantum chromodynamics (QCD) at nonzero quark chemical

potential are seriously hampered by the sign problem, caused by the fluctuating sign of

the fermion determinant. Although this sign problem is particularly serious in the four-

dimensional theory, it is already apparent in (0+1)-dimensional QCD (QCD1) [1]. Thus

QCD1 can be used as a toy model to study the sign problem [2], which is the main focus

of the present paper. The sign problem in QCD1 is actually mild such that reweighting

methods can be used in simulations. Nevertheless, it is worthwhile to attempt to solve

the sign problem exactly since such a solution could help us to better cope with the sign

problem in higher-dimensional gauge theories.
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A very general method that has been used in the past to solve or alleviate a number

of sign problems can be called “subset method”. In this method, configurations appearing

in the ensemble are grouped into subsets such that the sum of the weights associated with

these configurations is real and positive. This positivity implies that Markov chains of

relevant subsets can be generated using importance sampling methods in Monte Carlo

simulations. For example, in the dimer algorithm [3, 4], which is a reformulation of strong-

coupling QCD, dimer and baryon loops are gathered into subsets in order to alleviate the

sign problem. Subsets in which the configurations are related by Z2 or Z3 rotations were

introduced to solve the sign problem exactly in simulations of spin models using cluster

algorithms [5, 6] and to alleviate the sign problem in QCD [7–10]. Recently, a subset method

was proposed that solves the sign problem in simulations of a random two-matrix model

of QCD [11, 12]. In this method, the configurations in a subset are related by orthogonal

rotations, and it has since been shown that the subset positivity is closely related to a

projection on the canonical determinant with zero quark number [13]. Since even in 0+1

dimensions QCD has a richer structure than just the canonical partition function with zero

quark number, this particular subset method is not applicable to QCD.

In this work we investigate the idea to construct subsets with real and positive weights

in the context of QCD, and specifically focus on QCD1. Our present application of the

subset idea to an SU(3) gauge theory is fundamentally different from the subset method

applied to random matrix theory. Indeed, the rotations applied in the latter are not allowed

in QCD as they would move the configurations outside the simulated theory. Instead, the

subset construction proposed here is based on the Z3 center symmetry of the SU(3) group.

As mentioned above, the idea of Z3 averaging has been successfully applied in other theories

before. In our case of QCD1, pure Z3 rotations solve the sign problem, but only for a small

number of flavors. We then introduce an extension of the subset construction that solves

the sign problem also for a higher number of flavors.1

Note that there is also a severe sign problem in the U(3) theory in one dimension

[2, 14, 15]. However, this sign problem can readily be solved as the subset method developed

for random matrix theory can be directly ported to this gauge theory. We will not consider

this theory further in this work as its physical content, i.e., the lack of baryons, is clearly

different from that of QCD.

The structure of this paper is as follows. In section 2 we briefly review QCD1. In

section 3 we present the subset construction based on pure Z3 rotations for a single flavor

and show analytically and through numerical simulations that it solves the sign problem.

In section 4 we apply the subset method to a larger number of flavors and observe that the

sign problem reappears for six or more flavors. We show how the remaining sign problem

can be solved by an extension of the subset construction. A summary is given in section 5.

We also compute a number of new analytical results, some of which are used to check the

numerical simulations. Details on their derivation are provided in several appendices.

1Note that for a single flavor the sign problem in QCD1 could also be solved exactly using the dimer

algorithm [3, 4], although this method was not yet explicitly applied to QCD1.
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2 QCD in 0+1 dimensions

The system we analyze is an SU(3) gauge theory on a lattice with zero spatial extent

and Nt sites in the temporal direction, whose physical extent is the inverse temperature

1/T = Nta, with a the lattice spacing. The one-dimensional Dirac operator for a quark of

mass m at chemical potential µ reads [1]

aD =


am eaµU1/2 0 · · · 0 e−aµU †Nt/2

−e−aµU †1/2 am eaµU2/2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · am eaµUNt−1/2

−eaµUNt/2 0 0 · · · −e−aµU †Nt−1/2 am

 , (2.1)

where U1, . . . , UNt are the gauge links, and the opposite sign in front of UNt and U †Nt
accounts for the antiperiodic boundary conditions of the fermions in the temporal direction.

In the following we assume that Nt is even.

Via a gauge transformation all links in the temporal direction can be shifted into a

single link, U1 · · ·UNt ≡ P , where P is the Polyakov loop. Due to the low dimensionality,

there is no field strength (i.e., no plaquette) and thus no gauge action. The partition

function

Z(Nf ) =

∫
dP detNf [aD(P )] , (2.2)

where dP is the Haar measure of SU(3), is thus simply a one-link integral of the determinant

of the Dirac operator for Nf quark flavors, which for simplicity we take to be degenerate,

coupled to a chemical potential µ. Expectation values of observables are defined in the

usual way,

〈O〉 =
1

Z(Nf )

∫
dP detNf [aD(P )]O(P ) . (2.3)

One can show that (for even Nt) the Dirac determinant can be reduced to the deter-

minant of a 3× 3 matrix [1],

det(aD) =
1

23Nt
det(A13 + eµ/TP + e−µ/TP †) (2.4)

with

A = 2 cosh (µc/T ) (2.5)

and critical chemical potential [1, 2]

aµc = arsinh(am) . (2.6)

The chiral limit m = 0 correspond to A = 2. In the continuum limit a → 0 one has

µc → m. Equation (2.4) shows that det(aD) depends on P and µ only through the
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combination eµ/TP . This is due to the facts that (i) all gauge links can be shifted into one,

which then equals P , and (ii) the Dirac determinant depends on µ only through closed

temporal loops, which give rise to a factor of (eaµ)Nt = eµ/T . From now on we set a = 1.

The determinant (2.4) can be decomposed into powers of eµ/T as

detD(P ) =
3∑

q=−3

Dq(P ) eqµ/T , (2.7)

where the coefficients Dq are the canonical determinants.2 From now on we omit the

irrelevant prefactor 1/23Nt in (2.4) such that the first and the last term on the RHS of (2.7)

have unit coefficients, i.e., D−3 = D3 = 1. The coefficients Dq are given in appendix A.

They depend on the configuration, i.e., the Polyakov loop, and are generically complex.

From eq. (2.4) we see that detD(µ) = detD†(−µ) such that the canonical determinants

satisfy D∗q = D−q. The imaginary parts of the coefficients Dq can be cancelled by pairing

each Polyakov loop with its complex conjugate (in the same spirit as in the subsets below),

as detD(P ∗) = [detD(P )]∗.3 The sum of the determinants for P and P ∗ is real, but

without a definite sign. The fact that these real parts can have fluctuating signs causes

the sign problem in probability-based approaches to the path integral. At vanishing µ the

Dirac operator has complex conjugate pairs of eigenvalues such that its determinant is real

and nonnegative.

3 Subset method for Nf = 1

3.1 Subset construction and properties

We first demonstrate the subset method for the one-flavor partition function. The aim of

the subset method is to gather configurations of the ensemble into small subsets such that

the sum of their weights contributing to the partition function is real and nonnegative.

This basic idea is identical to that proposed for random matrix theory in refs. [11, 12],

but the generation of the subsets will be fundamentally different, mainly because of the

stringent constraint that the configurations be elements of the SU(3) gauge group.

