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Abstract

We present an acceleration of the well-established Krylov-Ritz methods to compute the sign function of large complex
matrices, as needed in lattice QCD simulations involving the overlap Dirac operator at both zero and nonzero baryon
density. Krylov-Ritz methods approximate the sign function using a projection on a Krylov subspace. To achieve a
high accuracy this subspace must be taken quite large, which makes the method too costly. The new idea is to make a
further projection on an even smaller, nested Krylov subspace. If additionally an intermediate preconditioning step is
applied, this projection can be performed without affecting the accuracy of the approximation, and a substantial gain
in efficiency is achieved for both Hermitian and non-Hermitian matrices. The numerical efficiency of the method is
demonstrated on lattice configurations of sizes ranging from 44 to 104, and the new results are compared with those
obtained with rational approximation methods.

1. Introduction

In quantum chromodynamics (QCD) some physical observables rely on the chiral properties of the theory. To
study such observables in a lattice formulation of QCD it is important to discretize the Dirac operator such that it
respects the corresponding chiral symmetry. This is most faithfully achieved using the overlap Dirac operator [1, 2].
To study QCD at nonzero baryon density the overlap formulation was recently extended to include a quark chemical
potential [3, 4]. A major ingredient in the overlap operator, which makes its use very challenging, is the computation
of the sign function of a complex matrix, which is Hermitian at zero baryon density, but becomes non-Hermitian when
a quark chemical potential is introduced.

The search for efficient numerical methods to compute the sign function for the large sparse matrices encountered
in this context is an ongoing field of research. Typically, Krylov subspace methods are employed to evaluate the op-
eration of a matrix function on an arbitrary vector. We distinguish two main variants: the Krylov-Ritz approximation,
which evaluates the function via a projection on the Krylov subspace, and the rational approximation, where the func-
tion is first approximated by a partial fraction expansion, which is then efficiently solved using a multi-shift Krylov
subspace inverter.

In the Hermitian case efficient rational approximation methods for the sign function have been devised [5, 6] and
are currently being used in large scale lattice simulations. The current method of choice uses the Zolotarev partial
fraction expansion [6, 7, 8], which yields the optimal rational approximation to the sign function over a real interval
[9], in conjunction with a multi-shift conjugate gradient inversion. For non-Hermitian matrices, which occur in the
presence of a quark chemical potential, Krylov subspace approximations to the sign function are relatively new and
still under development. Recently, partial fraction expansion methods using the Neuberger expansion [5] with non-
Hermitian multi-shift inverters were proposed [10].

The Krylov-Ritz approximation, which we discuss in this paper, is based on the construction of a Krylov basis
and its accompanying Ritz matrix. Depending on the algorithm used to construct the basis we distinguish between
the Lanczos approximation in the Hermitian case [6], and the Arnoldi approximation [11] or two-sided Lanczos
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approximation [12] in the non-Hermitian case. The latter clearly yields the more efficient function approximation for
non-Hermitian matrices [12]. In the Krylov-Ritz approximation the large complex matrix is projected on the Krylov
subspace, and its sign function is approximated by lifting the sign function of its projected image (Ritz matrix) back
to the original space. The latter sign function is computed to high accuracy using the spectral definition of a matrix
function or using a matrix-iterative method. When a large Krylov subspace is needed to reach the desired accuracy,
the computation of this matrix sign function becomes a bottleneck for the algorithm.

Herein we will introduce an enhancement of the Krylov-Ritz approximation method which substantially reduces
the cost of this internal sign computation and boosts the efficiency of the overall method, such that it competes with,
and even surpasses, the rational function approximation in both the Hermitian and non-Hermitian case. The dramatic
reduction in computation time is achieved by projecting the Ritz matrix on an even smaller, nested Krylov subspace,
after performing a suitable preconditioning step first. The desired sign function is then computed via the sign function
of the inner Ritz matrix, which yields the same accuracy as the original Krylov-Ritz approximation.

The outline of the paper is as follows. In Sec. 2 we introduce the overlap operator and the matrix sign function. In
Sec. 3 we show how the matrix function of large matrices is computed using Krylov-Ritz approximation methods. In
Sec. 4 we introduce the nested Krylov subspace method, which substantially enhances the efficiency of the Krylov-
Ritz approximation to the sign function. We study its convergence properties and present numerical results for various
lattice sizes, including a comparison with rational approximation methods. Finally, our conclusions are given in
Sec. 5. For completeness we have added some algorithms in Appendix.

2. Overlap operator and the matrix sign function

Our motivation to develop numerical algorithms to compute the matrix sign function of large, sparse, complex
matrices comes from its application in lattice quantum chromodynamics (LQCD). The overlap formulation of the
Dirac operator [1, 2], which ensures that chiral symmetry is preserved in LQCD, is given in terms of the matrix sign
function [13], and its definition in the presence of a quark chemical potential µ [3] is given by

Dov(µ) = 1 + γ5 sgn(γ5Dw(µ)), (1)

where 1 denotes the identity matrix, γ5 = γ1γ2γ3γ4 with γ1, . . . , γ4 the Dirac gamma matrices in Euclidean space, sgn
is the matrix sign function, and

