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1. Introduction

In this paper we discuss the approximation of f (A)b, where A ∈ Cn×n is non-Hermitian and
f is a function defined on the spectrum of A such that the extension of f to matrix arguments is
defined.1

The motivation for this rather general setting comes from quantum chromodynamics (QCD)
formulated on a discrete space-time lattice, where f = sign is of special interest. As the main
object relevant for our discussion we are focusing on the overlap Dirac operator [3, 4]. The main
numerical effort lies in the inversion of the overlap operator, which is done by iterative methods and
requires the repeated application of the sign function of the usual “symmetrized” Wilson operator
HW = γ5DW (see [5] for the notation) on a vector.

At zero quark chemical potential µ , the operator HW is Hermitian. However, one can also study
QCD at nonzero µ , which is relevant for many physical systems such as neutron stars, relativistic
heavy ion collisions, or the physics of the early universe. The overlap operator has been generalized
to this case [5, 6]. The computational challenge is the fact that at non-zero chemical potential HW

becomes non-Hermitian.
This contribution is organized as follows. In Section 2 we review multishift methods which

have proven to be successful in the Hermitian (µ = 0) case. We will point out the problems that
occur when applying these methods to the non-Hermitian (µ 6= 0) case. In Sections 3 and 4 we
present two procedures, restarts and deflation, which — especially when applied in combination —
make multishift methods applicable to non-Hermitian matrices. We present our numerical results
in Section 5, and conclusions are drawn in Section 6.

2. Multishift methods

First we recall some results for the Hermitian case, i.e., we investigate the computation of
f (A)b, where A ∈ Cn×n is Hermitian. If A is large, f (A) is too costly to compute, while f (A)b can
still be obtained in an efficient manner if A is sparse. Krylov subspace methods, i.e., methods that
approximate f (A)b in a Krylov subspace Kk(A,b) =span{b,Ab, . . . ,Ak−1b}, are suitable for this
task. We distinguish between two Krylov subspace approaches: direct projection and multishift.

Direct projection methods compute the sign function for the projection of A onto Kk(A,b) and
lift the result back to the original space, see [1, 7], or [8, 9] in the context of QCD. These methods
are not the topic of this paper, but we will use them for comparison in our numerical results.

The idea of multishift methods is to approximate f by a rational function g,

f (x)≈ g(x) =
s

∑
i=1

ωi

x−σi
. (2.1)

The systems
(A−σiI)x(i) = b , i = 1, . . . ,s (2.2)

are treated with standard Krylov subspace methods such as the conjugate gradient method (CG) or
the minimal residual method (MINRES), approximating x(i) by xk

(i) from a Krylov subspace. Since
1The function f can be extended to matrix arguments by, e.g., a spectral definition or a contour integral. For a

thorough treatment of matrix functions see [1]; a compact overview is given in [2].
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Krylov subspaces are shift invariant, i.e., Kk(A−σiI,b) = Kk(A,b), the approximations xk
(i) can be

computed simultaneously using the same subspace for all systems. The desired approximation is
then obtained by combining the approximations to the s shifted systems

f (A)b≈ xk =
s

∑
i=1

ωixk
(i) . (2.3)

The core of any such method is the computation of an appropriate basis for the Krylov subspace.
For Hermitian matrices an orthonormal basis can be built with short recurrences using the Lanczos
process. These short recurrences are essential for the efficiency of the approach.

Turning to non-Hermitian matrices, the computation of an orthogonal basis now requires long
recurrences and is usually summarized via the Arnoldi relation

AVk = VkHk +hk+1,kvk+1eT
k . (2.4)

Here, Vk = [v1| . . . |vk] ∈Cn×k is the matrix which contains the computed basis vectors (the Arnoldi
vectors), Hk = Vk

†AVk is the upper Hessenberg matrix containing the recurrence coefficients hi, j,
and ek denotes the k-th unit vector of Ck.

For the rational approximation approach this means that the short-recurrence methods CG and
MINRES have to be replaced by multishift versions of the corresponding long-recurrence methods,
i.e., the full orthogonalization method (FOM) [10] and the generalized minimal residual method
(GMRES) [11], respectively.

Long recurrences slow down computation and increase storage requirements, and thus become
inefficient or even infeasible if k, the dimension of the Krylov subspace, becomes large. In this
paper we investigate restarts to circumvent this problem for non-Hermitian matrices.

3. Restarts

FOM to solve Ax = b consists of the Arnoldi process to compute the Arnoldi vectors v1, . . . ,vk

as well as the upper Hessenberg matrix Hk = Vk
†AVk and of approximating x≈ xk = ‖b‖2VkHk

−1e1.
The Arnoldi process applied to A−σiI instead of A produces the same matrices Vk with Hk replaced
by the shifted counterpart Hk−σiI. The k-th approximation to g(A)b, with g(x) defined in (2.1), is
thus given by ‖b‖2 ∑

s
i=1Vk(Hk−σiI)−1e1.