In the proposed subset method, starting from a seed configuration P a subset ΩP

is formed containing three SU(3) elements:4 the seed configuration itself and the SU(3)

elements generated by rotating the seed by the two nontrivial center elements of SU(3),

ΩP = {P, e2πi/3P, e4πi/3P} . (3.1)

For any P ∈ SU(3), the rotated configurations are again elements of SU(3) and thus part

of the ensemble. As the subsets are invariant under Z3 rotations, the set of all subsets

2For general gauge group SU(Nc) the lowest and highest powers are ±Ncµ/T .
3In QCD1 we could alternatively pair P with P † instead of P ∗ since detD(P †) = [detD(P )]∗ in this case,

see (2.4). However, in higher dimensions det({U†}) 6= [detD({U})]∗, while detD({U∗}) = [detD({U})]∗

always holds.
4For gauge group SU(Nc) the subset method is generalized in a straightforward way with Nc configura-

tions in each subset.
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forms a three-fold covering of the original SU(3) ensemble. Therefore, we define the subset

weights as

σ(ΩP ) =
1

3

2∑
k=0

detD(Pk) (3.2)

with Pk = e2πik/3P . Note that any of the three configurations can be used as a seed of

the subset. As the Haar measure dP is invariant under the center rotations, the QCD1

partition function can be rewritten as an integral over the subsets,

Z(1) =

∫
dP σ(ΩP ) . (3.3)

To compute observables one has to take into account that the three configurations in a

subset can have different values of the observable, such that

〈O〉 =
1

Z(1)

∫
dP σ(ΩP ) 〈O〉ΩP (3.4)

with subset measurements

〈O〉ΩP =
1

3σ(ΩP )

2∑
k=0

detD(Pk)O(Pk) , (3.5)

where Pk ∈ ΩP and 〈1〉Ω = 1. The measure dP σ(ΩP ) in eq. (3.4) indicates that subsets

of configurations, rather than individual configurations, will be generated in the numerical

simulations, such that observables will be approximated as sample means of NMC subset

measurements,

O =
1

NMC

NMC∑
n=1

〈O〉Ωn . (3.6)

The subset weights σ are the main ingredients of the method, and their properties will

now be analyzed further. From eq. (2.4) we observe that multiplying the Polyakov loop

by a phase factor eiθ can be reinterpreted as adding an imaginary part iθ to the chemical

potential µ/T [13],

detD(eiθP )
∣∣
µ/T

= detD(P )
∣∣
µ/T+iθ

. (3.7)

While this relation holds for any angle θ, we will only use θ = 0, 2π/3, 4π/3 for the rotations

of P in order to remain in the gauge group. By applying eq. (3.7) to the subset weight

(3.2) we find that the sum of determinants in a subset effectively projects the determinant

(2.7) onto its components with zero triality (q mod 3 = 0),5

σ(ΩP ) =
1

3

2∑
k=0

3∑
q=−3

Dq(P ) eq(µ/T+2πik/3) =
1∑

b=−1

D3b(P ) e3bµ/T , (3.8)

5Here we see the difference to the random-matrix model [11–13] and gauge theories with gauge group

U(N), see, e.g., [16]. In those cases, the configuration space allows for rotations by arbitrary angles θ such

that the subsets project onto the sector with vanishing quark number. As a result, the partition function

does not depend on µ at all.
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where in the last step we changed the summation index from q (“quark number”) to b

(“baryon number”). The last equality follows from the well-known formula for the sum of

the q-th powers of the N -th roots of unity,
∑N−1

k=0 exp(2πiqk/N) = Nδq mod N,0. As the

same expansion (3.8) can be derived using any of the three subset elements as the seed for

the subset, it follows that the canonical determinants with triality zero are identical for

the three subset elements. In section 4 we will show that this projection cures, or at least

attenuates, the sign problem depending on the number of flavors being considered.

As the partition function can be written as an integral over the subsets, we obtain

from (3.8) the fugacity expansion

Z(1)(µ) =
1∑

b=−1

Z
(1)
3b e

3bµ/T (3.9)

with canonical partition functions

Z(1)
q =

∫
dP Dq(P ) . (3.10)

The absence of the other triality contributions (q mod 3 6= 0) is a direct consequence of

the center symmetry of SU(3). Although the determinants of the individual configurations

contribute to all triality sectors, the subset approach, by making use of the center symmetry,

automatically projects onto the only triality sector that contributes to the overall partition

function.

Let us rewrite eq. (3.8) as

σ(ΩP ) = D0(P ) + 2 cosh(3µ/T ) . (3.11)

The second term is obviously positive, and from (A.7) the constant term is

D0(P ) = A3 +A(| trP |2 − 3) (3.12)

with A = 2 cosh(µc/T ) ≥ 2 and | trP | ∈ [0, 3] such that D0 is positive, too. Therefore, the

subset weight σ(ΩP ) is real and positive for any m, µ, and P and can be used to generate

subsets with importance sampling in Markov chain Monte Carlo methods.

3.2 Partition function and observables

Once we have formulated the partition function in terms of subsets, it can be computed

analytically by performing a group integration of eq. (3.11), which yields

Z(1) = A3 − 2A+ 2 cosh(3µ/T ) , (3.13)

where we used
∫
dP | trP |2 = 1 as shown in appendix B. Using the definition of A this can

be rewritten as

Z(1) =
sinh(4µc/T )

sinh(µc/T )
+ 2 cosh(3µ/T ) , (3.14)
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which agrees with the literature [1, 2]. From the partition function (3.13) we can easily

compute the chiral condensate as its mass derivative,

Σ = T
∂ logZ(1)

∂m
=

1

Z(1)

4 sinh(µc/T )

cosh(aµc)

[
5 + 6 sinh2(µc/T )

]
, (3.15)

where we have used (2.6) and temporarily restored the lattice spacing a. Note that the

discretization-dependent factor cosh(aµc) goes to one in the continuum limit. From (3.15)

we see that the µ-dependence of the chiral condensate is given by the inverse partition

function, so asymptotically it behaves like e−3|µ|/T .

The quark number density is computed by taking the derivative of the partition func-

tion with respect to the chemical potential,

n = T
∂ logZ(1)

∂µ
=

6 sinh(3µ/T )

Z(1)
. (3.16)

For large µ we find the expected saturation

lim
µ→±∞

n =
6 sinh(3µ/T )

2 cosh(3µ/T )
→ ±3 . (3.17)

3.3 Polyakov loop

Another observable of interest, which, however, cannot be computed directly as a derivative

of the partition function, is the trace of the Polyakov loop. Below, we show that its

expectation value,

〈trP 〉 =
1

Z(1)

∫
dP detD(P ) trP =

1

Z(1)

∫
dP σ(ΩP ) 〈trP 〉ΩP (3.18)

can elegantly be computed using the subset construction. To do so, one needs to evaluate

the subset measurement (3.5),

〈trP 〉ΩP =
1

3σ

2∑
k=0

detD(Pk) trPk . (3.19)

Under the center rotations the Polyakov loop traces transform as trPk = e2πik/3 trP , and

we compute along the lines of (3.8)

〈trP 〉ΩP =
1

3σ

2∑
k=0

3∑
q=−3

Dq(P ) eq(µ/T+2πik/3) × e2πik/3 trP

=
1

σ

[
D−1(P ) e−µ/T +D2(P ) e2µ/T

]
trP . (3.20)