Dw(µ) = 1 − κ

3∑
i=1

(T +
i + T−i ) − κ(eµT +

4 + e−µT−4 ) (2)

is the Wilson Dirac operator at nonzero chemical potential [14] with (T±ν )yx = (1 ± γν)Ux,±νδy,x±ν̂, κ = 1/(8 + 2mw),
mw ∈ (−2, 0) and Ux,±ν ∈ SU(3), where Ux,−ν = U†x−ν̂,+ν. The exponential factors e±µ implement the quark chemical
potential on the lattice. For µ = 0 the argument of the sign function is Hermitian, while for µ , 0 it is non-
Hermitian. To compute the overlap operator we need to define the matrix sign function for a general complex matrix
A of dimension n. A generic matrix function f (A) can be defined by

f (A) =
1

2πi

∮
Γ

f (z)(zI − A)−1dz, (3)

where Γ is a collection of contours in C such that f is analytic inside and on Γ and such that Γ encloses the spectrum of
A. If A is diagonalizable, i.e., A = UΛU−1, with diagonal eigenvalue matrix Λ = diag(λ1, . . . , λn) and U ∈ Gl(n,C),
then this general definition can be simplified to the well-known spectral form

f (A) = U f (Λ)U−1, (4)

with

f (Λ) = diag ( f (λ1), . . . , f (λn)) . (5)
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If A cannot be diagonalized, a spectral definition of f (A) can still be derived using the Jordan decomposition [15].
For simplicity, but without loss of generality, we assume diagonalizability in the following. For Hermitian A the
eigenvalues are real and their sign is defined by sgn(x) = ±1 for x ≷ 0 with x ∈ R, such that Eq. (4) readily defines the
matrix sign function. For non-Hermitian A the eigenvalues are complex and require a definition of sgn(z) for z ∈ C.
The sign function needs to satisfy (sgn(z))2 = 1 and reproduce the usual sgn(x) for real x. We define

sgn(z) =
z
√

z2
= sgn (Re(z)) , (6)

where the cut of the square root is chosen along the negative real axis. This choice, although not unique, gives the
correct physical result for the overlap Dirac operator in Eq. (1) (see Ref. [4]).

3. Krylov-Ritz approximations for matrix functions

Since we aim at problems with large matrices, as is the case in LQCD, memory and computing power limitations
require sophisticated methods to deal with the sign function. For a matrix A of large dimension n the common
approach is not to compute f (A) but rather its action on a vector, i.e., y = f (A)x, which is needed by iterative inverters
to compute f (A)−1b or by iterative eigenvalues solvers for f (A). The Krylov-Ritz method approximates the resulting
vector in the Krylov subspace

Kk(A, x) ≡ span(x, Ax, A2x, . . . , Ak−1x) (7)

of Cn, implicitly making a polynomial approximation of degree k − 1 to f (A). The optimal approximation to y in this
subspace is its orthogonal projection y⊥k . For Vk = (v1, . . . , vk), where the vi form an orthonormal basis of Kk(A, x), an
orthogonal projector is given by P = VkV†k , and we have

y = f (A)x ≈ y⊥k = P f (A)x. (8)

However, to compute this projection on the Krylov subspace we already need y, which is the quantity we wanted to
determine in the first place. Thus, we need to replace this exact projection by an approximation. To reduce the large
dimensionality of the problem one typically projects A on the Krylov subspace using Ak ≡ PAP. The projected matrix
Ak has dimension n but rank at most k. The k-dimensional image of the projected matrix Ak is defined by the matrix
Hk = V†k AVk, which is often referred to as Ritz matrix. The components of Hk are the projection coefficients of Ak in
the basis Vk, as Ak and Hk are related by Ak = VkHkV†k (in analogy to the vector case).

The Krylov-Ritz approximation [16, 17] to f (A) consists in taking the function of the Ritz matrix Hk and lifting it
back to the full n-dimensional space,

f (A) ≈ Vk f (Hk)V†k . (9)

This approximation actually replaces the polynomial interpolating f at the eigenvalues of A by the polynomial inter-
polating f at the eigenvalues of Hk, also called Ritz values [17]. Substituting the approximation (9) in f (A)x yields

y ≈ Vk f (Hk)V†k x = |x|Vk f (Hk)e(k)
1 , (10)

where we choose v1 collinear with x, i.e., v1 = Vke(k)
1 ≡ x/|x|, with e(k)

1 the first unit vector of Ck. To evaluate the
approximation (10) we do not need to perform the matrix multiplications of Eq. (9) explicitly. First, one computes the
function f (Hk) of the k-dimensional Ritz matrix to high accuracy, using the spectral definition (4) or a matrix-iterative
method. Then, the final approximation is simply a linear combination of the basis vectors vi, with coefficients given
by the first column of f (Hk) multiplied with |x|.

The Krylov-Ritz approximation described above uses an orthonormal basis of Kk(A, x). For the Hermitian case
such a basis can efficiently be constructed using the Lanczos algorithm, which we listed in Appendix A for com-
pleteness. It generates an orthonormal basis and a tridiagonal symmetric Hk using a three-term recurrence relation.
The non-Hermitian case is more laborious as the construction of an orthonormal basis is typically performed using
the Arnoldi algorithm, which suffers from long recurrences as each basis vector has to be orthogonalized with respect
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to all the previous ones. The two-sided Lanczos algorithm is a suitable alternative [12] which uses two three-term
recurrences to construct bases Vk = (v1, . . . , vk) and Wk = (w1, . . .wk) of the right, respectively left, Krylov subspaces
Kk(A, x) andKk(A†, x), which are biorthonormal, i.e., v†i w j = δi j (see Appendix B for a listing of the algorithm). The
lack of orthogonality of the basis Vk prevents the construction of the orthogonal projector needed for the Krylov-Ritz
function approximation (9). Nevertheless, the biorthonormality between Vk and Wk can be used to construct an oblique
projector P = VkW†k on the right Krylov subspace. The oblique projection of A is Ak = PAP and its k-dimensional
image is defined by Hk = W†k AVk, which we call two-sided Ritz matrix, such that Ak = VkHkW†k . The matrix Hk

generated by the two-sided Lanczos algorithm is tridiagonal. The two-sided Krylov-Ritz approximation to f (A) then
consists in taking the matrix function of Hk and lifting it back to the original space,

f (A) ≈ Vk f (Hk)W†k . (11)

After applying this approximation of f (A) to x we find an expression which is similar to Eq. (10),

y ≈ Vk f (Hk)W†k x = |x|Vk f (Hk)e(k)
1 , (12)

where the last step assumes that v1 = Vke(k)
1 ≡ x/|x|. The price paid to achieve short recurrences in the non-Hermitian

case is the loss of orthogonality of the projection on the Krylov subspace, which translates in a somewhat lower
accuracy of the two-sided Lanczos approximation compared to the Arnoldi approximation, for equal Krylov subspace
sizes. Nevertheless, the large gain in speed makes it by far the more efficient method [12].