To prevent recurrences from becoming too long one can — in this case — use a restart proce-
dure. This means that one stops the Arnoldi process after kmax iterations. At this point we have a,
possibly crude, approximation to g(A)b, and to allow for a restart one now has to express the error
of this approximation anew as the action of a matrix function, g1(A)b1, say.

A crucial observation concerning multishifts is that for any k the individual residuals rk
(i) =

b− (A−σiI)xk
(i) of the FOM iterates xk

(i) are just scalar multiples of the Arnoldi vector vk+1, see,
e.g., [10, 12], i.e.,

rk
(i) = ρk

(i)vk+1 , i = 1, . . . ,s (3.1)

with collinearity factors ρk
(i) ∈ C. The error ∆k = g(A)b− xk of the multishift approximation at

step k can therefore be expressed as

∆k = g1(A)b1 , where g1(t) =
s

∑
i=1

ωiρk
(i)

t−σi
and b1 = vk+1 . (3.2)
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This allows for a simple restart at step kmax of the Arnoldi process, with the new function g1 again
being rational with the same poles as g. This restart process can also be regarded as performing
restarted FOM for each of the individual systems (A−σiI)x = b, i = 1, . . . ,s (and combining the
individual iterates appropriately), the point being that, even after a restart, we need only a single
Krylov subspace for all s systems, see [10].

There also exists a restarted version of multishift GMRES, see [11] for a detailed derivation.

4. Deflation

In [8] two deflation approaches were proposed which use eigensystem information, namely
Schur vectors (Schur deflation) or left and right eigenvectors (LR deflation) corresponding to some
“critical” eigenvalues. Critical eigenvalues are those which are close to a singularity of f . If they
are not reflected very precisely in the Krylov subspace, we get a poor approximation. In case of
the sign function the critical eigenvalues are those close to the imaginary axis. Here, we describe
LR deflation (see [13] for the reason why this is the method of choice) and show how it can be
combined with multishifts and restarts.

Let Rm = [r1| . . . |rm] be the matrix containing the right eigenvectors and Lm
† = [l1| . . . |lm]†

the matrix containing the left eigenvectors corresponding to m critical eigenvalues of the matrix A.
This means that we have

ARm = RmΛm and Lm
†A = ΛmLm

† , (4.1)

where Λm is a diagonal matrix containing the m critical eigenvalues. Since left and right eigen-
vectors are biorthogonal, we can normalize them such that Lm

†Rm = Im. The matrix P = RmLm
†

represents an oblique projector onto the subspace ΩR = span{r1, . . . ,rm}.
We now split f (A)b into the two parts

f (A)b = f (A)(Pb)+ f (A)(I−P)b . (4.2)

Since we know the left and right eigenvectors which make up P, we directly obtain

xP ≡ f (A)(Pb) = f (A)RmL†
mb = Rm f (Λm)(L†

mb) , (4.3)

which can be computed exactly. The remaining part f (A)(I−P)b can then be approximated it-
eratively by using a multishift method. Thus f (A)b is now approximated in augmented Krylov
subspaces ΩR +Kk(A,(I−P)b),

xk = xP︸︷︷︸
∈ΩR

+
s

∑
i=1

ωix
(i)
k︸ ︷︷ ︸

∈ Kk(A,(I−P)b)

. (4.4)

Theoretically, we have

Kk(A,(I−P)b) = (I−P)Kk(A,(I−P)b)⊆ range(I−P) , (4.5)
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see [13]. In computational practice, however, components outside of range(I−P) will show up
gradually when building Kk(A,(I−P)b) due to rounding effects in floating-point arithmetic. It is
thus necessary to reapply I−P from time to time in order to eliminate these components.

Since the only effect of LR deflation is the replacement of b by (I−P)b, no modifications of
the restart algorithm are necessary.

5. Algorithms

We combine multishift methods with restarts and deflation. We assume that the original func-
tion f is replaced by a rational function (given by the shifts σi and weights ωi) which approximates
the original function sufficiently well after deflation.

Depending on the underlying multishift method (FOM or GMRES), we get LR-deflated mul-
tishift FOM (FOM-LR) or LR-deflated multishift GMRES (GMRES-LR). Algorithm 1 gives an
algorithmic description of FOM-LR. (For an algorithmic description of GMRES-LR we refer to
[13].) The notation FOM-LR(m,k) indicates that we LR-deflate a subspace of dimension m and
that we restart FOM after a cycle of k iterations. The vector x is the approximation to f (A)b. After
the completion of each cycle we perform a projection step to eliminate numerical contamination
by components outside of range(I−P).