In contrast to the case of the subset weights, a different triality sector (q mod 3 = −1)

contributes to the subset measurement of the Polyakov loop. Substituting eqs. (A.8) and

(A.9) into eq. (3.4) and integrating over P using appendix B we obtain

〈trP 〉 =
(A2 − 1) e−µ/T +Ae2µ/T

A3 − 2A+ 2 cosh(3µ/T )
. (3.21)
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Similarly, the expectation value of the anti-Polyakov loop P † will only contain terms with

q mod 3 = 1, and we have

〈trP †〉 =
Ae−2µ/T + (A2 − 1) eµ/T

A3 − 2A+ 2 cosh(3µ/T )
= 〈trP 〉

∣∣
µ→−µ . (3.22)

For very large chemical potential, the Polyakov loop decays exponentially as it is suppressed

by the partition function in the denominator,

〈trP 〉 ∼

{
e2µ/T , µ→ −∞ ,

e−µ/T , µ→∞ ,
〈trP †〉 ∼

{
eµ/T , µ→ −∞ ,

e−2µ/T , µ→∞ .
(3.23)

Note that 〈trP †〉 6= 〈trP 〉 since the weight with which the average is performed is com-

plex, i.e., the real part of the expectation value of trP is obtained by integrating over

Re(detD) Re(trP )− Im(detD) Im(trP ). For trP † the sign of the second term will be re-

versed, such that different contributions will arise. Note further that the average Polyakov

loop is real. This is because P ∗, which is also part of the SU(3) ensemble, gives a contri-

bution of (detD trP )∗ that cancels the imaginary part in the average.

Since a positive quark chemical potential favors quarks over antiquarks, their free

energies should differ at nonzero chemical potential. This is achieved by the aforementioned

asymmetry between the expectation values of trP and trP † [17]. If we invert the sign of

the chemical potential the roles of quarks and antiquarks are merely interchanged, and we

obtain 〈trP †〉µ = 〈trP 〉−µ.

The quantities eµ/T 〈trP 〉 and e−µ/T 〈trP †〉 only contain triality zero sectors, and from

(3.16) we see that their difference is related to the quark number as

n =
3

A
〈eµ/T trP − e−µ/T trP †〉 . (3.24)

In appendix C we derive relations between the quark number density and the Polyakov

loop for an arbitrary number of flavors.

3.4 Phase diagram

We briefly discuss the phase diagram of QCD1 for one flavor, which can be derived using

the analytical formulas for chiral condensate, number density, and Polyakov loop.

In figure 1 we show the quark number density, the chiral condensate, and the trace

of the Polyakov and anti-Polyakov loop versus chemical potential and temperature for

m = 0.3. A true phase transition only occurs at T = 0 and µ = µc, where the partition

function (for µ > 0) is given by

lim
T→0

Z(1) = lim
T→0

(e3µ/T + e3µc/T ) . (3.25)

From this expression we see that for T → 0 and µ < µc the partition function and all ther-

modynamic observables are independent of µ (a fact that has been termed the Silver Blaze

property [18]), while for T → 0 and µ > µc the partition function and all thermodynamic
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Figure 1. (µ, T )-diagram for the number density (top left), chiral condensate (top right), Polyakov

loop (bottom left), and anti-Polyakov loop (bottom right) for m = 0.3.

observables are independent of m (which can be viewed as an analog of the Silver Blaze

property).

Note that the partition function does not depend separately on the three variables m,

µ, and T but only on the two ratios µ/T and µc/T , where µc is related to m via (2.6).

Therefore it is interesting to look at the observables as a function of these two scaled

variables, see figure 2. Here we defined the modified chiral condensate T∂ logZ(1)/∂µc =

Σ cosh(aµc) = Σ cosh( 1
Nt
µc/T ) to eliminate an explicit dependence on Nt.

3.5 Simulation results

Although most observables in QCD1 can be computed by taking derivatives of the partition

function or performing the integrals over the gauge group explicitly, the main aim of this

work is to construct a numerical method that makes it possible to perform Monte Carlo

simulations of this theory. We therefore implemented the subset method to verify that it

reliably reproduces the analytical predictions. As the subset weights are real and positive

we can generate Markov chains of relevant subsets using the Metropolis algorithm, where

the full SU(3) links were generated according to the Haar measure using the Bronzan

algorithm [19]. We typically generated Markov chains with 100,000 subsets. As most
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Figure 2. (µ/T, µc/T )-diagram for the number density (top left), modified chiral condensate

T∂ logZ(1)/∂µc = Σ cosh(aµc) (top right), Polyakov loop (bottom left), and anti-Polyakov loop

(bottom right).

results only depend on µ/T and µc/T (except for a prefactor in the chiral condensate), the

simulations were performed using the minimally allowed time extent Nt = 2.6

By taking the mass and chemical potential derivatives of the partition function (2.2) we

observe that the chiral condensate and quark number density can be computed as ensemble

expectation values of the observables

OΣ =
1

Nt
tr

[
D−1 ∂D

∂m

]
=

1

Nt
tr
[
D−1

]
, On =

1

Nt
tr

[
D−1∂D

∂µ

]
. (3.26)

To compute the expectation values with the subset method we apply formula (3.6) with

subset measurements (3.5).

We numerically computed the chiral condensate for different values of m using the

subset method and found very good agreement with the analytical prediction of eq. (3.15)

over several orders of magnitude, as can be seen in figure 3.

We also used our Monte Carlo simulations to compute the quark number density and

compared the results with the analytical prediction (3.16) for the massless and massive

cases in figure 4. As can be shown from the theoretical formula, the linear rise at µ = 0 for

6We also performed simulations with Nt > 2 to verify the numerical results.
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Figure 3. Chiral condensate as a function of µ/T for Nt = 2 and Nf = 1 with m = 0.1 and 0.5.

The solid lines are the analytical result (3.15) from [1]. The error bars are smaller than the symbols.
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Figure 4. Quark number density as a function of µ/T for Nf = 1 with m = (0, 0.5, 1). The solid

lines represent the analytical result (3.16).

m = 0 is given by n ∼ 3µ/T . In the massive case, the number density still varies linearly

with µ around µ = 0, but the rise is much slower due to the large denominator in (3.16).

Finally, we measured the average trace of the Polyakov loop and compared the results

with the prediction of eq. (3.21) in figure 5. We indeed observe the µ ↔ −µ asymmetry

(equivalent to the trP ↔ trP † asymmetry) mentioned in section 3.3. This is clearly illus-

trated in the figure by the different exponential decays for large positive and negative µ as

described by eq. (3.23). Measurements of the anti-Polyakov loop would merely correspond

to a µ→ −µ exchange.

4 Nf larger than one

We now analyze the subset method for larger Nf . As we will see below, the Z3 subset

method, introduced in section 3.1 for Nf = 1, completely removes the sign problem for

Nf ≤ 5. The sign problem then reappears for Nf ≥ 6, and we discuss how it can be solved

in this case. We start the discussion with Nf = 2.
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Figure 5. Average trace of the Polyakov loop 〈trP 〉 as a function of µ/T for Nf = 1 with m = 0

and m = 2. The solid lines correspond to the analytical formula (3.21).