In the case where f is the sign function, the approximations (10) and (12) require the computation of sgn(Hk).
Although it could be computed directly with the spectral definition (4), matrix-iterative methods are often cheaper for
medium sized matrices. We choose to employ the Roberts-Higham iteration (RHi) [18]: Set S 0 = Hk and compute

S n+1 =
1
2

(S n + S −1
n ). (13)

This iteration converges quadratically to sgn(Hk), if the sign function for complex arguments is defined by Eq. (6).
The matrix inversion scales like k3 and so will the RHi. For the QCD application considered here, typically 7 to 10
iterations are necessary to converge within machine precision [11, 12].

The hope is that the Krylov-Ritz approximations (10) and (12) are accurate for k � n. The method is known
to work very well as long as no eigenvalues are close to a function discontinuity. However, for the sign function
this method suffers from the sign discontinuity along the imaginary axis. If A has eigenvalues close to this discon-
tinuity the approximating polynomial must steeply change from −1 to +1 over a small interval to give an accurate
approximation. This cannot be achieved with a low order polynomial, i.e., the Krylov subspace must be large, which
makes the algorithm expensive. The common solution to this problem is to use deflation, where the contribution of
the eigencomponents associated to these critical eigenvalues to the sign function is computed exactly.1 The Krylov
subspace approximation is then performed in a deflated space, i.e., the subspace where the directions along the critical
eigenvectors have been removed. We refer to the literature for details [11].

The convergence of the Krylov-Ritz approximations to the matrix sign function is illustrated in Fig. 1: the Lanczos
approximation for the Hermitian case on the left, and the two-sided Lanczos approximation for the non-Hermitian case
on the right. The accuracy of the approximation cannot be determined by comparing to the exact value sgn(A)x, as its
evaluation by direct methods is too costly if A is large. To obtain an estimate for the error, we compute x̃ ≈ sgn(A)2x
(by applying the Krylov-Ritz approximation twice in succession), which should equal x if the approximation to the
sign function were exact, and then take ε = |x̃ − x|/2|x| as a measure for the error. This error estimate proved to be
consistent with the true error obtained by comparing the approximation to the exact solution for 44 and 64 lattices, and
will therefore be used for all lattice sizes. Here, and in all subsequent tests, we choose the test vector x = (1, . . . , 1). As
expected, the accuracy improves with increasing Krylov subspace size k, and a larger deflation gap ∆, corresponding
to a higher number of deflated eigenvectors, leads to a faster convergence. For a given accuracy and equal deflation
gap, the subspace size k required for non-Hermitian A is larger than for Hermitian A.

1In practice we deflated the eigenvalues with smallest modulus |λ| instead of those with smallest absolute real part |Re λ|, as the former are
more efficiently determined numerically, and both choices yield almost identical deflations for the operator γ5Dw(µ) of Eq. (1). The reason for this
is that, as long as the chemical potential µ is not unusually large, the spectrum looks like a very narrow bow-tie shaped strip along the real axis,
and the sets of eigenvalues with smallest absolute real parts and smallest magnitudes will nearly coincide. In the following we therefore define the
deflation gap ∆ as the largest deflated eigenvalue in magnitude, i.e., ∆ = max |λdefl |.
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Figure 1: Accuracy of the Krylov subspace approximation for y = sgn(A)x, where A is γ5Dw(µ) for a 64 lattice (for a lattice volume V the matrix
γ5Dw has dimension 12V , such that dim(A) = 15552 here). Left pane: Hermitian case (µ = 0) using the Lanczos method, right pane: non-Hermitian
case with chemical potential µ = 0.3 using the two-sided Lanczos method. The relative error ε is shown as a function of the Krylov subspace size
k for different deflation gaps ∆ (given in parenthesis).

To analyze the efficiency of the algorithm we briefly sketch the three major contributions to the total CPU time. For
each matrix A the deflation requires the computation of the critical eigenvalues and the corresponding eigenvectors.
The time needed by the rest of the algorithm strongly depends on the eigenvalue gap, as the Krylov subspace size can
be reduced if the deflation gap is increased. As mentioned at the beginning of this section, the product f (A)x is usually
needed for many source vectors x, e.g., as part of an iterative inversion. In this case the expensive deflation of A only
needs to be performed once in an initialization step, while the Krylov subspace part of the algorithm will be repeated
for each new vector x. For this reason we assume from now on that an initial deflation has been performed and we
will concentrate on the efficiency of the Krylov subspace part of the algorithm. We discern two main components
in the Krylov-Ritz method: the construction of the Krylov basis using the Lanczos or two-sided Lanczos algorithms,
where the computation time grows linearly with the subspace size k, and the RHi to compute sgn(Hk), which scales
as k3. Figure 2 illustrates these last two contributions. For high accuracy the Krylov subspace becomes large such
that the cost of the RHi dominates the total CPU time of the Krylov-Ritz approximation and the method becomes
too costly. In the following, the implementation of the Krylov-Ritz approximation for which sgn(Hk) is computed
using Eq. (13) will be referred to as non-nested method. In the next section we will present a nested Krylov subspace
method, which drastically reduces the cost to compute sgn(Hk)e(k)

1 and vastly improves the overall efficiency of the
Krylov-Ritz approximation.