Algorithm 1. Restarted FOM-LR(m,k)

{Input m, k = kmax, A, {σ1, . . . ,σs}, {ω1, . . . ,ωs}, b, L = Lm, R = Rm, Λ = Λm}
x = xP = R f (Λ)L†b
r = (I−P)b
ρ(i) = 1, i = 1, . . . ,s
while not all systems are converged do {loop over restart cycles}

β = ‖r‖2

v1 = r/β

compute Vk, Hk by running k steps of Arnoldi with A
y(i)

k = βρ(i)(Hk−σiIk)−1e1, i = 1, . . . ,s

x = x+Vk ∑
s
i=1 ωiy

(i)
k

r = vk+1

ρ(i) =−hk+1,keT
k y(i)

k , i = 1, . . . ,s
r = (I−P)r {projection step}

end while

Note that a combination of deflation and a multishift method based on the two-sided Lanczos
algorithm is also possible, see [13]. Of course, since two-sided Lanczos already gives short recur-
rences, there is no need to restart here.

6. Numerical results

For our numerical experiments we turn to f = sign. In the Hermitian case, the sign function of
A can be approximated using the Zolotarev best rational approximation, see [14] and, e.g., [15, 16].
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Using the Zolotarev approximation on non-Hermitian matrices gives rather poor results, unless
all eigenvalues are close to the real axis. A better choice for generic non-Hermitian matrices is
the rational approximation originally suggested by Kenney and Laub [17] and used by Neuberger
[18, 19] for vanishing chemical potential,

sign(t)≈ gs(t) , where gs(t) =
(t +1)2s− (t−1)2s

(t +1)2s +(t−1)2s . (6.1)

The partial fraction expansion of gs is known to be

gs(t) = t
s

∑
i=1

ωi

t2−σi
with ωi =

1
s

cos−2
(

π

2s

(
i− 1

2

))
, σi =− tan2

(
π

2s

(
i− 1

2

))
, (6.2)

see [17, 18]. Note that actually one uses g(ct), where the parameter c > 0 is chosen to minimize
the number of poles s needed to achieve a given accuracy. If the spectrum of A is known to be
contained in the union of two circles C(m,r)∪C(−m,r), where C(m,r) is the circle {|z−m| ≤ r}
and m and r are real with 0 < r < m, then c = ((m+ r)(m− r))−1/2 is optimal, see [13, 16].

Figure 1 shows the performance of FOM-LR in comparison to the direct projection method.
The k-th approximation in the latter is given as

xP +‖(I−P)b‖2Vk sign(Hk)e1 , (6.3)

where sign(Hk) is computed via Roberts’ method, see [1]. The relative performance of the two
approaches depends on the parameters of the problem, such as the lattice size, the deflation gap,
and the size of the Krylov subspace. For more details, see [13]. We add that in the meantime an
improved method to compute sign(Hk) in the direct approach has been developed, see [20] in these
proceedings.
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Figure 1: Comparison of the accuracy of the restarted FOM-LR algorithm (rFOM) and the direct two-sided
Lanczos-LR method (2sL) as a function of the CPU time in seconds for an 84 (left) and a 104 (right) lattice
configuration, using µ = 0.3 in both cases. Each plot shows data for two different deflation gaps, given in
parentheses. The restart size used in the restarted FOM-LR algorithm is kmax = 30 for the 84 lattice and
kmax = 40 for the 104 lattice.
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Figure 2 is meant to convey a warning. It shows that the projection step after each restart, as
formulated in Algorithm 1, may be crucial to ensure convergence. In both plots we give results for
Algorithm 1 and a variant thereof in which the projection step is omitted. The right plot shows that
this may destroy convergence, the left plot shows that this is not necessarily so. Since the CPU
time is increased only marginally by the projection step, the latter should always be included.
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Figure 2: Error vs CPU time for the FOM-LR algorithm with and without re-orthogonalization for 44 and
64 (left) as well as 84 and 104 (right) lattices. We again used µ = 0.3 in all cases.

7. Conclusion

We have presented an algorithm, FOM-LR, to approximate the action of the sign function of a
non-Hermitian matrix on a vector. This algorithm combines LR deflation and a rational approxima-
tion to the sign function, which is computed by a restarted multishift method. The latter has fixed
storage requirements determined by the restart parameter (maximum size of the Krylov subspace)
and the degree of the rational approximation. Occasionally, additional projections of the Krylov
vectors are necessary for numerical stability.

Whether FOM-LR or a direct method (i.e., the two-sided Lanczos-LR method) performs bet-
ter depends on many details of the problem. Some of them have been mentioned in Section 6.
Others include implementation issues such as optimized linear algebra libraries, and ultimately
parallelization.
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