4.1 Nf = 2

For two flavors the fermionic weight det2D can be decomposed (up to an irrelevant nor-

malization factor) into

det2D(P ) =

6∑
q=−6

D
(Nf=2)
q eqµ/T , (4.1)

where the first and the last coefficient D
(Nf=2)
±6 are unity again. The Z3 subsets are defined

in a similar way as for Nf = 1,

ΩP = {P, e2πi/3P, e4πi/3P, P ∗, e2πi/3P ∗, e4πi/3P ∗} , (4.2)

where we now also included the complex conjugate links P ∗k in ΩP . Their determinants

satisfy detD(P ∗k ) = [detD(Pk)]
∗, and thus the subset weight

σNf=2(ΩP ) =
1

6

2∑
k=0

det2D(Pk) + c.c. (4.3)

is guaranteed to be real.7 As before, only triality zero contributions survive in this sum,

σNf=2(ΩP ) = D
(Nf=2)
0 + 2 ReD

(Nf=2)
3 cosh(3µ/T ) + 2 cosh(6µ/T ) . (4.4)

The canonical determinants are computed by squaring eq. (A.6) and substituting (A.7)–

(A.10),

D
(Nf=2)
0 = D2

0 + 2(1 + |D1|2 + |D2|2)

= (A6 − 6A4 + 9A2 + 2) + 4(A4 − 3A2 + 2)| trP |2 + (A2 + 2)| trP |4

+ 2(A2 − 2)[(trP )3 + (trP †)3] , (4.5)

D
(Nf=2)
3 = 2(D0 +D1D2) = 2A

[
(A2 − 3) + (A2 − 1)| trP |2 + (trP †)3

]
. (4.6)

7For Nf = 1 (and Nf = 1 only) the inclusion of the complex conjugate links P ∗k was not necessary since

in this case the subset weight was real (and positive) to start with. See also footnote 3 for the reason why

we added P ∗k and not P †k .
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Figure 6. Average phase of the fermion determinant in the phase-quenched ensemble for Nf = 2,

eq. (4.8), as a function of chemical potential and temperature for m = 0.3 (left) and as a function

of the scaled variables µ/T and µc/T (right).

An analysis of these expressions shows that the subset weight σNf=2 is positive for all

Polyakov loops and all values of chemical potential and mass, such that it can be used to

generate Nf = 2 subsets with importance sampling.

Once we know the subset weight, the partition function readily follows by integrating

over the gauge configuration,

Z(2) = (A6 − 2A4 + 3A2 + 6) + 4A (2A2 − 3) cosh(3µ/T ) + 2 cosh(6µ/T ) , (4.7)

where we used the trace formulas of appendix B.

Even though the subset weights are free of the sign problem, the determinants in the

original ensemble have a fluctuating sign. This can be well illustrated by computing the

average phase of the fermion determinant in the phase-quenched ensemble, which is also

the reweighting factor for phase-quenched reweighting (see section 4.2). For Nf = 2 this

average phase can be computed analytically for arbitrary µ and m and is given by

〈e2iθ〉pq =
Z(2)

Z(11∗)
, (4.8)

where Z(2) is given in (4.7) and Z(11∗) =
∫
dP | detD|2 is the phase-quenched partition

function, for which we find through group integration (using either (2.7) in combination

with appendix A and B, or (2.4) in combination with the eigenvalue representation of the

Polyakov loop in appendix D)

Z(11∗) = (A6 − 4A4 + 5A2 + 2) + (4A3 − 4A) cosh(µ/T ) + (2A4 − 4A2 + 4) cosh(2µ/T )

+ (4A3 − 8A) cosh(3µ/T ) + 2A2 cosh(4µ/T ) + 2 cosh(6µ/T ) . (4.9)

The average phase is shown in figure 6.

4.2 Larger Nf

For a larger number Nf of degenerate flavors the fermionic determinant is given by

detNfD(P ) =

3Nf∑
q=−3Nf

D
(Nf )
q (P ) eqµ/T , (4.10)
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where the D
(Nf )
q (P ) are the canonical determinants for Nf flavors. We construct subsets

ΩP in exactly the same way as in eq. (4.2). In analogy to eq. (4.3) the subset weights are

σ(ΩP ) =
1

6

2∑
k=0

detNfD(Pk) + c.c. , (4.11)

and the subset measurements are given by

〈O〉ΩP =
1

6σ(ΩP )

2∑
k=0

[
detNfD(Pk)O(Pk) + detNfD(P ∗k )O(P ∗k )

]
. (4.12)

After adding the determinants of the six configurations in the subset, we effectively project

the determinants on the triality zero sector and obtain

σ(ΩP ) = D
(Nf )
0 (P ) +

Nf−1∑
b=1

2 ReD
(Nf )
3b (P ) cosh(3bµ/T ) + 2 cosh(3Nfµ/T ) . (4.13)

As in the case of Nf = 2, the subset weight was made real by adding the complex conjugate

links to the subsets. However, there is no general argument for the positivity of these real

subset weights for arbitrary number of flavors. In fact, we found that the subset weights

are only strictly positive for small enough Nf . As we increase Nf the subset weights start

to become negative. This first happens for Nf ≈ 5.11 at µ ≈ 0.96 and for the subset

containing the Polyakov loop with eigenvalues (1,−1,−1). In figure 7 we show the value

of the subset weight for this specific subset as a function of the chemical potential for

different numbers of flavors in the massless case.8 As Nf is increased further, the regions

in configuration space and chemical potential where the weights are negative slowly grow,

see also figure 11 below.

Since for larger Nf the subset weights are not positive on the complete configuration

space the subsets cannot be used in importance sampling and the subset method as such

no longer works. Nonetheless, the subsets can still be useful in providing a good auxiliary

system to simulate QCD1 with Nf flavors using reweighting methods. In this case one

generates relevant subsets according to the absolute value of the subset weights and absorbs

the sign in the observable. The expectation value of an observable in the target ensemble

is then given by the ratio of its signed expectation value and the average subset sign, both

measured in the auxiliary ensemble, i.e.,

〈O〉 =
〈(signσ)〈O〉ΩP 〉|σ|
〈signσ〉|σ|

. (4.14)

This is the so-called sign-quenched reweighting scheme applied to the subset method.

Similar auxiliary systems can be considered for the original formulation of the partition

function in terms of the SU(3) links, i.e., without subsets. Below, we compare the reweight-

ing factors of the different approaches to investigate if the subset formulation brings an

improvement to the sign problem. When comparing reweighting schemes it is customary

8For larger masses the threshold number of flavors will be higher.
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As the weights are plotted on a logarithmic scale, the gap from µ/T = 0.57 to 1.49 for Nf = 6

corresponds to negative weights.

to compare their reweighting factors, as these are good indicators of the severity of the

sign problem and enter the computation of all expectation values.

In the subset formulation, the average reweighting factor in the sign-quenched reweight-

ing scheme is the average subset sign in the sign-quenched ensemble,

Rσsq = 〈signσ〉|σ| . (4.15)

As discussed above, a detailed investigation showed that all the subset weights are positive

and the reweighting factor is exactly unity for Nf ≤ 5. Clearly, no reweighting is necessary

when using the subset method in this case. From Nf = 6 on, the average reweighting

factor can become smaller than unity for some range of µ.