4. Nested Krylov subspace method for the sign function

4.1. Nesting and preconditioning

We introduce a new method which speeds up the expensive computation of the vector sgn(Hk)e(k)
1 required in the

Krylov-Ritz approximations (10) and (12) to sgn(A)x. The idea is to approximate this matrix-vector product by a
further Krylov-Ritz approximation, using a second, nested Krylov subspace (specified below) of size ` � k, i.e.,

sgn(Hk)e(k)
1 = V` sgn(H`)e

(`)
1 , (14)

where V` is the matrix containing the basis vectors of the inner Krylov subspace, constructed with the Lanczos or
two-sided Lanczos method, and H` is the inner Ritz or two-sided Ritz matrix. The sgn(H`) is computed using the RHi
on the inner Ritz matrix H`. After substituting this result in Eq. (10) and (12) we get the nested approximation

y ≈ |x|VkV` sgn(H`)e
(`)
1 (15)
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Figure 2: CPU time t (in seconds) versus accuracy for an 84 lattice configuration in the Hermitian case with deflation gap ∆ = 0.055 (left) and the
non-Hermitian case with µ = 0.3 and deflation gap ∆ = 0.107 (right). The full line shows the total time required to compute sgn(A)x, while the
dashed line gives the time needed to construct the Krylov basis. The difference between both lines represents the time taken by the RHi to compute
sgn(Hk). The irregular convergence pattern for the non-Hermitian case is a well-known feature of the two-sided Lanczos algorithm.

to sgn(A)x. By introducing an additional Krylov subspace, the number of operations necessary to compute sgn(Hk)e(k)
1

is reduced from O(k3) in the non-nested method to O(`3) + O(k`). If ` � k this will very much improve the efficiency
of the Krylov-Ritz approximation.

The obvious choice for the inner Krylov subspace is K`(Hk, e
(k)
1 ). However, it is easy to see that approximations

in this Krylov subspace will not improve the efficiency of the method. The Ritz matrix H` of the Krylov subspace
K`(Hk, e

(k)
1 ) will only contain information coming from the ` × ` upper left corner of Hk, because of the tridiagonal

nature of Hk and the sparseness of the source vector e(k)
1 . This will effectively cut down the size of the outer Krylov

subspace from k to `, which will substantially worsen the accuracy of the approximation if ` is chosen much smaller
than k. Nonetheless, the nested Krylov subspace method can be made to work efficiently if we perform an initial
preconditioning step on the tridiagonal Ritz matrix, replacing2

Hk → H′k =
1
2

[
pHk + (pHk)−1

]
, (16)

with p a positive real number, and construct the approximation to sgn(Hk)e(k)
1 in the Krylov subspaceK`(H′k, e

(k)
1 ). This

alternate Krylov subspace can be used to compute sgn(Hk)e(k)
1 because the transformation leaves the sign unchanged.

To show this, we note that both matrices have identical eigenvectors, as a matrix and its inverse share the same
eigenvectors, and that the sign of their eigenvalues satisfies

sgn
1
2

(
pz +

1
pz

)
= sgn Re

(
pz +

1
pz

)
= sgn Re

(
pz +

pz∗

|pz|2

)
= sgn

[ (
1 +

1
|pz|2

)
︸       ︷︷       ︸

>0

Re(pz)
]

= sgn (z) , (17)

where we used the definition (6). Hence, sgn(H′k) = sgn(Hk) according to Eq. (4).3

As Hk is tridiagonal the cost of its inversion, required in (16), is only of O(k). Moreover, as the transformation
increases the relative gap between the spectrum and the singularity along the imaginary axis (see below), we expect a
clear gain in efficiency for the inner Krylov-Ritz approximation, characterized by ` � k.

For a Hermitian matrix the transformation induced by the preconditioning step is illustrated in Fig. 3 for real
positive eigenvalues (for negative values the graph would be reflected with respect to the origin). The factor p is chosen
to optimize the effect of the transformation on the relative distance to the imaginary axis, which in the Hermitian case

2The factor 1/2 is chosen for convenience. For p = 1 the transformation actually mimics the first step of the RHi (13).
3If Hk is not diagonalizable, the equality can be shown by applying Eq. (17) to the integration variable in the integral representation (3).
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Figure 3: Mapping of the preconditioning step z′ = (pz + 1/pz)/2 for positive real eigenvalues and various values of p.

corresponds to a minimization of the condition number. We examine the condition number for the Hermitian case,
assuming that the spectral support of Hk is similar to that of the original matrix A, after deflation. As can be seen
from Fig. 3, after transformation the smallest eigenvalue (in absolute value) is z′min = 1, while the largest will be given
by the transform of either the smallest or largest eigenvalues of Hk. The smallest condition number will be achieved
when both values are identical, i.e., for p satisfying4

1
2

(
pzmin +

1
pzmin

)
!
=

1
2

(
pzmax +

1
pzmax

)
⇒ popt =

√
1

zminzmax
, (18)

where zmin = min |z| and zmax = max |z|, for z in the spectrum of Hk, and the largest transformed eigenvalue will be

z′max =
1
2

(√
zmax

zmin
+

√
zmin

zmax

)
≈

1
2

√
zmax

zmin
. (19)

In the Hermitian case, the transformation (16) therefore reduces the condition number C by a factor

F =
C
C′

=
zmax

zmin

/
1
2

(√
zmax

zmin
+

√
zmin

zmax

)
≈ 2

√
zmax

zmin
. (20)

The effect of the preconditioning of the Ritz matrix for a typical spectrum of γ5Dw in lattice QCD is illustrated in
Fig. 4 for the Hermitian case. The top and bottom graphs depict the spectra of Hk and H′k, respectively. The spectrum
of the original Ritz matrix has only a small gap at zero, while the gap for the transformed matrix is large. In this
example, the condition number is almost improved by a factor 20. In general, the value of zmax for γ5Dw varies only
slightly with the choice of the simulation parameters and F will mainly depend on the deflation gap.