For the original link formulation of the partition function, several kinds of reweighting

are possible, e.g., phase-quenched and sign-quenched reweighting. The average reweighting

factors in these two schemes are given by the average phase factor and the average sign of

the fermion determinant in the phase-quenched and sign-quenched ensembles, respectively,

Rdet
pq = 〈eiNfθ〉|det

NfD| , Rdet
sq = 〈sign(Re detNfD)〉|Re det

NfD| , (4.16)

where we used detD = |detD|eiθ. Note that Rdet
pq is the generalization of (4.8) to arbitrary

Nf . The reweighting factors Rdet
pq and Rdet

sq can efficiently be computed numerically with

the subset method as explained in ref. [12, section IV.C].

Let us first discuss phase-quenched reweighting in the link formulation. We derived

analytical formulas for the average phase Rdet
pq in the phase-quenched ensemble, which can

be expressed as the ratio of the unquenched and phase-quenched partition functions, see

eq. (E.1). For even Nf the phase-quenched partition function can easily be computed,

as it can be expressed as an integral over quarks and conjugate quarks. For odd Nf the

– 15 –



 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

Rde
t

pq

µ/T

Nf=1
Nf=2
Nf=3
Nf=4
Nf=5

analytical

 0.992

 0.996

 1

Rσ sq

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

0 0.5 1 1.5 2 2.5 3 3.5 4

Rde
t

pq

µ/T

Nf=6
Nf=12

analytical

Figure 8. Average phase factor Rdet
pq = 〈eiNfθ〉| detNf D| of the fermion determinant in the phase-

quenched ensemble (at vanishing mass) for Nf = 1, 2, 3, 4, 5 (left) and Nf = 6, 12 (bottom right).

The symbols represent the data measured with the subset method, the solid lines are the analytical

results from appendix E. The narrow window at the top of the right panel shows the average sign

Rσsq = 〈signσ〉|σ| of the subset weights, illustrating that there is a mild sign problem for the subset

method when Nf ≥ 6.

computation is less trivial, as it involves an absolute value. Nevertheless, we were able

to calculate analytical expressions for any Nf in the massless case, see appendix E. The

numerical and analytical results for Rdet
pq are shown in figure 8. The numerical results were

computed using the subset method. For Nf = 1 to 5 (left panel) the subset method can

be used as is, but for Nf = 6 and Nf = 12 (right panel) a mild sign problem develops, and

we use sign-quenched reweighting on the subset method, see (4.14). In this case we also

show the average sign Rσsq of the subsets in the small top window. The sign problem in

the subset method is clearly much milder than in the phase-quenched reweighting scheme

using the SU(3) links, as the average sign is much closer to one. Note that the minima

in the bottom and top windows are shifted, meaning that the subset method has no sign

problem where the sign problem of the phase-quenched reweighting scheme is maximal.

Let us now turn to sign-quenched reweighting in the link formulation, where the

reweighting factor is the average sign of the real part of the determinant, rather than

that of the subset weights, see eq. (4.16). While analytical results are not available for

this average sign, numerical results can easily be obtained with the subset method and are

shown in figure 9. Even though the average sign of the determinant is closer to one than

its average phase [20], the subset reweighting scheme is still clearly superior.

Besides computing the average phase of the fermion determinant in the phase-quenched

theory, which is relevant in the analysis of the phase-quenched reweighting scheme, one can

also investigate this average phase in the full dynamical ensemble. An analytical expression

for this quantity is currently not available, but numerical results can readily be obtained

with the subset method. We show these results in figure 10. As expected, the average

phase is smaller in the full theory than in the phase-quenched theory.
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4.3 Extended subsets

Although the sign problem in the subset method is still mild for Nf ≥ 6 and its severity only

grows slowly with increasing Nf it would be preferable to avoid negative subset weights

altogether. To achieve this we now extend the subset construction beyond the mere Z3

rotations introduced in section 3.1.

Different routes can be taken. One could take advantage of the invariance of the Haar

measure under rotation by a constant group element, which implies∫
dP f(P ) =

∫
dP f(GP ) (4.17)

for arbitrary G ∈ SU(3). The QCD1 partition function can then be rewritten as an integral

over extended subsets ΩG
P = ΩP ∪ ΩGP , where ΩP and ΩGP are constructed following
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eq. (4.2).9 The sign problem would then be solved if a constant group element G could

be found for which the sum of determinants of the configurations in ΩG
P is nonnegative.

However, it is not clear how to find such a G as it requires an analysis of the landscape of

the subset weight σ(ΩP ) in the full 8-dimensional parameter space of P .

What seems like a more feasible task is to analyze the landscape of the subset weight

in the eigenvalue representation P = diag(eiθ1 , eiθ2 , e−iθ1−iθ2), see appendix D, and try to

find a constant G of the form G = diag(eiα, eiβ, e−iα−iβ) to solve the sign problem. To see

why this is sensible, first note that any P can be diagonalized as

P = U diag(eiθ1 , eiθ2 , e−iθ1−iθ2)U † . (4.18)

We now shift the angles,

θ1 → θ′1 = θ1 + α , θ2 → θ′2 = θ2 + β , (4.19)

and create a “rotated” link

P ′ = R(P,G) ≡ U diag(eiθ
′
1 , eiθ

′
2 , e−iθ

′
1−iθ′2)U † (4.20)

that has the same eigenvectors as P . It is then straightforward to show that the partition

function can be rewritten as

Z(Nf ) =
1

2

[∫
dP σ(ΩP ) +

∫
dP ′ σ(ΩP ′)

]
=

1

2

∫
dP

[
σ(ΩP ) +

J(θ′1, θ
′
2)

J(θ1, θ2)
σ(ΩP ′)

]
, (4.21)

where J is given in (D.3). The contribution of P ′ is rescaled by the ratio of the Jacobians

of P ′ and P . Now note that in QCD1 the subset weight is a class function, i.e., it only

depends on θ1 and θ2, rather than the full P . We can therefore rewrite (4.21) as

Z(Nf ) =
1

2

∫
J(θ1, θ2) dθ1θ2

[
σ(ΩP ) +

J(θ′1, θ
′
2)

J(θ1, θ2)
σ(ΩP ′)

]
. (4.22)

For observables that are also class functions, it suffices to generate diagonal Polyakov loops

according to the weight J(θ1, θ2). We numerically verified the validity of both (4.21) and

(4.22) by computing observables in both formulations.

The extension of the original Z3 subset by an additional Z3 subset constructed with a

single G does not obey the symmetry of trP under permutations of the angles θ1, θ2, and

θ3 = −θ1 − θ2. Therefore we consider a larger extension of the subset using six rotations

G = {G1, . . . , G6} with all possible permutations of α and β over the three eigenvalues, i.e.,

G1 = diag(eiα, eiβ, e−iα−iβ) , G2 = diag(e−iα−iβ, eiα, eiβ) , G3 = diag(eiβ, e−iα−iβ, eiα) ,

G4 = diag(eiβ, eiα, e−iα−iβ) , G5 = diag(e−iα−iβ, eiβ, eiα) , G6 = diag(eiα, e−iα−iβ, eiβ) .

(4.23)

9This construction can be generalized to more than one group element, i.e., Ω
{G}
P = ΩP∪ΩG1P∪ΩG2P∪. . .

– 18 –



If α = β, −β/2, or −2β the number of permutations is reduced to three. The extended

subsets, containing 21 configurations and their complex conjugates, are defined as

Ωext
P =

6⋃
i=0

ΩP (i) (4.24)

with P (i) = R(P,Gi) using the rotations (4.20), and G0 = 1. The QCD1 partition function

can then be rewritten as

Z(Nf ) =

∫
dP σext

P (4.25)

with extended subset weights

σext
P =

1

7

6∑
i=0

J(P (i))

J(P )
σ(ΩP (i)) , (4.26)

where J(P ) = J(θ1, θ2) and σ(ΩP (i)) is the Z3 subset weight defined in eq. (4.11). The

subset measurement on the extended subset is defined as

〈O〉Ωext
P

=
1

7σext
P

6∑
i=0

J(P (i))

J(P )
σ(ΩP (i)) 〈O〉Ω

P (i)
(4.27)

with the measurement on a single Z3 subset as in (4.12). With this definition, (3.4) and

(3.6) straightforwardly generalize to extended subsets (and any Nf ).

In figure 11 we give an example of the effect of the rotations Gi on the extended subset

weight for Nf = 24 and µ/T = 2.6 (top) and µ/T = 1.3 (bottom).10 Note that the sign

problem is maximal for µ/T = 2.6, see figure 12 below. In the left panels we show the

logarithm of J(P ) times the subset weights (4.11) for the original Z3 subsets. We clearly

see regions where the subset weights are negative. The Swiss-cheese pattern is fairly rigid

in the sense that the location of the holes seems independent of Nf and µ; only their

sizes change, and occasionally some isle-formation is observed inside the holes.11 From

the location of the holes we can make an educated guess for good shifts α and β for the

construction of the rotations Gi. In the right panels of figure 11 we show the logarithm

of J(P ) times the subset weights (4.26) for extended subsets with α and β given in the

caption. The extended subsets solve the sign problem in the illustrated cases. For large

Nf there does not seem to be a single choice G of rotations that solves the sign problem

over the complete µ range, and one should adapt G to the value of µ.12

10Note that allowing θ1 and θ2 to range from 0 to 2π leads to a mosaic of six replicated regions, caused

by the permutation symmetries of the subset weights. The fundamental region can, for example, be defined

as the triangle with corners (θ1, θ2) ∈ {(2π/3, 2π/3), (4π/3, 4π/3), (2π, 0)} delimited by the lines θ2 = θ1,

2θ2 + θ1 = 2π, and θ2 + 2θ1 = 4π.
11The average sign Rσsq equals 0.98836 for µ/T = 2.6 and 0.99988 for µ/T = 1.3, i.e., the sign problem is

much milder in the latter case although the holes are of similar size. In this case the absolute value of the

weights in the negative region is very small compared to the positive region.
12Even if we have picked a G that does not solve the sign problem completely the numerical simulations

can simply switch to sign-quenched reweighting if negative weights occur. The average sign can be used to

monitor the remaining (very mild) sign problem.
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Figure 11. Plot of log[J(P )σ(ΩP )] (left) and log[J(P )σext
P ] (right) as a function of the Polyakov

loop angles for µ/T = 2.6 (top) and 1.3 (bottom), both for Nf = 24 and m = 0. The holes in the

surface correspond to negative weights on the logarithmic scale. On the left, the weights (4.11) of

the original Z3 subsets exhibit a clear sign problem. On the right, the weights (4.26) of the extended

subsets were generated using α = −β = π/3 for µ/T = 2.6 and α = −β = π/4 for µ/T = 1.3,

respectively. We observe that the sign problem is eliminated for these parameter values.

As a final illustration of the extended subsets we compare the average sign of the

original Z3 subset weight to the average sign of the extended subsets with a fixed choice of

α = −β = π/3 as a function of µ/T for Nf = 12, 24, 48 in figure 12. The Z3 subsets have

a mild sign problem, which is completely eliminated by the extended subsets for Nf = 12

and eliminated for almost all values of µ/T for Nf = 24 and 48 (for the fixed choice of α

and β).

We should remark that our subset solution to the sign problem in QCD1 does not

immediately yield a solution to the exponential sign problem occurring in higher dimensions
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tiny deviations from 1 for the extended subsets are hardly visible.

(d > 1), even if the resulting subset weights are positive. Indeed, if we assume naively that

each temporal link requires the construction of its own “one-link subset” with N elements,

we would have NV elements per “lattice subset” for a d-dimensional lattice with volume

V = Nt × Nd−1
s . In that case the number of elements, and thus the computation time,

grows exponentially with the volume. To solve the exponential sign problem, a subset

solution on a higher-dimensional lattice should have a collective nature, where subsets are

formed using collective rather than individual transformations of the links on different sites

such that the higher-dimensional subset is not a direct product of subsets on each lattice

site.

5 Summary

In this paper we presented a subset method to eliminate the sign problem in dynamical

simulations of QCD in 0+1 dimensions at nonzero chemical potential. The SU(3) links are

gathered into subsets, each containing three links that are related by a Z3 rotation. We

showed that the sum of fermion determinants of the three configurations in any such subset

is real and positive for Nf = 1. For Nf = 2, . . . , 5 the real parts of the subset weights are

still positive. Their imaginary parts, which can be nonvanishing, are removed by adding

the complex conjugate links to the subsets such that the subsets contain six links in total.

The positive subset weights can then be used to generate Markov chains of relevant subsets

using importance sampling. The method was illustrated by computing the quark number

density, the chiral condensate, and the Polyakov loop numerically and comparing the data

with analytical results, some of which were derived for the first time in this paper.

For Nf ≥ 6 the subset weights are no longer generically positive. However, their

average sign is still very close to unity so that reweighting methods can be used. We

showed that sign-quenched reweighting in the subset ensemble is much more efficient than

the standard phase-quenched or sign-quenched reweighting on the individual determinants.
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Finally, we constructed extended subsets by performing additional SU(3) rotations. If

chosen judiciously, these extended subsets have positive weights even for Nf ≥ 6.

Although we managed to get rid of the non-positivity of the weights in the partition

function by gathering configurations into subsets, we cannot claim to have solved an expo-

nential sign problem. A creative adaptation of the subset construction to higher dimensions

is needed to arrive at such a solution.
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A One-flavor determinant

In this appendix we compute the coefficients Dq in expression (2.7) for the Nf = 1 deter-

minant. We start with eq. (2.4) without the prefactor 1/23Nt ,

detD = det(eµ P + e−µ P † +A13) , (A.1)

where for simplicity of notation we replaced µ/T → µ. This determinant can be computed

explicitly using the formula for 3× 3 determinants in terms of traces,

6 detM = (trM)3 − 3 trM trM2 + 2 trM3 , (A.2)

where M = eµ P + e−µ P † +A13 in this case. Using the traces

trM = eµ trP + 3A+ e−µ trP † , (A.3)

trM2 = e2µ trP 2 + eµ 2A trP + 3A2 + 6 + e−µ 2A trP † + e−2µ trP †
2
, (A.4)

trM3 = e3µ trP 3 + e2µ 3A trP 2 + eµ 3(A2 + 1) trP + 3A3 + 18A

+ e−µ 3(A2 + 1) trP † + e−2µ 3A trP †
2

+ e−3µ trP †
3

(A.5)

we find

detD =

3∑
q=−3

Dq e
qµ (A.6)

with coefficients

D0(P ) = A3 − 3A+A| trP |2 , (A.7)

D1(P ) = D−1(P )∗ = (A2 − 2) trP + (trP †)2 , (A.8)

D2(P ) = D−2(P )∗ = A trP † , (A.9)

D3(P ) = D−3(P )∗ = 1 , (A.10)

where we also used 6 detP = (trP )3 − 3 trP trP 2 + 2 trP 3 = 6 as P ∈ SU(3), and

trP 2 = (trP )2 − 2 trP †, which follows, e.g., from (D.1).
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B Some integrals of traces

In our calculations we need some integrals of powers of traces of the (anti-) Polyakov loop.