For the non-Hermitian case, let us assume that the complex spectrum is contained in the circles C(−m, r)∪C(m, r),
with real center m > 0 and radius r < m. The optimal p, maximizing the relative distance from the imaginary axis for
the transformed spectrum, is still given by Eq. (18) which now simplifies to popt = (m2 − r2)−1/2. For this choice the
transformed eigenvalues are contained in the circles C(−m′, r′)∪C(m′, r′) with center m′ = (ms + 1/ms)/2 and radius
r′ = (ms−1/ms)/2, where ms ≡ poptm. This is illustrated in the left panel of Fig. 5, where we show the transformation
of a circle C(m, r) for the optimal and a sub-optimal value of p. For sub-optimal p the transformation yields an inner
and an outer circle-like contour, which merge into the circle C(m′, r′) when p → popt. For popt the relative distance
from the imaginary axis will be maximal and we expect the transformation (16) to work best. The gain in efficiency
will however not be as large as for the Hermitian case. This can be quantified by the relative distance to the imaginary

4In practice popt is only known approximately, as it is computed from spectral information of A instead of Hk . However, this has no significant
impact on the performance of the nested method.
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axis, in analogy to the calculation performed above for the Hermitian case. For the original spectrum we define the
relative distance as

d ≡
min |Re z|
max |Re z|

=
m − r
m + r

(21)

and for the transformed spectrum

d′ ≡
min |Re z′|
max |Re z′|

=
m′ − r′

m′ + r′
=

1
m2

s
=

m2 − r2

m2 . (22)

The improvement factor due to the transformation is given by the ratio of these distances, yielding

F =
d′

d
=

(m + r
m

)2
=

(
2 −

∆

m

)2

, (23)

where we wrote r = m − ∆, with ∆ the deflation gap. When ∆ � m we will have F ≈ 4. For the example shown in
the left plot of Fig. 5 the transformation generates an improvement by a factor F = 3.84, as computed with Eq. (23).
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Figure 6: Red dots: spectrum of Hk in the non-Hermitian case for an 84 lattice with k = 1580, µ = 0.3 and deflation gap ∆ = 0.107. The optimal
p-factor (18) for the transformation (16) is popt ≈ 1.335 (using zmin = ∆ and zmax = 5.243). Blue circles: the corresponding spectrum of the
transformed matrix H′k . As desired, the transformed eigenvalues are well away from the imaginary axis (the vertical lines at x = ±1 serve to guide
the eye). Note the different scales on the x and y axes.

In lattice QCD at nonzero baryon density γ5Dw is usually weakly non-Hermitian and, after deflation, the spectra
are contained in ellipses E(−m, a, b) ∪ E(+m, a, b), with center m ∈ R+ and major and minor axes a and b along the
real and imaginary axes, respectively. The transformation (16) of an ellipse E(m, a, b) with aspect ratio a/b = 10 is
illustrated in the right panel of Fig. 5. For such a narrow ellipse the transformed spectrum is qualitatively similar to
the Hermitian case, as all the eigenvalues are transformed to the right of z′ = 1, i.e., away from the imaginary axis,
such that the high efficiency of the transformation is still guaranteed. The optimal value popt is again determined by
(18) with popt = (m2 − a2)−1/2, as it maximizes the relative distance from the imaginary axis. The transformation is
illustrated for a realistic test case of lattice QCD in Fig. 6, where the eigenvalues and transformed eigenvalues of the
Ritz matrix for γ5Dw(µ) are shown for µ = 0.3.

As we will see below the preconditioning step significantly speeds up the Krylov-Ritz approximation in its appli-
cation to lattice QCD at zero and nonzero chemical potential.

4.2. Convergence

In this section we investigate the convergence properties of the nested method. The method was implemented
to compute the sign function of γ5Dw(µ) needed by the overlap operator (1), for both the Hermitian and the non-
Hermitian case. Whenever the matrix has eigenvalues close to the imaginary axis, these critical eigenvalues are first
deflated to open up a deflation gap, necessary to keep the Krylov subspace within a reasonable size (see Sec. (3)). Our
implementation uses Chroma [19] to compute the Wilson operator. The linear algebra is performed with BLAS and
LAPACK routines. To ensure the efficiency of the nested method a judicious implementation of the preconditioning
step (16), used to construct the inner Krylov subspace, is needed. Explicitly inverting the tridiagonal matrix Hk to
form the full matrix H′k, then constructing the basis of the inner Krylov subspace by successive full matrix-vector
multiplications would make a rather inefficient algorithm. To construct the inner Krylov subspace we do not need to
construct the full matrix H′k explicitly, but only have to apply H′k to ` − 1 vectors of Ck (in the non-Hermitian case
H′k
† is also needed). These products are best computed using the LU decomposition of Hk, which is O(k) and thus

especially efficient for tridiagonal matrices. A detailed listing of the algorithm is given in Appendix C.
The overall accuracy of the nested approximation (15) depends on the parameters k and `, defining the sizes of

the outer and inner Krylov subspaces, respectively. For ` → k the solution of the nested method will converge to that
of the non-nested method with Krylov subspace size k and accuracy εk, so its total error will also converge to εk. To
investigate the accuracy of the nested algorithm, our strategy is to fix the outer Krylov subspace size k, corresponding
to a certain desired accuracy, and vary the inner Krylov subspace size `. We show the convergence results for an 84