To compute them, we construct the tensor product of k copies of the fundamental and `

copies of the anti-fundamental representation of SU(3) and decompose the product into

irreducible representations,

t = 3⊗ · · · ⊗ 3︸ ︷︷ ︸
k times

⊗ 3̄⊗ · · · ⊗ 3̄︸ ︷︷ ︸
` times

=
⊕
i

niri , (B.1)

where t stands for the tensor product representation and ni is the multiplicity with which

the irreducible representation ri occurs in the decomposition. We now take the trace of P

in the tensor product representation and obtain∫
dP trP (t) =

∫
dP (trP )k(trP †)` =

∑
i

ni

∫
dP trP (ri)︸ ︷︷ ︸

= δi0

= n0 , (B.2)

where r0 is the trivial representation and the last integral follows from the orthonormality

relations of the group characters. Note that (B.2) is only nonzero if (k− `) mod 3 = 0. By

suitable choices of k and ` we obtain∫
dP | trP |2 = 1 from 3⊗ 3̄ = 8⊕ 1 , (B.3)∫
dP (trP )3 = 1 from 3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1 , (B.4)∫
dP | trP |4 = 2 from 3⊗ 3̄⊗ 3⊗ 3̄ = 27⊕ 10⊕ 1̄0⊕ 8⊕ 8⊕ 8⊕ 8⊕ 1⊕ 1 . (B.5)

Alternatively, we could use the eigenvalue representation of P (see appendix D) and inte-

grate over θ1 and θ2.

C Relation between quark number density and Polyakov loop

In this appendix we consider a general number Nf of flavors. The quark number density is

n =
T

Nf

∂ logZ(Nf )

∂µ
=

1

Z(Nf )

∫
dP detNfD tr γ , (C.1)

where γ is defined as

γ =
p− 1/p

p+ 1/p+ 2 cosh(µc)
(C.2)

with p = eµP . Here and below we have replaced µc/T → µc and µ/T → µ for simplicity

of notation. We also assume µc ≥ 0 without loss of generality. After factorizing the

denominator of γ and performing a partial fraction expansion we find

γ =
e±µc(p− 1/p)

(1 + e±µcp)(1 + e±µc/p)

=
1

1 + e±µc−µP †
− 1

1 + e±µc+µP
. (C.3)
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(a) (b) (c)

µ < −µc −µc < µ < µc µc < µ

+µc − µ + + –

+µc + µ – + +

−µc − µ + – –

−µc + µ – – +

Table 1. Signs of the exponents ±µc ± µ in (C.3) for µ < −µc, −µc < µ < µc, and µc < µ.

Although it is not obvious from the final expression, (C.3) is valid for either sign in front

of µc. However, the same sign has to be chosen for all occurrences of µc. Each of the two

terms in (C.3) can be considered as the result of a geometric series. When expanding these

series care has to be taken to ensure their convergence. As the eigenvalues of P all have

unit magnitude, the convergence requires the exponents in (C.3) to be negative. The signs

of these exponents depend on the relative values of µ and µc, for which we distinguish three

cases that are detailed in table 1. From the table we read off that the following expansion

is valid for −µc < µ < µc:

γ =
∞∑
ω=1

(−)ω
(
eω(−µc−µ)(P †)ω − eω(−µc+µ)Pω

)
. (C.4)

To expand (C.3) in a convergent series for µ < −µc we first extract e±µc−µP † from the

denominator of the first term and find

γ =
e∓µc+µP

1 + e∓µc+µP
− 1

1 + e±µc+µP
= −1− 2

∞∑
ω=1

(−)ω cosh(ωµc) e
ωµPω. (C.5)

Analogously, the series for µc < µ is given by

γ =
1

1 + e±µc−µP †
− e∓µc−µP †

1 + e∓µc−µP †
= 1 + 2

∞∑
ω=1

(−)ω cosh(ωµc) e
−ωµ(P †)ω. (C.6)

From the eigenvalue representation of the Polyakov loop we can show (by counting powers

of eiθ1 and eiθ2) that the expectation value of trP±ω is zero for |ω| > 2Nf + 3 such that

substitution of eqs. (C.4)–(C.6) in eq. (C.2) yields

n =


−3− 2

∑2Nf+3
ω=1 (−)ω cosh(ωµc) e

ωµ〈trPω〉 , µ < −µc ,∑2Nf+3
ω=1 (−)ωe−ωµc

(
e−ωµ〈tr(P †)ω〉 − eωµ〈trPω〉

)
, −µc < µ < µc ,

3 + 2
∑2Nf+3

ω=1 (−)ω cosh(ωµc) e
−ωµ〈tr(P †)ω〉 , µc < µ .

(C.7)

We conjecture that all three finite sums are identical over the complete µ-range, which we

explicitly verified for Nf = 1 and Nf = 2. If this is the case, a somewhat more symmetric

equation is found by combining the first and third formula,

n =

2Nf+3∑
ω=1

(−)ω cosh(ωµc)
(
e−ωµ〈tr(P †)ω〉 − eωµ〈trPω〉

)
. (C.8)
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Note that even though the finite sums (C.7) stand out by the simplicity of their coefficients

(for arbitrary Nf ), shorter sums involving lower winding numbers ω, but with typically

more complicated coefficients, also exist. For instance, for Nf = 1 a simpler result is given

in (3.24), while for Nf = 2 we found

nNf=2 =
3

2+cosh 2µc

[
coshµc〈eµ trP − e−µ trP †〉+

1

4
〈e2µ trP 2 − e−2µ tr(P †)2〉

]
. (C.9)

These short sums reduce the maximal winding number for Nf = 1 from 5 to 1 and for

Nf = 2 from 7 to 2. Similar sums can be derived for larger Nf , but no simple formula was

found for their coefficients.

D SU(3) eigenvalue representation

It is often convenient to work in the eigenvalue representation of the Polyakov loop. The

latter is diagonalized as P = UΛU † with

Λ = diag(eiθ1 , eiθ2 , e−iθ1−iθ2) , (D.1)

where θ1, θ2 ∈ [0, 2π] and U ∈ U(3)/U(1)⊗3. The Haar measure is then given by

dP = J(θ1, θ2) dθ1 dθ2 dU , (D.2)

where dU is the normalized measure of U(3)/U(1)⊗3 and the Jacobian is a Vandermonde

determinant that only depends on θ1 and θ2. It is given by

J(θ1, θ2) =
1

24π2

∣∣(eiθ1 − eiθ2)(eiθ1 − e−iθ1−iθ2)(eiθ2 − e−iθ1−iθ2)
∣∣2

=
8

3π2
sin2 θ1 − θ2

2
sin2 2θ1 + θ2

2
sin2 θ1 + 2θ2

2
, (D.3)

where the prefactor ensures
∫
dP = 1.