lattice configuration in Fig. 7, for both the Hermitian and non-Hermitian case. As expected the nested method reaches
the accuracy of the non-nested method when its size is large enough. Surprisingly however, this happens for ` � k,
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Figure 7: Accuracy ε of the nested method for an 84 lattice configuration. Hermitian case with deflation gap ∆ = 0.055 (left) and non-Hermitian
case with µ = 0.3 and deflation gap ∆ = 0.107 (right). ε(k) shows how the error of the non-nested method decreases with growing Krylov subspace
(blue line). The vertical line fixes the size k of the outer Krylov space used in the nested method. ε(`) shows the accuracy of the nested method, for
fixed k, as a function of the size ` of the inner Krylov subspace (red line). The rapid convergence illustrates the efficiency of the nested method. The
smallest value of ` for which optimal convergence is reached is denoted by `opt. Note that we always restrict ourselves to even Krylov subspace
sizes, as odd values systematically give a somewhat worse accuracy because of spurious near-zero eigenvalues occurring in the Ritz matrix.
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Figure 8: Convergence of the nested method for an 84 lattice configuration as a function of the relative inner Krylov subspace size `/k, for various
deflation gaps (given in parenthesis). For each gap the value of k is chosen such that an accuracy of 10−8 is achieved. Left: Hermitian case with
k = 2806, 1462 and 758 for deflation gap ∆ = 0.025, 0.05 and 0.1. Right: non-Hermitian case with µ = 0.3 and k = 3808, 1456 and 634 for
∆ = 0.05, 0.1 and 0.2. Again, the irregular convergence pattern for the non-Hermitian case is characteristic for the two-sided Lanczos algorithm.

as the convergence of the inner Ritz approximation seems to be extremely fast. The smallest value of ` for which
optimal convergence is reached will be called `opt. The fast convergence is closely related to the large improvement
in condition number discussed in the previous section. We also showed in Eq. (20) how the improvement of the
condition number, due to the preconditioning of the Ritz matrix Hk, depends on the deflation gap. A smaller gap will
yield a larger improvement, and vice-versa. This in turn will influence the convergence rate of the nested method.
Figure 8 verifies that the result `opt � k remains valid for different deflation gaps. The figure also illustrates that the
somewhat larger reduction in condition number achieved for a smaller gap yields an accordingly smaller ratio `opt/k
(approximately proportional to the ratio of the respective improvement factors F ). This is an additional advantage
as the size reduction is largest when the outer subspace is large. In all cases, the inner Krylov subspace can be taken
much smaller than the outer subspace, such that the efficiency of the Krylov-Ritz method is substantially boosted, as
will be shown in the benchmarks below.
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Figure 9: Error and CPU usage of the nested method for lattice size 84. Hermitian case with deflation gap ∆ = 0.055 and fixed k = 1536 (left),
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Krylov subspace. The difference between both lines corresponds to the time taken by the RHi to compute sgn(H`). The vertical band highlights
the operational window of the nested method, i.e., the region in ` where the accuracy is optimal, but the CPU-time used to compute sgn(H`) is
negligible.

We also verified that the convergence curves are fairly insensitive to the choice of the source vector and lattice
configuration. The fast convergence property of the nested method is generic, regardless of the simulation details,
for both the Hermitian and non-Hermitian case, even though the precise value of `opt depends on the lattice size, the
simulation parameters, the deflation gap and the desired overall accuracy (determined by k).

4.3. Benchmarks
With the fast convergence (`opt � k) discussed in the previous section, we can expect a substantial gain in com-

putation time when using the nested method. The total CPU time consumed by the nested method is illustrated in
Fig. 9 for the Hermitian case (left) and the non-Hermitian case (right). The size of the outer Krylov subspace is kept
fixed, such that its construction gives a constant contribution to the run time, depicted by the horizontal dashed line.
The contribution to the CPU time which varies with ` mainly comes from the computation of sgn(H`) with the RHi
and is proportional to `3. For ` ≈ k the total run time of the nested method is about equal to that of the non-nested
method. However, as illustrated by the ε(`) curve (red line) and discussed in Sec. 4.2, ` can be chosen much smaller
while preserving the accuracy of the non-nested method. The central result, illustrated by the vertical band in Fig. 9,
is that there exists an interval in ` for which the accuracy is still optimal, but the CPU time needed to compute sgn(H`)
with the RHi is negligible compared to the time required to construct the outer Krylov subspace. There is therefore
no need to make a compromise between run time and accuracy, as both can be optimized simultaneously. The error
in this range is the minimal error achievable with the given size of the outer Krylov subspace, while the run time is
completely dominated by the cost for building the basis in that subspace. The nested method is able to quench the
CPU time needed for the computation of sgn(Hk)e(k)

1 without affecting the accuracy of the Krylov-Ritz approximation.
To evaluate the nested method further, we compare it to state-of-the-art rational approximation methods. In the

Hermitian case the Zolotarev rational approximation, evaluated with a multi-shift conjugate gradient inverter [6], is
routinely used in lattice simulations. In the non-Hermitian case, i.e., simulations at nonzero baryon density, overlap
fermions are not yet commonly used because of their high cost, but recently an efficient algorithm was presented,
which evaluates the Neuberger rational approximation using a multi-shift restarted FOM inverter [10]. In Fig. 10 we
compare the results obtained with the nested Krylov subspace and rational approximation methods, and show how
the CPU time varies as a function of the achieved accuracy for various lattice sizes. In all cases the Hermitian and
non-Hermitian versions of the nested method perform better than the rational approximation method. The volume
dependence of the run time for a fixed accuracy ε can be extracted from Fig. 10 and is displayed for ε = 10−8

in Fig. 11. Fits to the nested method results show a volume dependence which is slightly steeper than linear, i.e.,
proportional to V1.2 for the Hermitian case and V1.3 for the non-Hermitian case. The comparisons clearly demonstrate
the good efficiency of the nested method.
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Figure 10: Comparison of the nested Krylov subspace method (filled circles) with rational approximation methods (full lines) for lattices of sizes
44, 64, 84 and 104 for two different deflation gaps (given in parenthesis). Left: Hermitian case comparing the nested Lanczos approximation (Lanc)
with the Zolotarev approximation (Zolo), evaluated using the Chroma QCD library. Right: non-Hermitian case with µ = 0.3 comparing the nested
two-sided Lanczos method (2sL) with the Neuberger approximation evaluated with a restarted FOM algorithm (rFOM). The timings were measured
on a single 2.4 GHz Intel Core 2 core with 8 GB of memory.

12



0 2000 4000 6000 8000 10000
lattice volume

0

5

10

15

20

25

CP
U

 ti
m

e

44
64

84

ε = 10-8

Zolo (0.1)

Lanc (0.1)

μ=0

Lanc (0.05)

104

Zolo (0.05)

0 2000 4000 6000 8000 10000
lattice volume

0

50

100

150

200

CP
U

 ti
m

e

rFOM (0.05)

2sL (0.05)

ε = 10-8

44
64

84

104μ=0.3

2sL (0.1)

rFOM (0.1)

Figure 11: Volume dependence of the run times for the nested method and rational approximation methods for the Hermitian (left) and non-
Hermitian (right) case. The data are taken from Fig. 10 at an accuracy of ε = 10−8.

4.4. Note on the memory usage
In the numerical tests we observed that, for a fixed deflation gap, the Krylov subspace size needed to achieve a

certain accuracy is almost independent of the lattice volume in the Lanczos approximation and only grows slowly
with the volume in the two-sided Lanczos approximation. Therefore, the memory consumed by the Krylov basis Vk

is roughly proportional to the lattice volume. For large lattice sizes this storage requirement might become too large
to run the Krylov-Ritz approximation on a single node.

One solution, which only requires little storage, is to implement a double-pass version of the algorithm, which is
possible due to the use of short recurrences. In double-pass mode only the two most recently generated basis vectors
are stored during the construction of the outer Krylov subspace basis. In the first pass the matrix Hk is built and the
product sgn(Hk)e(k)

1 is computed with Eq. (14). In the second pass the basis vectors of the outer Krylov subspace are
generated again and immediately added in a linear combination, whose coefficients were computed in the first pass.
The drawback of this variant is that the Krylov basis is constructed twice, such that the corresponding CPU time will
be doubled.

The more efficient solution is to parallelize the single-pass version of the algorithm, such that the memory require-
ment gets distributed over the available nodes. Benchmarks on larger volumes, using such a parallel implementation,
are currently being performed.

4.5. Multi-level nesting
In principle, if the inner Krylov subspace in Eq. (15) is still too large for an efficient application of the RHi on the

inner Ritz matrix, the nested method could be applied recursively.5 In this case we rename k to k0, ` to k1, and add more
recursively nested levels ki as necessary. Except for the deepest level, the matrix-vector product sgn(Hki )e

(ki)
1 required

at level i will be computed with a Krylov-Ritz approximation (14) in the nested Krylov subspaceKki+1 (H′ki
, e(ki)

1 ), where
H′ki

is defined by Eq. (16) on Hki and typically ki+1 � ki. At the deepest level the sign function of the Ritz matrix will
be evaluated with the RHi. This multi-level nesting is illustrated in Fig. 12, where we show the convergence curves
for 1, 2, 3, 4 and 5 nested levels as a function of the size of the innermost Krylov subspace, with the sizes of all outer
levels kept fixed to some value inside their convergence region (the convergence curves do not depend on the precise
choice of the outer ki’s). As before, the convergence criterion is set by the size k0 of the outer Krylov subspace. Each
additional level lowers the size of the Krylov subspace. In the case depicted in Fig. 12 the optimal Krylov subspace
sizes, i.e. where convergence is reached, for the successive levels decreases from 1536 → 90 → 20 → 8 → 4 → 2.
The improvement is most dramatic for the first nested level, but fast convergence is exhibited at all levels6. This can

5Note that for all cases considered in the current study a single level of nesting was sufficient.
6For each level the p-factor for Eq. (16) is computed using Eq. (18), using appropriately approximated boundaries for the spectrum of the Ritz

matrix of the previous level. Note that the factor p converges to 1 as more levels are introduced, and the preconditioning step converges to the RHi.
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the number of levels in the method. For the i-level method, the outer levels k j, j = 1, . . . , i − 1 are fixed to a value in their convergence region.

be related to the quadratically convergent RHi, as the preconditioning step at each level mimics a step of the RHi
and compresses the spectrum more and more towards ±1. Moreover, the judicious choice of p at each level improves
the convergence even more. It is intriguing to note that, in the example of Fig. 12, the sign of a matrix of dimension
n = 49152 can be evaluated to an accuracy of 10−9 by computing the sign of a 2 × 2 matrix, which is then lifted back
to the original n-dimensional space through linear combinations of Krylov vectors. This emphasizes again the power
of Krylov subspace methods.