E Average phase in the phase-quenched theory

In this section we compute the average phase of the Nf -flavor determinant in the phase-

quenched theory. This average phase factor can be written as the ratio of the unquenched

and phase-quenched partition functions,

〈eiNfθ〉pq =
〈(detD)Nf 〉Nf=0

〈|detD|Nf 〉Nf=0
. (E.1)

For odd Nf it is difficult to compute the denominator on the RHS since it involves square

roots. In the eigenvalue representation of P the fermion determinant is given by

detD =

3∏
k=1

(A+ eµ+iθk + e−µ−iθk) with θ3 = −θ1 − θ2 , (E.2)
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where we again replaced µ/T → µ for simplicity of notation. For a single angle we have∣∣A+ eµ+iθ + e−µ−iθ
∣∣ =

∣∣A+ 2 coshµ cos θ + 2i sinhµ sin θ
∣∣

=
[
(2 coshµ+A cos θ)2 + (A2 − 4) sin2 θ

]1/2
. (E.3)

This expression will be raised to the power Nf so that the square root disappears for even

Nf . For odd Nf the square root cannot be taken unless A = 2, which corresponds to the

chiral limit. For simplicity we now consider only this limit, in which∣∣A+ eµ+iθ + e−µ−iθ
∣∣ = 2(coshµ+ cos θ) . (E.4)

We can then compute 〈|detD|Nf 〉0 by integrating over θ1 and θ2,

〈|detD|Nf 〉0 = 8Nf
∫∫ 2π

0
J(θ1, θ2) dθ1d θ2

× [(coshµ+ cos θ1)(coshµ+ cos θ2)(coshµ+ cos(θ1 + θ2))]Nf . (E.5)

In the following we state some explicit results for 〈(detD)Nf 〉0 and 〈|detD|Nf 〉0 in the chiral

limit that have been used in figure 8. For even Nf these results can easily be generalized

to A > 2, while the possibility of such a generalization is not obvious for odd Nf .

〈detD〉0 = 4 + 2 cosh(3µ) ,

〈|detD|〉0 = 2 + 2 coshµ+ 2 cosh(3µ) ,

〈(detD)2〉0 = 50 + 40 cosh(3µ) + 2 cosh(6µ) ,

〈|detD|2〉0 = 22 + 24 coshµ+ 20 cosh(2µ) + 16 cosh(3µ) + 8 cosh(4µ) + 2 cosh(6µ) ,

〈(detD)3〉0 = 980 + 980 cosh(3µ) + 112 cosh(6µ) + 2 cosh(9µ) ,

〈|detD|3〉0 = 330 + 612 coshµ+ 432 cosh(2µ) + 370 cosh(3µ) + 180 cosh(4µ)

+ 90 cosh(5µ) + 40 cosh(6µ) + 18 cosh(7µ) + 2 cosh(9µ) ,

〈(detD)4〉0 = 24696 + 28224 cosh(3µ) + 5040 cosh(6µ) + 240 cosh(9µ) + 2 cosh(12µ) ,

〈|detD|4〉0 = 8434 + 15040 coshµ+ 12904 cosh(2µ) + 9360 cosh(3µ) + 6262 cosh(4µ)

+ 3264 cosh(5µ) + 1832 cosh(6µ) + 720 cosh(7µ) + 272 cosh(8µ)

+ 80 cosh(9µ) + 32 cosh(10µ) + 2 cosh(12µ) ,

〈(detD)5〉0 = 731808 + 914760 cosh(3µ) + 217800 cosh(6µ) + 18150 cosh(9µ)

+ 440 cosh(12µ) + 2 cosh(15µ) ,

〈|detD|5〉0 = 241752 + 464250 coshµ+ 390980 cosh(2µ) + 308390 cosh(3µ)

+ 209600 cosh(4µ) + 132706 cosh(5µ) + 72800 cosh(6µ)

+ 37450 cosh(7µ) + 15540 cosh(8µ) + 6550 cosh(9µ) + 2100 cosh(10µ)

+ 650 cosh(11µ) + 140 cosh(12µ) + 50 cosh(13µ) + 2 cosh(15µ) ,

〈(detD)6〉0 = 24293412 + 32391216 cosh(3µ) + 9447438 cosh(6µ) + 1145144 cosh(9µ)

+ 52052 cosh(12µ) + 728 cosh(15µ) + 2 cosh(18µ) ,

〈|detD|6〉0 = 8100348 + 15385104 coshµ+ 13537836 cosh(2µ) + 10757544 cosh(3µ)
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+ 7905636 cosh(4µ) + 5210856 cosh(5µ) + 3192856 cosh(6µ)

+ 1735920 cosh(7µ) + 875016 cosh(8µ) + 386960 cosh(9µ)

+ 160974 cosh(10µ) + 55440 cosh(11µ) + 18832 cosh(12µ) + 5040 cosh(13µ)

+ 1332 cosh(14µ) + 224 cosh(15µ) + 72 cosh(16µ) + 2 cosh(18µ) ,

〈(detD)12〉0 = 114801908084920000 + 183683052935872000 cosh(3µ)

+ 93809559177963200 cosh(6µ) + 30350151498752800 cosh(9µ)

+ 6136979163350750 cosh(12µ) + 759997419610000 cosh(15µ)

+ 55999809866000 cosh(18µ) + 2357886731200 cosh(21µ)

+ 53588334800 cosh(24µ) + 605176000 cosh(27µ)

+ 2990000 cosh(30µ) + 5200 cosh(33µ) + 2 cosh(36µ) ,

〈|detD|12〉0 = 38228935544196544 + 74588093808767136 coshµ

+ 69256334029071024 cosh(2µ) + 61191395371363712 cosh(3µ)

+ 51446943705501036 cosh(4µ) + 41144000777152416 cosh(5µ)

+ 31295396191130192 cosh(6µ) + 22628417756712768 cosh(7µ)

+ 15550003072387944 cosh(8µ) + 10148555203557056 cosh(9µ)

+ 6288313704156072 cosh(10µ) + 3695893600669920 cosh(11µ)

+ 2059587221609088 cosh(12µ) + 1086906242675088 cosh(13µ)

+ 542935067374728 cosh(14µ) + 256303460885472 cosh(15µ)

+ 114289127660268 cosh(16µ) + 48034918945728 cosh(17µ)

+ 19022357453088 cosh(18µ) + 7076078360208 cosh(19µ)

+ 2472827265612 cosh(20µ) + 808058178928 cosh(21µ)

+ 247249295568 cosh(22µ) + 70294375008 cosh(23µ)

+ 18651768124 cosh(24µ) + 4554250272 cosh(25µ) + 1036301112 cosh(26µ)

+ 213188976 cosh(27µ) + 41112918 cosh(28µ) + 6918912 cosh(29µ)

+ 1120264 cosh(30µ) + 144144 cosh(31µ) + 20880 cosh(32µ)

+ 1456 cosh(33µ) + 288 cosh(34µ) + 2 cosh(36µ) .
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