5. Conclusions

In this paper we have presented a nested Krylov subspace method which boosts the Krylov-Ritz approximations
used to compute the sign function of both Hermitian and non-Hermitian matrices. The Krylov-Ritz approximation
projects the matrix on a Krylov subspace in which it computes the sign function exactly, before lifting it back to
the original space. Its standard implementation suffers from the CPU intensive computation of the sign of the Ritz
matrix, which goes like the cube of the Krylov subspace size. By making an additional projection on a much smaller
Krylov subspace, the nested method significantly reduces the total computation time of the Krylov-Ritz approxima-
tion, without affecting its accuracy. Numerical tests showed that the nested method works equally well for Hermitian
and non-Hermitian matrices and is more efficient than state-of-the-art rational approximation methods. Moreover, it
exhibits a good, close to linear, volume scaling. We are currently investigating the efficiency of the nested method for
larger lattice volumes using a parallel implementation of the algorithm.

To end, we comment on the relation between the nested method and the extended Krylov subspace methods
introduced in Ref. [20]. An extended Krylov space is defined as

Kk(A, A−1, x) = span(x, Ax, A−1x, A2x, A−2x, . . . , Ak−1x, A−k+1x), (24)

and an approximation in that subspace approximates f (A) by the sum Q(A) =
∑k−1
−k+1 ciAi. In the nested method we

construct the `-dimensional Krylov subspace K`(H′k, e
(k)
1 ), which forms an `-dimensional subspace of the (2` − 1)-

dimensional extended Krylov subspace K`(pHk, (pHk)−1, e(k)
1 ). The nested method implicitly fixes the coefficients

of the positive and negative powers of Q(Hk) to be equal, c−i = ci, which follows from the use of the property
sgn(Hk) = sgn(Hk + H−1

k ). Hence, the nested method implicitly truncates the size of the extended Krylov subspace.
Approximations for the sign function in extended Krylov subspaces have been briefly considered recently [21],

however not in combination with the nesting of Krylov subspaces, i.e. the extended subspace is constructed for the
original matrix A, not for the Ritz matrix Hk. Evidently this is not feasible in the application to lattice QCD as the
inversion of the γ5-Wilson Dirac operator is too expensive in order to construct extended Krylov subspaces.
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To conclude, we briefly consider the application of the nested method to other matrix functions. The method
presented in Sec. 4 requires a transformation which leaves the matrix function invariant, similar to Eq. (16) for the
sign function. If such a transformation is not known, the nested method could be adapted by using an extended Krylov
subspace method at the inner level. This is also a topic of work in progress.
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Appendix A. Lanczos algorithm

v1 ←
x
|x|

r ← Av1
for j = 1 to k do

H( j, j)← v†jr
r ← r − H( j, j)v j

if j = k then
stop

end if
β←

√
r†r

H( j, j + 1)← β
H( j + 1, j)← β
v j+1 ←

1
β
r

r ← Av j+1
r ← r − βv j

end for
All H(i, j) not assigned above are zero. Consequently H is tridiagonal and symmetric. The v j are the column vectors
of the matrix Vk.

Appendix B. Two-sided Lanczos algorithm

v1 ←
x
|x|

w1 ← v1
r ← Av1
l← A†w1
for j = 1 to k do

H( j, j)← w†jr
r ← r − H( j, j)v j

l← l − (H( j, j))∗w j

if j = k then
stop

end if
δ← r†l
if δ = 0 then

serious breakdown, stop
end if
β←

√
δ

H( j + 1, j)← β
γ ← δ∗

β

H( j, j + 1)← γ
v j+1 ←

1
β
r
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w j+1 ←
1
γ∗

l
r ← Av j+1
l← A†w j+1
r ← r − γv j

l← l − β∗w j

end for
The v j and w j are the column vectors of the matrices Vk and Wk, respectively. All H(i, j) not assigned above are zero.
Consequently H is tridiagonal, but not symmetric as in the Hermitian case. The coefficients β and γ are, non-uniquely,
chosen to satisfy the biorthonormality condition

w†jvi = δi j. (B.1)

There are potential problems in the two-sided Lanczos process, namely serious breakdowns and near breakdowns,
where δ← r†l = 0, respectively ≈ 0, however, these were not encountered in our numerical tests.

Appendix C. Nested algorithm

Given a (non-)Hermitian matrix A, a source vector x and the critical eigenvectors ri (left and right eigenvectors li
and ri), with eigenvalues λi, i = 1, . . . ,m, do:

1. Apply Left-Right deflation (see Ref.[11]) to construct x	, where the components of the source vector x along
the eigenvectors ri have been removed:

x	 = x −
m∑

i=1

〈li, x〉ri,

where li = ri for Hermitian A.
2. Run the (two-sided) Lanczos algorithm from Appendix A (Appendix B) with A and x	 to obtain Vk and Hk.
3. Perform an LU decomposition of pHk, e.g., with the LAPACK routine dgttrf (zgttrf). This yields a lower

triangular matrix L with unit diagonal and one sub-diagonal, and an upper triangular matrix U with one diagonal
and two super-diagonals. All other entries of L and U are zero.

4. Run the (two-sided) Lanczos algorithm with H′k = (pHk + (pHk)−1)/2 and source vector e(k)
1 to construct the

Krylov basis V` and the Ritz matrix H`. To do so apply H′k to each Krylov vector v:
(a) Compute (pHk)−1v using a sparse LU back substitution, e.g., with the LAPACK routine dgttrs (zgttrs).
(b) Compute (pHk)v and add to the result of (a). This tridiagonal multiply and add can be done efficiently

using the BLAS band-matrix-vector multiplication routine dsbmv (zgbmv).
5. Run the RHi (or any other suitable method to compute the sign function) on H` to obtain sgn(H`).
6. The final approximation is then given by

sgn(A)x ≈
m∑

i=1

sgn(λi)〈li, x〉ri + |x	|VkV` sgn(H`)e
(`)
1 .

Note that steps (3-5) are done in real arithmetic in the Hermitian case.
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